N-Channel JFET

Product Summary

<table>
<thead>
<tr>
<th>V_{GSOFF} (V)</th>
<th>V_{BRGSS} Min (V)</th>
<th>g_m Min (mS)</th>
<th>I_{DSS} Min (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ -8</td>
<td>-25</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Features

- Excellent High-Frequency Gain: $G_{ps} 11$ dB @ 400 MHz
- Very Low Noise: 3 dB @ 400 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation
- High Gain: $A_V = 60$ @ 100 μA

Benefits

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

Applications

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

Description

The 2N3819 is a low-cost, all-purpose JFET which offers good performance at mid-to-high frequencies. It features low noise and leakage and guarantees high gain at 100 MHz.

Its TO-226AA (TO-92) package is compatible with various tape-and-reel options for automated assembly (see Packaging Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet.

Absolute Maximum Ratings

- Gate-Source/Gate-Drain Voltage: -25 V
- Forward Gate Current: 10 mA
- Storage Temperature: -55 to 150 °C
- Operating Junction Temperature: -55 to 150 °C
- Lead Temperature (1/16” from case for 10 sec.): 300 °C
- Power Dissipation: 350 mW

Notes

- Derate 2.8 mW/°C above 25 °C

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70238.
Specifications\(^a\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>(V_{(BR)GS})</td>
<td>(I_G = -1 \mu A), (V_{DS} = 0) V</td>
<td>-25</td>
</tr>
<tr>
<td>Gate-Source Cutoff Voltage</td>
<td>(V_{GS(off)})</td>
<td>(V_{DS} = 15) V, (I_D = 2) nA</td>
<td>-3</td>
</tr>
<tr>
<td>Saturation Drain Current(^b)</td>
<td>(I_{DSS})</td>
<td>(V_{GS} = 15) V, (V_{GS} = 0) V</td>
<td>2</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>(I_{GSS})</td>
<td>(V_{GS} = -15) V, (V_{DS} = 0) V</td>
<td>0.002</td>
</tr>
<tr>
<td>Gate Operating Current(^d)</td>
<td>(I_G)</td>
<td>(V_{DG} = 10) V, (I_D = 1) mA</td>
<td>-0.002</td>
</tr>
<tr>
<td>Drain Cutoff Current</td>
<td>(I_{D(off)})</td>
<td>(V_{DS} = 10) V, (V_{GS} = -8) V</td>
<td>0.002</td>
</tr>
<tr>
<td>Drain-Source On-Resistance</td>
<td>(r_{DS(on)})</td>
<td>(V_{GS} = 0) V, (I_D = 1) mA</td>
<td>150</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>(V_{GS})</td>
<td>(V_{DS} = 15) V, (I_D = 200) \mu) A</td>
<td>-0.5</td>
</tr>
<tr>
<td>Gate-Source Forward Voltage</td>
<td>(V_{(GFS)})</td>
<td>(I_G = 1) mA, (V_{DS} = 0) V</td>
<td>0.7</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Source Forward Transconductance(^d)</td>
<td>(g_f)</td>
<td>(V_{DS} = 15) V, (V_{GS} = 0) V</td>
<td>2</td>
</tr>
<tr>
<td>Common-Source Output Conductance(^d)</td>
<td>(g_{os})</td>
<td>(f = 1) kHz</td>
<td>5.5</td>
</tr>
<tr>
<td>Common-Source Input Capacitance</td>
<td>(C_{iss})</td>
<td>(f = 100) MHz</td>
<td>1.6</td>
</tr>
<tr>
<td>Common-Source Reverse Transfer Capacitance</td>
<td>(C_{rss})</td>
<td>(V_{DS} = 15) V, (V_{GS} = 0) V, (f = 1) MHz</td>
<td>4</td>
</tr>
<tr>
<td>Equivalent Input Noise Voltage(^d)</td>
<td>(\sigma_n)</td>
<td>(V_{DS} = 10) V, (V_{GS} = 0) V, (f = 100) Hz</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes
- \(T_A = 25^\circ \) C unless otherwise noted.
- Typical values are for Design Aid Only, not guaranteed nor subject to production testing.
- Pulse test: \(PW \leq 300 \) \(\mu \) s, duty cycle \(\leq 2\% \).
- This parameter not registered with JEDEC.

Typical Characteristics

<table>
<thead>
<tr>
<th>Drain Current and Transconductance vs. Gate-Source Cutoff Voltage</th>
</tr>
</thead>
</table>

- **Saturation Drain Current** \(I_{DSS} \) vs. \(V_{GS(off)} \) - Gate-Source Cutoff Voltage
- **Forward Transconductance** \(g_f \) vs. \(V_{GS(off)} \) - Gate-Source Cutoff Voltage

<table>
<thead>
<tr>
<th>On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage</th>
</tr>
</thead>
</table>

- **Drain-Source On-Resistance** \(r_{DS(on)} \) vs. \(V_{GS(off)} \) - Gate-Source Cutoff Voltage
- **Output Conductance** \(g_{os} \) vs. \(V_{GS(off)} \) - Gate-Source Cutoff Voltage
Typical Characteristics (Cont’d)

Gate Leakage Current

- V_{DG} – Drain-Gate Voltage (V)
- I_G – Gate Leakage (mA)
- I_GS @ 25°C
- I_GS @ 125°C
- I_GS @ 25°C
- I_GS @ 125°C

Common-Source Forward Transconductance vs. Drain Current

- $V_{GS(off)} = -3$ V
- $V_{DS} = 10$ V
- $f = 1$ kHz
- $T_A = -55^\circ$ C

Output Characteristics

- $V_{GS(off)} = -2$ V
- $V_{GS} = 0$ V
- $V_{DS} = 10$ V

Transfer Characteristics

- V_{GS} – Gate-Source Voltage (V)
- I_D – Drain Current (mA)
- V_{DS} – Drain-Source Voltage (V)

Siliconix
S-5242—Rev. C, 14-Apr-97
Typical Characteristics (Cont’d)

Transconductance vs. Gate-Source Voltage

- $g_{fs} = \text{Forward Transconductance (mS)}$
- $V_{GS} = \text{Gate-Source Voltage (V)}$
- $V_{GS(\text{off})} = -2 \, \text{V}$
- $V_{DS} = 10 \, \text{V}$
- $f = 1 \, \text{kHz}$
- $T_A = -55^\circ \text{C}$
- 25°C
- 125°C

On-Resistance vs. Drain Current

- $r_{DS(on)} = \text{Drain-Source On-Resistance (}\Omega\text{)}$
- $V_{GS(\text{off})} = -2 \, \text{V}$
- $V_{GS(\text{off})} = -3 \, \text{V}$
- $T_A = -55^\circ \text{C}$

Common-Source Input Capacitance vs. Gate-Source Voltage

- $C_{iss} = \text{Input Capacitance (pF)}$
- $f = 1 \, \text{MHz}$
- $V_{DS} = 0 \, \text{V}$
- $V_{DS} = 10 \, \text{V}$

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

- $C_{rss} = \text{Reverse Feedback Capacitance (pF)}$
- $f = 1 \, \text{MHz}$
- $V_{DS} = 0 \, \text{V}$
- $V_{DS} = 10 \, \text{V}$

Circuit Voltage Gain vs. Drain Current

- $A_V = \frac{g_{fs} R_L}{1 + R_{L} g_{os}}$
- Assume $V_{DD} = 15 \, \text{V}$, $V_{DS} = 5 \, \text{V}$
- $V_{GS(\text{off})} = -2 \, \text{V}$
- $V_{GS(\text{off})} = -3 \, \text{V}$
Typical Characteristics (Cont’d)

Input Admittance

Reverse Admittance

Forward Admittance

Output Admittance

Equivalent Input Noise Voltage vs. Frequency

Output Conductance vs. Drain Current

Siliconix
S-52424—Rev. C, 14-Apr-97