Dropping of arm supporting gyroscope

The increase in θ during precession was analysed. The apparatus used to do this is given in figure 1.

Figure 1: Apparatus used in experiment

A value for the initial spin speed, ω_{3} of the rotor was obtained using a strobe gun, and estimates of $\dot{\phi}, \theta$ and $\dot{\theta}$ were obtained by analysis of three videos of the same motion. Graphs of the change in θ over time are displayed in figure 2 .

Figure 2: Graph showing the evolution of θ over time in three different cases

Variable	Estimate
$\dot{\theta}$	$0.175 \mathrm{rad} / s$
$\dot{\phi}$	$11.9 \mathrm{rad} / s$
ω_{3}	$1100 \mathrm{rad} / s$
$\dot{\omega}_{3}$	$5.8 \mathrm{rad} / s^{2}$

Figure 3: Estimates of variables from experiment

Since the analysis is to be based upon the initial motion, where $\theta \approx \frac{\pi}{2}$ an average of the initial gradients of these graphs was used to obtain an estimate for $\dot{\theta}$

Estimates of $\dot{\theta}, \dot{\phi}, \omega_{3}$ and $\dot{\omega}_{3}$ are given in figure 3, these estimates relate to the initial motion, where $\theta \approx \frac{\pi}{2}$
From these estimates it was decided fair to assume $\omega_{3} \gg \dot{\phi}$ and $\dot{\phi} \gg \dot{\theta}$
The change in θ is caused by the fact that Q_{1} and Q_{3} are non zero, therefore, the effect of these on $\dot{\theta}$ was investigated. This was done by first considering the effect of Q_{F}, friction in the bearings of the upright then by investigating the effect of Q_{3}, friction in the bearings of the rotor.
Q_{3} was initially assumed to be zero and the effect of Q_{F} on $\dot{\theta}$ was established. This analysis applies only to the initial motion as θ is assumed to be approximated by $\frac{\pi}{2}$.

As fast spin is assumed, it is assumed that

$$
\begin{equation*}
\mathbf{h}=C \omega_{3} \mathbf{k} \tag{1}
\end{equation*}
$$

Figure 4: Angle between rotor and vertical

From figure 4 equation 2 is obtained, which is then differentiated to give equation 3 .

$$
\begin{equation*}
\mathbf{h} \cdot \mathbf{K}=C \omega_{3} \cos \theta \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d x}(\mathbf{h} \cdot \mathbf{K})=-C \omega_{3} \dot{\theta} \sin \theta=-Q_{F} \tag{3}
\end{equation*}
$$

This gives a value for $\dot{\theta}$ due to the friction about the vertical shaft Q_{F}.

$$
\begin{equation*}
\dot{\theta}_{Q F}=\frac{Q_{F}}{C \omega_{3} \sin \theta} \tag{4}
\end{equation*}
$$

In order to analyse the effect of the couple Q_{3} on the motion, Q_{F} was assumed to be zero.
It is assumed that moment of momentum is conserved about the vertical axis (this was checked and found to be a fair assumption)

Figure 5: Position at $t=0$ and after time $d t$ has elapsed

$$
\begin{array}{r}
\mathbf{h}=C \omega_{3} \mathbf{k}+A \dot{\phi} \sin \theta \mathbf{K} \\
\mathbf{h} \cdot \mathbf{K} \approx C \omega_{3}(\mathbf{k} \cdot \mathbf{K})+A \dot{\phi}=C \omega_{3} \cos \theta+A \dot{\phi} \tag{6}
\end{array}
$$

Since moment of momentum is assumed to be conserved this can be differentiated giving

$$
\begin{equation*}
\frac{d}{d t}(\mathbf{h} \cdot \mathbf{K})=-C \omega_{3} \sin \theta \dot{\theta}+A \ddot{\phi}=0 \tag{7}
\end{equation*}
$$

An expression for $\ddot{\phi}$ is sought to substitute into equation 7, this is found using the Gyroscope equations. The second of the Gyroscope equations is.

$$
\begin{equation*}
A \ddot{\theta}+C \omega_{3} \dot{\phi} \sin \theta=m g a \sin \theta \tag{8}
\end{equation*}
$$

The expression $A \ddot{\theta}$ is small, and so can be assumed negligible. This gives the following expression for $\dot{\phi}$.

$$
\begin{equation*}
\dot{\phi}=\frac{m g a}{C \omega_{3}} \tag{9}
\end{equation*}
$$

From this

$$
\begin{array}{r}
\frac{d}{d t}(\dot{\phi})=\frac{m g a}{C}\left(\frac{-1}{\omega_{3}^{2}}\right) \dot{\omega}_{3} \\
=\frac{m g a}{C^{2} \omega_{3}^{2}} Q_{3} \tag{11}
\end{array}
$$

Substituting this into equation 7, and using the assumption that θ is approximately $\frac{\pi}{2}$ gives

$$
\begin{equation*}
\dot{\theta}=A \frac{m g a}{\left(C \omega_{3}\right)^{2}} Q_{3} \tag{12}
\end{equation*}
$$

Therefore $\dot{\theta}$ due to friction in the rotor bearings is given by

$$
\begin{equation*}
\dot{\theta}_{Q 3}=A \frac{\dot{\phi}}{\left(C \omega_{3}\right)^{2}} Q_{3} \tag{13}
\end{equation*}
$$

An overall expression for $\dot{\theta}$ around $\theta=\frac{\pi}{2}$ is given by

$$
\begin{equation*}
\dot{\theta}=\dot{\theta}_{Q 3}+\dot{\theta}_{Q F}=\underbrace{A \frac{\dot{\phi}}{\left(C \omega_{3}\right)^{2}} Q_{3}}_{\text {Change in } \theta \text { due to } Q_{3}}+\underbrace{\frac{Q_{F}}{C \omega_{3}}}_{\text {Change in } \theta \text { due to } Q_{F}} \tag{14}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\frac{\dot{\theta}_{Q F}}{\dot{\theta}_{Q 3}}=\frac{Q_{F}}{Q_{3}} \frac{C \omega_{0}}{A \dot{\phi}_{0}} \tag{15}
\end{equation*}
$$

Due to the fact $\omega_{3} \gg \dot{\phi}$ it can be seen that the Q_{F} effect is much bigger that the Q_{3} effect unless $Q_{3} \gg Q_{F}$.

