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Abstract

The benefits of streamlining the cross-section of a cable are the reduction in drag and vortex
induced vibrations (VIV). Streamlined, or faired, cables are used for underwater systems
such as towed cable arrays and their use has been proposed for emerging technologies in
air, such as high-altitude tethered balloons and kite-power generators. The main drawback
of streamlining the cable is that instabilities such as flutter and divergence may be intro-
duced. To take advantage of the streamlining benefits an understanding of the dynamic
behaviour and stability of streamlined cables is essential. The current work contributes to
the existing body of knowledge on streamlined cables through a combination of theoretical
and experimental work.

To help predict the behaviour of streamlined cables three mathematical models are de-
veloped: a two-degree-of-freedom model, a continuous model and a finite-element model.
The models include the effects of fully-unsteady fluid flow, geometric stiffening due to the
applied tension and offset structural centres of mass, shear and tension. A programme to
manufacture streamlined cable was undertaken; a machine was built which successfully
produced lengths of streamlined cable up to approximately 150 m. In parallel with the
development of the manufacturing process wind tunnel, kite and balloon tests were com-
pleted. An outdoor test of 50 m lengths of streamlined cable, supported horizontal, was
used to study the stability of the cable given variations in the centre of mass. In this test,
cables with centres of mass closer to the leading edge were observed to be more stable.

The developed mathematical models are validated against two benchmark cases (Goland
wing and a beam under tension) and compared to the experimental observations. The models
are then used to investigate how changes in the model parameters – such as position of
the structural centres, magnitude of tension, varying wind profile and varying tension –
influence the dynamic behaviour of the streamlined cable. This analysis sheds light on the
mechanisms of streamlined cable instability and demonstrates how the model can be used
as a tool in the future development of streamlined cables.
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Chapter 1

Introduction

1.1 Motivation

Streamlining the cross-section of beams or cables under tension has two main benefits, to re-
duce drag and eliminate vortex-induced vibrations (VIV). These benefits are of interest in a
number of applications such as tethered balloons, kite-power generators, towed cable arrays
and off-shore risers. Taking advantage of these benefits presents an engineering challenge
as streamlining a cable may introduce instabilities such as torsional divergence and flutter.
There is therefore a need to understand when and why these instabilities occur and have
models to predict their onset and the overall dynamic behaviour of the streamlined cable.
These models must be able to account for effects such as variable fluid loading profiles and
varying cable tension. The model must be general in nature so that appropriate boundary
conditions – for example to represent a balloon or kite – may be included.

1.2 Research Objectives

The main objective of the current work is to develop modelling tools which can be used to
predict and help understand the stability and dynamics of streamlined cables. The aim is
to create modelling tools which are general in nature and provide a foundation for future
streamlined cable development. Additional objectives include: developing a streamlined
cable manufacturing process, modelling and assessing the physical properties of a stream-
lined cable and running experiments to gain insight into the behaviour of streamlined cables
subject to environmental conditions.
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1.3 Outline of the Report

The current work can be divided into four main sections: the literature review, the devel-
opment of mathematical and computational models, manufacturing and experiments and,
finally, model validation and results. A brief summary of each section is provided below.

The literature review introduces and discusses existing applications which are relevant
to streamlined cables including: towed underwater arrays, off-shore risers, high-altitude
aircraft, helicopters blades and wind turbine blades. A review of high-altitude tethered
balloons and kite power generators (two potential streamlined cable applications in air)
is completed. Reviewing the applications of streamlined cables and cable-like structures
functions to highlight the relevant fields of study and theory required to model a streamlined
cable. The review of the existing and potential applications identifies the need for, and
solidifies the motivation of, the current research. The second part of the literature review
focuses on the broad theory relevant to streamlined cables. Specifically, structural dynamics
of beams and cables, steady and unsteady fluid dynamics and fluid-structure interaction.

The review of existing work relevant to streamlined cables provides a foundation for
Chapter 3 to 5. These three chapters describe three mathematical streamlined cable models,
each building on the next. The first model is an extension of the classic two-degree-of-
freedom flutter model and includes the effect of an offset centre of tension. This simple
model consists of a mass and spring structural model, coupled with fully-unsteady fluid-
dynamic forcing. Chapter 4 presents a continuous streamlined cable model which assumes
quasi-steady fluid dynamics. Wave propagation techniques including dispersion and power-
flow analysis are explored as methods to investigate the stability of the continuous sys-
tem. Chapter 5 presents the final most comprehensive model: a finite-element model of
the streamlined cable which includes unsteady-fluid forcing. The finite-element model of
the streamlined cable has the capability to analyse non-linear effects such as varying ten-
sion or wind distribution. Throughout the development of the three models, advantages and
limitations of each are discussed.

Chapter 6 focuses on the practical side of streamlined cable development and details the
manufacturing and testing of streamlined cable. This chapter documents the first stream-
lined cable prototypes and the streamlined cable manufacturing process developed by Elson
Space Engineering (ESE Ltd. ) and Davidson Technologies (DT Ltd. ) for the Stratospheric
Particle Injection for Climate Engineering (SPICE) project (which has an interest in the ap-
plication of streamlined cables to high-altitude tethered balloons). The physical properties
required as inputs for the models developed in Chapters 3 to 5 are determined for the man-
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ufactured streamlined cable using experiments and cross-sectional modelling techniques.
Finally, the preliminary experiments conducted with the manufactured streamlined cable –
including wind tunnel, balloon, kite and fixed horizontal tests – are presented. Practicalities
and lessons learned from the manufacturing and experimental testing are documented and
discussed.

In Chapter 7, the models developed in Chapters 3 and 5 are validated against two bench-
mark cases. The results from the experimental measurements are detailed and, where pos-
sible, compared to the results from the discrete model developed in Chapter 5.

By using the manufactured samples as a realistic starting point, Chapter 8 investigates
how variation in a streamlined cable’s properties affect the overall dynamic behaviour. The
aim of the chapter is to demonstrate how the model can be used to explore a streamlined ca-
ble’s stability characteristics and to, at a high-level, understand the sensitivity of the stream-
lined cable’s stability to various parameters. As the behaviour of the streamlined cable
model is explored, the applicability to potential uses of a streamlined cable are discussed.

Finally, Chapter 9 summarises the work and draws some concluding remarks. The con-
tributions of the thesis to the existing body of knowledge are highlighted. Recommendations
for areas of future work are provided.





Chapter 2

Literature Review

To understand and model the behaviour of a streamlined cable, knowledge of the existing
work on streamlined cables, and cable-like structures, is essential. The literature review
presents a summary of the existing applications of streamlined cables in water. Parallels are
then drawn between streamlined cables and flexible fixed-wing aircraft, helicopter blades
and wind turbine blades. The chapter then reviews two proposed applications of stream-
lined cables for tethered balloons and kite-power generators. The focus then shifts from
a review of the applications, to a review of the pertinent theory and modelling techniques
needed to model a streamlined cable. The relevant fields of study include structural and
fluid dynamics, and their union referred to as fluid-structure interaction, or aeroelasticity.

2.1 Streamlined Cable and Cable-Like Structures

At the time of writing, implementations of streamlined cables exist underwater and include
the fairing of towed cable-arrays and offshore risers. In air, structures such as highly-flexible
wings, helicopter rotors and wind turbine blades draw from similar structural and fluid dy-
namic theory but their main design purpose is not to withstand tension. Though few exam-
ples of streamlined cables in air exist, their use has been proposed and is being studied for
applications such as high-altitude tethered balloons and kite-power generators.

2.1.1 Faired Off-Shore Structures

As water is about a thousand times more dense than air – and the drag forces therefore a
thousand times greater – it is unsurprising that existing streamlined cable research is more
focused on applications underwater than in air. Underwater cables are commonplace in the
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off-shore industry be it for towing, mooring or as a pipeline. A brief review, focused on
underwater streamlined cables, is provided below.

To the author’s knowledge, interest in decreasing the drag and VIV on underwater cables
dates back approximately 60 years. A large body of experimental work was completed at
the David Taylor Model Basin, a large U.S. Navy tow-tank facility, beginning in the 1950’s
[43]. The work consisted of towing rigid models of faired cable at a range of speeds and
inclination angle to measure the drag. In 1975, Folb [44] completed a report summarising
drag properties of ten of the tested fairing designs.

Theoretical work on underwater streamlined cables includes the non-linear theory for
heterogeneous, anisotropic elastic rods – developed by Hegemier and Nair [57] – which they
applied to the stability of a faired underwater towing cables [93]. The model was ultimately
used in 1984 by Hung and Nair [67] to study the stability of a towing cable, made of a
moulded fiberglass core and a flexible hypalon rubber fairing, developed by Boeing.

At the time of writing, a number of commercial faired underwater cable companies, such
as ODIM Brooke Ocean (part of the Rolls-Royce Group) and CWA Products Ltd. (acquired
by Trelleborg PPL), provide faired cable products. Figures 2.1 and 2.2 show faired cable
products from ODIM [108] and CWA Ltd. [32] respectively. Little published work on the
study of the dynamics of these commercial faired cables exists.

Besides fairing towed-cables, faired off-shore risers are another relevant area of research.
In a review paper by Every et al. [41], the merits of various VIV suppression systems are
discussed for both towed cables and risers. He cites experimental testing as early as 1977
of tear-drop cross-section fairings on risers off the coast of Brazil by Albers and DaSilva
[4] and Grant and Patterson [54]. Though the system encountered initial bearing problems
between fairing elements, it operated successfully for over a year.

More recently, studies have been published which review available VIV suppression
systems and characterise their dynamic behaviour. In 2008, Taggart and Tognarelli [122]
reviewed a number of commercially available VIV suppression devices. These devices
included helical wraps, fairings (both rigid and deformable) and fins/bumper bars. Although
these devices are commercially available, research into characterising and understanding
their dynamic behaviour is still on-going.

In 2002 Slocum et al. [117] used a classic two-degree-of-freedom aeroelastic model
to try and characterise the dynamic behaviour of faired riser designs. They conducted ex-
perimental testing of rigid fairing designs at the David Taylor Model Basin and of flexible
fairing designs using a rotating test rig at the Norwegian Marine Technology Research In-
stitute. The rigid tests were completed successfully and the drag and VIV properties of the
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Fig. 2.1 ODIM Brooke Ocean streamlined towed-cable products [108].

Fig. 2.2 CWA Products Ltd. moulded cable fairing [32].

fairings characterised. Conversely, the flexible faired riser designs were observed to oscil-
late at a critical speed and did not reach a steady-state amplitude. The flexible riser tests
were stopped prematurely because the amplitudes were larger than expected and caused
damage to some of the testing apparatus.

In 2009, Khorasanchi and Huang [75] extended the model developed by Slocum et al.
The basis of their model is still the classic two-degree-of-freedom aeroelastic model. The
extension to the model being that the fairing is treated as a rotating vane and the friction
between the riser and fairing is included.

This brief review of faired off-shore structures demonstrates the on-going interest in the
implementation of streamlined cables. In an underwater environment, the low drag and VIV
suppression characteristics are highly desirable. However, as demonstrated in the tests by
Slocum et al., streamlining the structure can introduce undesirable instabilities. The models
currently used to understand these instabilities come from classic aeroelastic theory. The
next section provides context to how and why these instability models – originally designed
to model the behaviour of flexible wings – were developed and why they are applicable to
streamlined cables.
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2.1.2 Flexible Wings and Blades

Streamlined slender structures in air are generally confined to aerospace and wind turbine
applications, where the main purpose of streamlining the structure is to create lift and de-
crease drag. Nevertheless, a streamlined cable can be thought of as a very high aspect ratio
(the ratio of span to chord) version of an aircraft wing, helicopter blade or wind turbine
blade. As it was through the development of aircraft wings that the first aeroelastic insta-
bilities were observed and the theory to explain them formulated, a brief review of how the
field has progressed is given below. Modern day research in two areas facing similar chal-
lenges to those associated with a streamlined cable – that of flexible high-altitude aircraft
and that of rotating blades – is discussed.

Modern texts on aeroelasticity such as Wright and Cooper [136] and Hodges and Pierce
[64] both introduce the subject by referring the reader to a diagram produced in 1978 by
Collar [25]. Collar’s diagram is a triangle which depicts how aeroelasticity is the study of
the interactions between elasticity, inertia and fluid dynamics. Collar’s figure is reproduced
here as Figure 2.3. In the centre of the triangle is dynamic aeroelasticity, under which the
phenomenon of flutter is classified. Fung [46] describes flutter as when “a small accidental
disturbance of the the airfoil can serve as a trigger to initiate an oscillation of great violence”.
The first recorded flutter case to be successfully solved was the 1916 Handley Page O/400
bomber, which experienced violent oscillations of the tail. For a comprehensive review of
aeroelastic theory, the reader is referred to two books, often referred to as classic aeroe-
lastic texts, Bisplinghoff’s Aeroelasticity [15] and Fung’s An Introduction to the Theory of

Aeroelasticity [46].

Fig. 2.3 Collar’s [25] aeroelastic triangle depicting the interaction of topics within the field.
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Fig. 2.4 NASA’s Helios prototype flying wing [94].

In terms of modern day research, areas relevant to work on streamlined cables includes
work on highly-flexible aircraft and work on flexible rotating blades. There is cross-over
not only of the aeroelastic theory but also of the structural theory since streamlined cables,
like helicopter blades and aircraft wings, are likely to be composite in construction.

The field of highly flexible aircraft is becoming more popular with the advent of un-
manned high-altitude long endurance (HALE) aircraft. These aircraft are sometimes re-
ferred to as flying wings as they are high-aspect-ratio structures without a large conventional
fuselage. Murua [90] provides an overview of some of the more recent projects which
include AeroVironment and NASA’s 80 m span solar plane Helios in 2003 (shown in Fig-
ure 2.4) and QinetiQ’s 25.5 m span solar plane Zephyr in 2010.

As these aircraft are highly flexible compared to conventional aircraft, the computa-
tional models must include aeroelastic effects for large deformations. Extensive work on
modelling these HALE aircraft has been completed by Patil, Hodges and Cesnik [101, 102].
Their approach uses a large-displacement geometrically-exact beam model – the theory of
which was developed by Hodges [60–62] – and a fully unsteady, two-dimensional aerody-
namic theory developed by Peters et al. [103]. Another group, lead by Palacios – including
Murua, Graham and Hesse – at Imperial College London are also developing models for
HALE aircraft [59, 90–92]. Their structural model uses a finite-element method and ac-
counts for small deformation and large rigid-body motion. The aerodynamic loads are mod-
elled using an unsteady vortex-lattice method, the details of which are given by Murua [90].
Though the work on HALE aircraft relates to the study of streamlined cables, it does not
account for and investigate the effect of an applied external tension. An area of conventional
aerospace research which includes the effect of tension is the study of rotating blades.
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In applications with flexible spinning blades – for example helicopters and wind turbines
– the centrifugal acceleration causes tension in the blades. The aerodynamic theories used
for these applications are similar to conventional theories for fixed-wing aircraft. Leishman
[82] provides a comprehensive review of helicopter aerodynamics, which provides a useful
resource for unsteady flow theories. However, a focus of rotating blade dynamics – which
is not a concern for fixed-wing aircraft or streamlined cables – are the wake-effects.

In rotating blade applications, the tension which arises due to the rotation is referred to
as centrifugal stiffening. For a derivation in the context of helicopter blades see Johnson
[132]. As described by Tong [129], in wind turbine blades, the axial forces are due not only
to the rotation of the blade but also to the self-weight since the rotor is oriented parallel with
gravity. In finite-element models of rotating blades, the stiffening effect due to the axial
tension is generally accounted for by an additional stiffness matrix [11, 121]. As described
by Cook [26], this stiffening matrix is referred to by a number of names including: initial
stress stiffness matrix, differential stiffness matrix, geometric stiffness matrix and stability
coefficient matrix . For a streamlined cable, a similar formulation can be used to account
for the effect of varying tension.

Thus far a review of the work related to streamlined cables in underwater applications
and the study of flexible fixed wing aircraft, helicopter blades and wind turbines has been
presented. Culminating these fields of study leads to the idea of implementing streamlined
cables in air. Streamlined cables have been proposed for high-altitude tethered balloons and
kite-power generators but are not in regular use at the time of writing.

2.1.3 High-Altitude Tethered Balloons

One potential application of streamlined cables, which was the initial inspiration of the cur-
rent work, is as the tether for high-altitude tethered balloons (HATB). High-altitude tethered
balloons reaching altitudes of 20 km have been proposed for a number of applications, such
as communications, surveillance, meteorological monitoring, solar power production, tele-
scopes and climate engineering. The tether of these HATB may see relatively high wind
speeds compared to equivalent structures at lower altitude. Though the air density at these
altitudes is lower than at ground level, the drag is proportional to the square of the wind
speed, so there is potential benefit to be gained by streamlining the balloon tether. As the
balloon must lift the cable, there is a major trade-off between reduced drag and increased
weight of the cable. The following section reviews the research to date on HATB and ends
with a discussion of the Stratospheric Particle Injection for Climate Engineering project,
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which provided the initial motivation for the current research.

Interest in HATB systems appears to date back to the 1960s. There is published work
from this decade of testing completed by the U.S. Navy [38]. Other examples of early
testing were conducted by the French government, who conducted a series of unsuccessful
HATB tests between 1969 to 1976 [40].

HATB reaching altitudes of 20 km are an on-going area of research, but commercial
tethered balloon companies offering lower altitude systems do exist. RosAeroSystems has
the PUMA tethered aerostat [109] which can achieve altitudes of 4 km and TCOM L.P. has
the 71M tethered aerostat [73, 74, 124] which can achieve altitudes of 4.6 km. It has been
suggested by Bely et al. [12] that some of the commercial technology is capable of attaining
heights of 8 km unmodified. TCOM and RosAeroSystems are two examples of specialist
companies focused on lighter-than-air technology and manufacture tethered aerostats oper-
ating at a range of altitudes. Some major aerospace companies, such as Lockheed Martin,
also produce tethered aerostats commercially and for the U.S. military [84]. All of these
existing tethered-balloon systems are typically used in applications such as threat detection,
radar, border control, communications and ecological monitoring.

One of the most thorough reviews of HATB technology is a collection of work between
1994 to 2002 by the John Hopkins University, Applied Physics Laboratory (JHU/APL).
The work aimed to develop a 20 km HATB for the Ballistic Missile Defence Organization
(BMDO). JHU/APL - and TCOM on their behalf - published a number of papers on the
subject of what they call a Very High Altitude Tethered Balloon (VHATB). Work com-
pleted by Badesha, Euler and Schroeder between 1995 to 1996 includes: a feasibility study
of VHATB during steady-state operation and during ascent [40]; a parametric sensitivity
study on how various VHATB system parameters effect the balloon size [6]; and a study
of the launch and recovery of the balloon using TCOM’s dynamic motion simulation called
TRAJECTORY [9]. In 2002, Badesha and Bunn [8], completed a feasibility analysis of a
HATB’s robustness when faced with a severe thunderstorm. The study concluded that the
effect of a passing thunderstorm on the HATB system was benign since the balloon was
located above the storm in relatively calm conditions. Other more recent publications show
the military’s continued interest in HATB technology. For example, Stanney and Rahn’s
2006 paper [119] develop a model to investigate a tether’s dynamic response to turbulence
and acknowledges the U.S. Army Missile Defense Agency for supporting their research.

In 2010 a group at the University of Southampton published work on a HATB for pho-
tovoltaic power production. Using a HATB, photovoltaics could be kept above the clouds,
allowing solar power to be more effectively used in typically cloud-covered countries. The
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proposal is described in detail by S. Redi et al. [105] and by Aglietti et al. [3] who quantify
the advantages of solar collectors at altitudes between 6 km to 12 km. Dynamic analysis of
the HATB system was completed by Aglietti in 2009 [2] and the work expanded by Redi
et al. in 2011 [106]. The results of both papers found the proposed balloon system to be
feasible.

Two major research projects have been undertaken in the area of balloon-supported
telescopes. The first project, named the POST concept [12], consists of a 12 km single
tether system in the polar region where the tropopause dips to lower altitudes. The lower
tropopause means that placing the balloon in the relatively non-turbulent stratosphere is
more easily attainable compared to other locations. The second project was a multi-tether
balloon for a large-scale radio telescope, referred to as the Large Adaptive Reflector (LAR)
[79–81]. The aerostat for this telescope is much lower at 500 m. However, the work com-
pleted on the tether and balloon dynamics for the multi-tether arrangement was later ex-
panded to single-tether balloons by Coulombe-Pontbriand [27, 28].

All the studies on HATB system discussed thus far have been using circular cross-section
tethers. To the authors knowledge, the first mention of altering the tether to reduce drag is
in a 2002 paper by Badesha, which presents a feasibility analysis of a 20 km balloon for
communication purposes [7]. In addition to the feasibility analysis, Badesha notes a few
ideas worth investigating to improve the HATB performance. One of these ideas is to attach
a splitter plate on the cylindrical tether to decrease drag.

The most relevant HATB project to the current work is the Stratospheric Particle Injec-
tion for Climate Engineering (SPICE) project [118]. The author has worked closely with
the project as it specifically investigates the use of a streamlined cable for a climate engi-
neering HATB system. Climate engineering, or geoengineering, has been suggested as a
means of actively counter-acting the effects of global warming. In 2006, Crutzen, a Nobel
prize winner in Chemistry, sparked major interest in climate engineering with his editorial
essay which called for research in the subject [31]. In 2009, a report by the Royal Society
evaluated various geoengineering methods [125]. Stratospheric aerosols (which is the in-
jection of particles at around 20 km to reflect a small amount of incoming solar radiation)
were deemed a medium risk method which has the potential to be relatively effective and
affordable compared to other geoengineering alternatives. The summary figure from the
report, comparing the geoengineering methods, is included here as Figure 2.5.

Based on the findings of the Royal Society report, the SPICE project was created to re-
search the use of stratospheric aerosols as a geoengineering method. The SPICE project is
divided into three work packages (WP): the University of Bristol is leading WP 1 evaluating
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included. The results of this exercise are illustrated in 

Figure 5.1. The effectiveness of the methods is plotted 

against their affordability (the inverse of the cost for a 

deÞ ned magnitude of effect), with the size of the points 

indicating their timeliness (on a scale of large if they are 

rapidly implementable and effective, through to small if 

not), and the colour of the points indicating their safety (on 

a scale from green if safe, through to red if not). Indicative 

error bars have been added to avoid any suggestion that 

the size of the symbols reß ects their precision (but note 

that the error bars are not really as large as they should be, 

just to avoid confusing the diagram). This diagram is 

tentative and approximate and should be treated as no 

more than a preliminary and somewhat illustrative attempt 

at visualising the results of the sort of multi-criterion 

evaluation that is needed. It may serve as a prototype for 

future analyses when more and better information becomes 

available. However, even this preliminary visual presentation 

may already be useful, simply because an ideal method 

would appear as a large green symbol in the top right-hand 

quadrant of the Þ gure, and no such symbol exists. The 

nearest approximation is for stratospheric aerosols, which 

is coloured amber, because of uncertainties over its 

side-effects, as discussed in Section 3.3.3.

Analysis of technical feasibility and 5.3.1 

risks of different methods

Geoengineering by CDR methods is technically feasible but 

slow-acting and relatively expensive. The direct costs and 

local risks of particular methods would differ considerably 

from each other but could be comparable to (or greater 

than) those of conventional mitigation; in particular there 

would be major differences between contained engineered 

methods and those involving environmental modiÞ cation. 

The technologies for removing CO2 and many of their 

consequences are very different from those of technologies 

for modifying albedo. While CDR methods act very slowly, 

by reducing CO2 concentrations they deal with the root 

cause of climate change and its consequences.

The most desirable CDR techniques are those that remove 

carbon from the atmosphere without perturbing other 

Earth system processes, and without deleterious land-use 

change requirements. Engineered air capture and 

enhanced weathering techniques would be very desirable 

tools if they can be done affordably, without unacceptable 

local impacts. Both warrant further research to establish 

how much carbon they can remove, at what cost.

CDR techniques that sequester carbon but have land-use 

implications (such as biochar and soil-based enhanced 

weathering) may make a useful contribution, but this may 

only be on a small scale, and research is required to Þ nd out 

the circumstances under which they would be economically 

viable and socially and ecologically sustainable. Techniques 

that intervene directly in Earth systems (such as ocean 

fertilisation) would require much more research to 

determine whether they can sequester carbon affordably 

and reliably, without incurring unacceptable side effects.

Implementation of SRM methods is also likely to be 

technically feasible at a direct Þ nancial cost of 

implementation that is small compared to the costs of the 

impacts of foreseeable climate change, or of the emissions 

reductions otherwise needed to avoid them. However, as 

Figure 5.1. Preliminary overall evaluation of the geoengineering techniques considered in Chapters 2 and 3.
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Fig. 2.5 Royal Society plot depicting the results from a preliminary evaluation of geoengi-
neering methods [125].
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Figure 7. Tethered balloon concept. SO2 flow of 96 kg s
−1 or approximately 2 500 000 t yr−1, per

pipe and balloon system. Pipe: 200mm o.d., 100mm i.d., 21.5 km length.

(i) Balloon-supported high-pressure pipes

Pumping precursors to aerosols such as H2S or SO2 via a pipe elevated by a
balloon or aerostat or has been suggested by a number of authors [36].
The concept that is described here was developed in 2009 by one of us and

has been refined with the help of the co-authors: a large high-altitude balloon or
aerostat located at around 20 km altitude of sufficient size can provide enough lift
to support its own weight as well as the weight of a fibre-reinforced pipe, lifting
devices intermittently spaced along the tether, and the weight of the fluid being
pumped through the pipe [6] (figure 7).
The balloon system has a low cost and only moderate difficulty of manufacture,

provided structural and stability considerations are satisfied. Some degree of
streamlining can also be considered, but this is outside the scope of the
current work.
However, the pipe needs considerable additional lift from aerodynamic surfaces

providing a high lift to drag ratio. These need to be attached at a variety of
altitudes to prevent the pipe from having too great an inclination to the vertical
when exposed to jet streams and also to ensure suitable launch and recovery
trajectories (see the forthcoming sections).
The analysis below is similar to that of Badesha et al. [37], where the wind

profile was shown to be the most significant design driver for both the balloon
size and tether tensions, and hence cost. Others also mention wind but do not
factor its significant effect in their detailed analysis [3].
A design altitude of around 20 km was chosen to be just within the stratosphere,

above the tropopause, in near-equatorial regions, allowing the majority of the
material injected to circulate within the stratosphere and not immediately be lost
to the troposphere. A higher altitude might be preferable to reduce losses further
but a far larger balloon would be required to provide the necessary lift. The other
great advantage of the 20 km altitude is that the wind strengths are at their

Phil. Trans. R. Soc. A (2012)
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Fig. 2.6 SPICE particle delivery system using a 20 km tethered balloon [33].
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candidate particles, the University of Cambridge is leading WP 2 analysing the feasibility of
a delivery system and the University of Oxford is leading WP 3 researching and modelling
the climate and environmental impacts of stratospheric aerosols. In addition to the Univer-
sities mentioned, the Met Office, the University of Edinburgh and Marshalls Aerospace also
form part of the SPICE project team.

The proposed delivery system for SPICE is depicted in Figure 2.6. The system consists
of a 20 km HATB with the tether serving as a pipe to deliver particles to the stratosphere.
As the SPICE balloon tether is a fluid-carrying pipe, it would have a larger diameter tether
than any of the other discussed HATB applications. A larger diameter tether means greater
drag on the tether, which is why the SPICE project has a particular interest in the feasibility
of streamlined cables.

A comparison between the discussed HATB applications is given in Table 2.1. The
benefit of a streamlined cable for a particular HATB application is highly dependent on the
specific operating conditions and must account for a number of factors such as wind profile,
size of the tether and the acceptability of VIV.

Table 2.1 Applications of HATB and their estimated specifications.

Application Altitude (km) Balloon diameter (m) Tether diameter (mm)

Communication [7] 20 52 11
Solar power [106] 6 65 -
POST Telescope [12] 12 90 (aerostat length) 15
SPICE [33] 20 315 200

2.1.4 Kite Energy

Another potential application of streamlined cables is to reduce the line drag for kite-power
generating systems. One of the first documented proposals of tethered wind energy extrac-
tion dates back to 1980, where Loyd [85] proposes the use of a tethered aircraft for what
he terms crosswind kite power. In his analysis, he calculates that a kite with a wing area
of 576 m2, on a 400 m tether, operating in a wind speed of 10 m/s could produce 6.7 MW
of power. Loyd considers the tether to be shrouded with a drag coefficient of 0.04 (for
comparison the drag coefficient of a cylinder is around 1) and remarks that the tether drag
significantly limits the performance of the tethered system. Interest in kite-power generation
was rekindled in the late 1990s when Ockels proposed and patented a kite-power generation
concept and founded a kite-power research group at the Delft University of Technology (TU
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(a) Components of the generator. (b) Launch and retrieval power cycle.

Fig. 2.7 Delft University of Technology Laddermill kite-power generator design [35].

Delft) [35, 98, 99]. From its inception to the time of writing, the TU Delft group has been
researching and developing kite-power technology. Figure 2.7 shows the current TU Delft
kite-power design, referred to as a Laddermill. The kite-power generator uses the wind to
fly the kite in a figure-of-eight pattern, which unwinds the tether and generates power. Then,
once the tether is fully unwound, the kite control unit reconfigures the kite so that it can be
pulled back in a low drag configuration. Once the kite has been pulled back, the cycle is re-
peated. Simulation work by Ockels [99] sized three Laddermill systems operating at heights
of 0.2 km, 3.2 km and 11 km and predicted the Laddermills to produce 0.01 MW, 1.2 MW
and 48 MW respectively. Further simulation work by Williams et al. [134] explored the
sensitivity of the kite-power generators to various system parameters. The work concluded
that the power generated varies linearly with the tether drag, where a 15% reduction in tether
drag gives roughly a 10% increase in power generation. The potential benefit in decreasing
the drag on the tether further motivates the need for streamlined cable research.

Some preliminary research on reduced drag cables has been conducted at TU Delft. In
2008, Zandbergen [141] prototyped and tested a number of concept designs which included
splitters and hard fairings. Experimental results showed some of designs achieved up to a
30% reduction in drag compared to the bare cable. Over the course of the tests, unstable
behaviour was observed for a number of the samples. In addition to TU Delft, there are
a number of other institutions researching kite-power generation including: the University
of Sydney [107], Katholieke Universiteit Leuven [142], Politecnico di Torino [42] and the
Tampere University of Technology [5].

A number of start-up kite-power companies, also exist [39, 76, 77, 86]. Limited pub-
lished research exists from the start-up kite-power generation companies except in the form
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of patents. Most relevant to the current research, is a faired tether patent from the California
based company Makani Power Inc. which was acquired by Google in 2013 [55]. The patent
relates to aerodynamic or faired tethers which are either passively or actively aligned with
the wind.

Thus far, the literature review has presented the very broad range of existing work which
relates to a streamlined cable. Work in the areas of underwater towed cables, faired offshore
risers, high-altitude long-endurance aircraft, helicopters, wind turbines, high-altitude teth-
ered balloons and kites all contribute to the body of knowledge on the subject of stream-
lined cables. From the work in both academia and industry, it is clear that to benefit from
the advantages of a streamlined cable, further research into the dynamics and stability of
streamlined cables is required. The focus of the review has been on the applications and not
on the details of the underlining science. The next section reviews the relevant theory and
modelling techniques necessary to model the dynamic behaviour of a streamlined cable.

2.2 Structural Dynamics of Beams and Cables

A common feature from the research areas reviewed in the previous section is that the length
of structures is large relative to their cross-sectional dimensions (an attribute inherent to
beams and cables). Generally, cables have greater ratios of length to cross-sectional dimen-
sions than beams, making them more flexible. Beam and cable theory is well established
and for a review of the subject the reader is referred to texts such as Timoshenko [127],
Irvine [70], Przemieniecki [104], Graff [53] and Newland [95]. This review focuses strictly
on laying the foundation needed for the current work on streamlined cables.

2.2.1 Classic Beam and Cable Theory

Beam and cable analysis typically reduces a three-dimensional structure to a one-dimensional
one. Beams are generally modelled using an Euler-Bernoulli or a Timoshenko model. The
Euler-Bernoulli model neglects shear deformation and rotary inertia and is suitable for rel-
atively long beams. During deformation, the cross-sectional planes are assumed to remain
perpendicular to the longitudinal axis of the beam. Conversely, Timoshenko theory accounts
for shear deformation and rotary inertia effects.

In classic beam theory it is helpful to define three structural cross-sectional centres: the
mass centre, the shear centre and the tension centre (also referred to as the normal centre).
Figure 2.8 depicts the shear and tension centre definitions. The shear centre is where torsion
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Fig. 2.8 Depiction of the definition of the tension and shear centres.

Fig. 2.9 Displacements conventions of a deformed beam.

and shear uncouple. If a torque is applied at the shear centre, the beam will deform in
pure twist; if a transverse force is applied at the shear centre, the beam will deform in pure
translation. The tension centre is where axial extension and bending uncouple. If an axial
force is applied at the tension centre, the beam will deform in pure extension; if a moment
is applied at the tension centre, the beam will bend and the reference axis will not elongate.

In classic beam analysis, the beam is typically of symmetric cross-section, prismatic (i.e.
of constant cross-section) and made from isotropic, linear-elastic material. In this case, the
three structural centres are concentric. Figure 2.9 shows the spatial reference frame and the
displacement conventions which will be used throughout the current work.

If the beam is of constant cross-section, the elastic and inertial properties of the beam
can be written as a cross-sectional matrix. The constitutive equation relates the beam defor-
mation to applied forces as f = Kau, where f = {Fx,Fy,Fz,Mx,My,Mz}T is the force vector,
u = {u,v,w,θ ,φ ,ψ}T the displacement vector and Ka the cross-sectional stiffness matrix.
Taking a reference frame fixed at the location of the concentric centres with the y− z axis
aligned with the principal bending axis, for a generalised Timoshenko beam, the cross-



18 Literature Review

sectional stiffness matrix Ka can be written as the diagonal matrix

Ka =



EA 0 0 0 0 0
0 GKy 0 0 0 0
0 0 GKz 0 0 0
0 0 0 GJ 0 0
0 0 0 0 EIy 0
0 0 0 0 0 EIz


(2.1)

where E is the young’s modulus, A the cross-sectional area, G the shear modulus, Ky and Kz

the shear coefficients in y and z, J the torsion constant, and Iy and Iz the second moment of
area about the y and z axes respectively. The terms running down the diagonal are the axial
(EA), shear (GK), torsion (GJ) and bending (EI) stiffnesses. Similarly, the inertial forces
related to acceleration through Newton’s laws of motion can be written in the matrix form
f = Maü. The matrix Ma is the cross-sectional mass matrix given by

Ma =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Igx 0 0
0 0 0 0 Igy 0
0 0 0 0 0 Igz


(2.2)

where m is the beam mass per unit length and Igx, Igy and Igz are the mass moment of inertia
per unit length about the x, y and z axes respectively.

The brief summary of beam theory presented here is by no means exhaustive, the aim
being strictly to lay-down the foundations, notation and conventions used in the current
work. The formulations presented are for classic beams which are prismatic and homoge-
nous made of isotropic, linear-elastic materials. Composite beams, which are generally
used to construct aircraft wings, turbine blades and existing underwater streamlined cables,
typically exhibit more complicated behaviour.

2.2.2 Composite Beams

For cross-sections which are asymmetric, inhomogenous and made of anisotropic materials
the cross-sectional mass and stiffness matrices are generally coupled. The mass matrix is
relatively straightforward to determine for an inhomogenous beam, as the derivation follows
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from the parallel axis theorem. The derivation of the stiffness matrix, however, is not as
straightforward and various methods exist to determine it.

The more simplified approaches assume the beam is prismatic and made of isotropic
material. Using this assumption, Hartsuijker and Welleman [56] extend the classic beam
analysis to a cross-section made up of a number of homogeneous regions. They use this
method to determine the position of the tension centre and derive the axial and bending
portions of the constitutive relationship. A limitation of this method is that it cannot be
easily extended to calculate the torsional stiffness, shear stiffness or shear centre. Other
authors, such as Hodges [62] and Svendsen [121], derive the stiffness matrix for a prismatic
and isotropic cross-section where the position of the shear and tension centre are assumed
to be known. If the shear and tension centre are non-concentric, stiffness coupling terms are
introduced into the cross-sectional stiffness matrix.

For a more comprehensive analysis of a composite cross-section, which can account
for effects such as anisotropic materials, numerical models are required. In 2008, Chen et
al. [24] completed an assessment of five computer tools available to determine the cross-
sectional matrices and the location of the shear, tension and mass centres. The methods can
be roughly separated into three types: thin-walled, variational asymptotic and finite-element
models. As the name suggests, thin-walled models use thin-wall theory, where analytical
solutions for the torsion constant and shear centre can be determined. Variational asymp-
totic methods use theory largely developed by Hodges, Cesnik and Wu over the past 20
years [21, 22, 63, 65, 140]. The theory is implemented into the commercially available soft-
ware VABS (Variational Asymptotic Beam Section). Hodges 2006 book on the subject [62]
provides a comprehensive review on the theory. Finite-element methods extract the stiffness
matrix from three-dimensional finite-element models of the structure [47, 87]. Chen found
that of the tools assessed, the variational aymptotic model, implemented in the commercial
software package VABS (Variational Asymptotic Beam Section) consistently calculated the
correct cross-sectional properties. In 2010, Blasques et al. [16] used the same variational
aymptotic theory as VABS in a software they created called BECAS (BEam Cross section
Analysis Software). The work by Blasques takes VABS as the state of the art and uses it to
benchmark the BECAS results.

Obtaining the cross-sectional properties of the beam is still only one piece of the beam
model. To model the overall dynamics, or analyse the stability of the beam, the cross-
sectional properties must be incorporated into the equations of motion, and the equations of
motion solved.
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2.2.3 Finite Element Beam and Cable Models

Typically the streamlined structures discussed in the previous sections (towed-cables, off-
shore risers, fixed-wing aircraft, helicopters, wind turbines) use finite-element methods to
model the structure. Finite-element methods cover a broad range of study and the models
can be classified in a number of ways. Here the common assumptions used to model the
inertia and elasticity of beam are briefly discussed.

The inertia of beam and cable models is generally considered as either lumped or consis-
tent. Lumped-mass models assume the mass is concentrated at the nodes of the discretisa-
tion and either neglects the rotary inertia or assigns it an approximate value [26]. Consistent
elements describe the displacement of the element using shape functions and considers the
mass to be distributed along the length of the element. Merits of a lumped-mass method
include simplicity and computational efficiency, as the mass matrix reduces to a diagonal
matrix. The main limitation of lumped-mass models are that they may yield inaccurate
results. Though for some problems, such as wave propagation, lumped-mass models may
offer greater accuracy [13, 26]. Generally however, consistent mass matrices are more ac-
curate but more computationally demanding than their lumped-mass counterparts.

The elasticity of the beam or cable may also be modelled in a number of ways and may
account for longitudinal, transverse and/or torsional elasticity. Some finite-element cable
models, often referred to as finite-segment models, may not include the elasticity of the
structure. Instead the finite segment approach models the cable as a series of rigid elements
connected together with rotational joints [58]. If elasticity is included, the constitutive equa-
tions discussed in section 2.2.1 provide the relationship between the elasticity, deformation
and internal forces of the structure. In lumped-mass models the elasticity is often modelled
as a series of axial and rotational spring connecting the lumped masses [27, 28, 37, 78, 81].
Torsional stiffness effects have been included in lumped parameter models of symmetric
cross-section cables [20, 23]. For composite, asymmetric cross-section, models generally
use consistent stiffness matrices obtained from the cross-sectional stiffness, shape functions
and strain displacement relations.

In terms of finite-element models of streamlined cables, little work has been completed.
Existing models of underwater streamlined risers use a two-degree-of-freedom model which
neglects longitudinal effects and tension [75, 117]. Many circular cross-section cables mod-
els exist and many streamlined beam models exist. The cable models focus on incorporat-
ing large deformations and the effect of tension but neglect the characteristic fluid effects
of a streamlined profile. The streamlined beam models focus on including unsteady fluid-
dynamic effects as opposed to cable-like dynamics and the influence of tension.
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2.3 Fluid Dynamics

The field of fluid dynamics is vast, encompassing a huge number of industries, types of
structures and levels of complexity. The motivation of the current work is to decrease the
drag force and instability of a cable through streamlining its shape. Therefore, the fluid
forces acting on both circular cross-sections and streamlined shapes are reviewed. These
forces are first introduced in terms of steady flow, which considers the flow to be constant
in time. The effects of unsteadiness in the flow and how it influences the fluid forces is
subsequently reviewed.

2.3.1 Steady Fluid Forces

The force that fluid exerts on a body due to the relative motion between the fluid and the
body is highly dependent on the shape of the body. In the current work, the focus is on two
particular shapes, a typical cable of circular cross-section and a cable with a streamlined
cross-section. Assuming the flow is steady, the drag force per unit length D, which is parallel
to the flow velocity, can be expressed in terms of the drag coefficient CD, the air density ρf,
the free-stream velocity U , the characteristic length l and the angle of attack α as

D =
1
2

CDρfU2lα (2.3)

which can be found in many fluid dynamics textbooks such as Hoerner [66], White [133]
and Munson et al. [89]. The drag coefficient is a function of the body’s shape, material and
the Reynolds number (Re=Ul/ν where ν is the dynamic viscosity of the fluid).

For a circular cross-section, the characteristic length is the diameter and the drag coeffi-
cient is independent of angle of attack but varies with Reynolds number. Figure 2.10, repro-
duced from Munson et al. [89] (originally created by Blevins [18]), shows the characteristic
length and drag coefficient for five common shapes, including a circular and streamlined
cross-section. For the particular streamlined section shown, when aligned with the flow, the
drag coefficient can be between 10 to 100 times less than its circular counter-part.

For a streamlined cable application, a comparison of conventional drag coefficients may
not provide a like-for-like comparison and may be misleading. For example, if the stream-
lining consists of fairing a circular cable, the frontal area of the faired and bare cable remains
approximately the same. To make a fair comparison, the drag coefficients of the bare and
faired cable should both be scaled by the frontal area. Thus, the drag coefficient of the
streamlined body in Figure 2.10 should be divided by a factor of 0.18. This alters the drag
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Fig. 2.10 Drag coefficient with Reynolds number for five cross-sections [89] .

coefficient comparison between the streamlined and circular cross-section from a 10 to 100
time reduction to a 1.8 to 18 time reduction. Streamlined cable designs with equal strength
to a circular cable and smaller frontal area could be conceived and would give a greater drag
reduction. The 1.8 to 18 times reduction in drag for the geometry given could therefore be
considered a conservative estimate.

A more visual depiction of the advantage of streamlining a body is given by Hoerner
[66]. Hoerner’s depiction, reproduced here as Figure 2.11, shows a scale drawing of a
circular and streamlined body of equal drag. For the particular streamlined geometry and
Reynolds number shown, this represents a 7.5 time reduction of frontal area. The visual pre-
sentation makes it immediately clear that a significant advantage can be gained by stream-
lining.

The profile shown in Figure 2.11 is a four-digit NACA series aerofoil. There exist nu-
merous streamlined shapes of varying geometry, the NACA series being one of the most
widely studied. Due to the wealth of existing data on the NACA profiles, they were chosen
as the baseline shape for the current work. The four-digits specify the shape of the aero-
foil: the first two digits the camber and the final two digits the thickness as a ratio of the
chord. For example, the NACA 0025 aerofoil shown in Figure 2.11 is not cambered (i.e. it
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Fig. 2.11 Hoerner’s [66] scale representation of a cylinder and NACA 0025 aerofoil of equal
drag (Re=106 to 107).

is symmetric) and has a thickness which is 25% of the chord. Jacobs et al.[72] specify the
geometry of the NACA section by the equation
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where c and tc are the aerofoil’s chord and thickness respectively. The equation is useful in
specifying the profile for numerical purposes such as meshing.

The steady lift per unit length of an aerofoil follows a similar formulation to the drag
and is

LS =
1
2

CLρfU2lα (2.5)

where CL is the lift coefficient. The lift coefficient is generally determined experimentally
and, in the context of fixed-wing aircraft, the exact lift curve slope is of interest. As optimis-
ing the performance of the aerofoil is not the main focus of the current work, thin aerofoil
theory is used. According to thin aerofoil theory – which can be found in sources such as
Abbott [1] – the lift of an aerofoil for small angles of attack (up to approximately 8 de-
grees) increases linearly. The slope of the lift curve as a function of the angle of attack is
2π , i.e. CL = 2π . Another important result from thin aerofoil theory is the location of the
aerodynamic centre. The aerodynamic centre is defined as the location at which the pitch-
ing moment becomes independent of angle of attack. According to thin aerofoil theory, this
point is one quarter of the chord length, as measured from the leading edge.

Experiments have been conducted to determine the steady lift and drag coefficient for
high angles of attack [30, 115]. Figures 2.12 and 2.13 show the lift and drag curves for a
NACA 0012 aerofoil from Leishman [82] and Critzos et al. [30]. Though the relation is not
used in the current work, it shows the importance of having the streamlined body aligned
with the flow. Should the tether “flip” and become perpendicular to the flow, depending on
the Reynolds number, the drag increases by approximately 20 to 200 times.
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Fig. 2.12 Experimental lift results for a NACA 0012 over a 360 degree range of angle of
attack [30, 82]. CL is scaled with respect to the chord.
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Fig. 2.13 Fit of experimental drag results for a NACA 0012 over a 360 degree range of angle
of attack [30, 82]. CD is scaled with respect to the chord.

The steady results are important for understanding the advantages that may be gained
from streamlining a cable. However, in terms of understanding the stability of the system,
steady flow theory is insufficient. Authors such as Fung [46] and Hodges [64], give the ex-
ample of moving a cylindrical shaped stick through water at a constant velocity. According
to steady theory, the stick would move through the water smoothly. The person holding the
stick would only feel resistance opposite the direction of motion due to the drag force. In
reality, the result is not so simple and when moving the stick through the water, the per-
son experiences an oscillatory response and the stick moves in a sinusoidal motion. This
phenomenon is explained by unsteady flow theory.
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2.3.2 Unsteady Fluid Flow

The simple experiment of moving a cylindrical stick through water is an example of un-
steady flow. As the stick moves through the water, alternating vortices are shed, causing
the stick to move sinusoidally. The study of unsteady flow spans a number of topics; those
most relevant to circular and streamlined cables include vortex-induced vibration (VIV) and
unsteady flow around a two-dimensional aerofoil.

Vortex-Induced Vibration

Vortex shedding is a phenomenon that occurs due to instability of the wake behind a bluff
body in fluid flow. The theory of vortex shedding and flow instability is detailed in numerous
books. The following review draws extensively from Simiu and Scanlan [116], Blevins [17]
and Fung [46].

Vortex shedding is a phenomenon highly dependent on the Reynolds number. At low
Reynolds numbers, vortex shedding does not generally exist. As the Reynolds number in-
creases various vortex shedding patterns may occur depending on the geometry of the struc-
ture. Figure 2.14 shows Simiu and Scanlan’s [116] depiction of one of the most common
examples of vortex shedding: the flow around a cylinder in uniform flow. The figure shows
typical vortex shedding behaviour, which occurs between a Reynolds number of 30 to 5000.
Vortices are shed from alternate sides of the cylinder to form the distinctive Von-Karman
vortex trail.

In the context of elastic structures, vortex shedding is particularly concerning because
the shedding frequency may lock-in or synchronise to a natural frequency of the structure.
This can lead to large deformations and, ultimately, failure of the structure. The vortex
shedding frequency is described by the non-dimensional Strouhal number

St =
f l
U

(2.6)

where f is the vortex shedding frequency in Hertz, l is the characteristic dimension (di-
ameter for a cylinder) and U is the free-stream velocity. The Strouhal number has been
empirically determined for a number of bluff-body shapes at varying Reynolds number. As
shown in Figure 2.16 – taken from Blevins [17] – a value of 0.2 is a good approximation for
a circular cross-section over a range of Reynolds number.

Vortex shedding itself is not a focus of the current research, but the theory is reviewed
because streamlining a bluff-body – or introducing a splitter behind a bluff-body – is a form
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of vortex suppression [100, 116]. Figure 2.15 shows the flow pattern behind a cylinder with
a splitter. Simiu and Scanlan [116] describe how introducing a splitter inhibits crossover
flow in the wake, thus stabilising it. Moreover, they compare the flow behaviour around a
splitter to that of flow around a symmetric aerofoil.

Fig. 2.14 Schematic of vortices generated by the sinous instability of the wake behind a
bluff cylindrical body in uniform flow [116].

Fig. 2.15 Schematic of the flow pattern around a cylindrical body with a splitter [116].

Fig. 2.16 Strouhal number for a circular cylinder from Blevins [17].
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Unsteady Flow of an Aerofoil

The unsteady flow around an aerofoil is due to: the apparent fluid velocity from the motion
of the aerofoil, the inertia effects of the fluid which is entrained with the aerofoil and the
induced flow from any shed vortices. These three effects are briefly reviewed and then
combined to obtain the equations describing the unsteady forces on an aerofoil. Figure 2.17
shows the aerofoil properties, where b is the semi-chord, θ the rotational displacement, F is
the dimensionless position of the reference frame (from which the translation displacement
v is measured), L is the lift per unit span and Mq is the aerodynamic pitching moment per
unit span.

Fig. 2.17 Convention for the position of the reference frame F , translation v and rotation θ .
The lift and aerodynamic moment at the aerodynamic centre.

The effect of the apparent fluid velocity due to the motion of the aerofoil alters the angle
of attack α in equation (2.5) and a full derivation is given by Fung [46]. Fung finds that the
expression is equivalent to calculating the induced velocities with respect to the 3/4 chord
point. Figure 2.18 shows how the translational and rotational motion of the aerofoil induces
apparent flow terms and equation (2.7) gives the expression for the induced angle of attack.

α = θ − 1
U

v̇+
(0.5−F)b

U
θ̇ . (2.7)

A second unsteady effect is due to the inertia of the fluid entrained during aerofoil mo-
tion, known as non-circulatory, added mass or virtual mass effects. Theodorsen [126] was
the first to publish a complete solution for thin aerofoils in incompressible flow. The reader
is referred to Bisplinghoff et al. [15] for an extensive description of the derivation. The
non-circulatory lift and moment are

LNC = πρfb2 (U θ̇ − v̈−bF θ̈
)

(2.8)

MNC =−πρfb3 (U θ̇ −0.5v̈+b(0.125−0.5F)θ̈
)

(2.9)
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Fig. 2.18 Apparent angle of attack due to the translational and rotational motion of the
aerofoil.

respectively. Bisplinghoff et al. give a brief physical description of each component. The
first two terms in (2.8) are added mass terms which oppose the translational acceleration
(the fluid velocity in y is giving by Uθ and the corresponding acceleration by U θ̇ ). The first
two terms in (2.9) are the corresponding moment terms. Note that when the reference axis
is aligned with the midchord (F = 0), the lift term in (2.8) associated with the angular ac-
celeration θ̈ is zero and the term 0.125πρfb4 in (2.9) can be thought of as an added moment
of inertia opposing the direction of rotation. Offsetting the reference from midchord gives
the lift term −πρfb3F and, by the parallel axis theorem, the moment of inertia becomes
−πρfb4(0.125−0.5F)θ̈ .

Substituting the induced angle of attack (2.7) into the steady lift equation (2.5) and
including the non-circulatory effects gives the a quasi-steady form of the lift and moment
per unit span as

LQS = πρfb2 (U θ̇ − v̈−bF θ̈
)︸ ︷︷ ︸

non-circulatory

+2πρfUb
(
Uθ − v̇+b(0.5−F)θ̇

)︸ ︷︷ ︸
circulatory

(2.10)

and
MQS =−πρfb3 (U θ̇ −0.5v̈+b(0.125−0.5F)θ̈

)︸ ︷︷ ︸
non-circulatory

(2.11)

respectively. This quasi-steady form of the lift and moment is used as an approximation in
some problems, especially where the fluid velocity is large relative to the velocity of the
aerofoil. The lift can be separated into non-circulatory and circulatory terms, the moment is
strictly non-circulatory.
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The final unsteady term is due to the flow induced from any shed vortices, which alters
the flow field in the vicinity of the aerofoil. The induced flow affects the lift but not the
moment. Theodorsen [126] accounted for this effect for the case of simple harmonic motion,
and gives the unsteady lift as

L = πρfb2 (U θ̇ − v̈−bF θ̈
)
+C(k)2πρfUb

(
Uθ − v̇+b(0.5−F)θ̇

)
(2.12)

which is equivalent to the quasi-steady form except now the circulatory terms are multiplied
by Theordorsen’s function C(k). Theodorsen’s function is a complex function dependent on
the reduced frequency k =ωb/U and is given in terms of Hankel functions. As described by
Hodges [64], the effect of C(k) reduces the magnitude of the unsteady terms relative to the
steady term and introduces a phase shift between the rotational and translational oscillations.
A limitation of Theodorsen’s formulation is that it is only valid for simple harmonic motion
and the frequency of the aerofoil motion must be specified in order to determine the lift.
This limits the applicability of the Theodorsen’s model in the time domain.

Hodges [64] derives the unsteady lift as a function of the average induced flow υo as
(2.13). The brackets highlight the contribution of the steady, apparent velocity and induced-
flow components.

L = πρfb2 (U θ̇ − v̈−bF θ̈
)
+2πρfUb

 Uθ︸︷︷︸
steady

apparent velocity︷ ︸︸ ︷
−v̇+b(0.5−F)θ̇ −υo︸︷︷︸

induced-flow

 (2.13)

The issue with this formulation is representing the induced-flow term υo. Methods of ac-
counting for the influence of the shed vortices often employ Wagner’s function [130] for
a transient step change in angle of attack [15, 46, 82]. Analytical solutions using these
methods are limited and numerical methods are typically employed. Another method of
representing the induced flow is via a finite-state representation, which allows for the lift
to be written in a form similar to structural dynamics formulation. For example, Peters et
al. [103] derives a finite-state representation from the potential flow equations and shows
that the result compares well with both Theodorsen’s frequency domain and Wagner’s time
domain representations.

In this section the steady and unsteady fluid dynamic effects on a circular and stream-
lined cross-section have been reviewed. Combining these effects with the structural dy-
namics, reviewed in section 2.2, leads to the field of fluid-structure interaction or dynamic

aeroelasticity.
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2.4 Fluid-Structure Interaction

Two fluid-structure interaction phenomena, torsional divergence and flutter, are relevant
to the streamlined cable work. Classic texts on the subject include Blevins [17], Simiu
and Scanlan [116], Fung [46] and Bisplinghoff [15]. More recent texts with a focus on
aeroelasticity include Hodges and Pierce [64] and Wright and Cooper [136].

A classic model relevant to both torsional divergence and flutter, discussed in all of the
above mentioned texts, is the two-degree-of-freedom model shown in Figure 2.19. Typically
the classic flutter model includes a linear spring kb to model the bending elasticity and a
torsional spring kt to model the torsional elasticity, both acting at the shear centre. The
centre of mass is taken as eccentric and is offset from the shear centre.

Fig. 2.19 Classic two-degree-of-freedom aeroelastic model.

2.4.1 Torsional Divergence

Torsional divergence is a phenomenon associated with a non-oscillatory, exponentially grow-
ing response. From a physical perspective, this corresponds to the moment from the fluid
forces exceeding the moment from the elastic restoring force. In the context of a streamlined
cable, this behaviour leads to the cable flipping so that the chord of the streamlined profile
becomes perpendicular to the wind direction.

As a simple example, take the classic flutter model but assume the initial equilibrium
position is offset by a small angle θo. Assuming small angles and a uniform flow velocity
U , the moment about the shear centre due to the steady lift force is

M = 2µU2(0.5+ s)(θ +θo) (2.14)
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where µ = ρfπb2. The corresponding restoring force of the torsional spring is ktθ . Taking
the static equilibrium and solving for the angle θ gives

θ =
2µU2(0.5+ s)θo

kt −2µU2(0.5+ s)
. (2.15)

Equation 2.15 shows that the response θ goes to infinity when the denominator is equal to
zero, which occurs at a critical wind speed of

Udivergence =

√
kt

2µ(0.5+ s)
. (2.16)

There is no real solution to equation (2.16) when the shear centre is forward of the aerody-
namic centre (i.e. s < −0.5). This case corresponds to the aerodynamic moment acting in
the same direction as the torsional spring to restore the aerofoil to its un-deflected state.

For a streamlined cable, where the goal is to decrease drag, torsional divergence is highly
problematic. As described in Figure 2.20, when the streamlined profile flips, the coefficient
of drag may increase by approximately 200 times. A compounding effect is that once flip-
ping occurs, the cable will be subject to bending in its lower second moment of area axis,
making it more difficult to recover back to the aligned orientation. This situation, with
approximate physical drag and bending properties, is shown in Figure 2.20.

Torsional divergence is a static instability and the destabilising fluid dynamic term could
be considered as a negative stiffness. Including the dynamic effects introduces flutter insta-
bility, which is associated with negative damping.

Fig. 2.20 Approximate values of the drag coefficient (scaled with frontal area) and second
moment of area for a NACA 0012 aerofoil aligned or perpendicular to the flow [30].
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2.4.2 Flutter

Flutter analysis is commonly grouped into four types of analysis [64, 103, 136]: k-type,
p-type, indicial and finite-state. In k-type methods, simple harmonic motion is assumed
a-priori, which limits the solution of the flutter boundary. In p-type analysis, an eigenvalue
analysis is employed. Indicial methods typically use numerical time-stepping techniques to
solve for the motion given Wagner’s function. Finally, finite-state methods approximate the
unsteady aerodynamics (which is an infinite state process) using a finite number of states.
For a full treatment of the various flutter analysis methods, the reader is referred to the works
by Wright and Cooper [136], Hodges [64] and Peters et al. [103].

Blevins provides a helpful table which summarizes stability results from the classic flut-
ter model with quasi-steady forcing (reproduced here as Table 2.2). According to classic
flutter theory, the location of the centre of mass and the aerodynamic centre relative to the
shear centre strongly influences the model’s stability to torsional divergence and flutter. The
most stable condition is with the centre of mass forward of the shear centre and the shear
centre forward of the aerodynamic centre.

Table 2.2 Flutter and divergence stability criteria of classic two-degree-of-freedom model
assuming quasi-steady flow [17].

Centre of mass Centre of mass
AFT FORWARD

of shear centre of shear centre

Aerodynamic centre
Flutter

Divergence
No flutter

Divergence
FORWARD

of shear centre

Aerodynamic centre
Flutter

No divergence
No flutter

No divergence
AFT

of shear centre

The literature review reveals that a very broad range of background knowledge is re-
quired to understand and model the dynamics and stability of a streamlined cable. The
review gives a summary of the significant body of research which has been completed in
the context of faired off-shore structures, fixed-wing aircraft, helicopters and wind turbines.
The review also identifies the need for streamlined cable research, especially as it relates to
emerging technologies such as high-altitude tethered balloons and kite-power generators.
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2.5 Contributions of Current Research

The objective of the current research is to contribute to the understanding of the dynamics
and stability of streamlined cables. In terms of existing streamlined cables, the work to
date has focused on underwater applications and existing models draw from simple two-
degree-of-freedom models from aeroelastic theory for fixed-wing aircraft. Interest in taking
advantage of the reduced drag and VIV suppression characteristics of streamlined cables
is growing in new areas of research such as high-altitude tethered balloons and kite-power
generators. To assess the potential implementation of streamlined cables for these applica-
tions, more comprehensive models are required. There is a need for tools which can predict
the dynamic behaviour and help guide the design of streamlined cables. There is also a need
to develop the streamlined cable itself, as no specific manufacture process for the applica-
tions of streamlined cable in air currently exists. To address some of these challenges and
contribute to the existing knowledge on streamlined cables, specific research objectives of
the current work include:

1. Reviewing the existing work on streamlined cables and identifying the areas in which
research is required.

2. Developing mathematical and theoretical models of a streamlined cable to predict
its dynamic behaviour and guide future streamlined cable development. The models
should be able to account for affects such as unsteady flow, composite cross-sections,
wave-propagation along the length, variations in tension over the length and non-
uniform fluid loading profiles.

3. Identify practical challenges in the development and implementation of streamlined
cable through manufacture and experimental testing.

4. Validate the theoretical models against benchmark cases and, where available, exper-
imental results.

5. Establish how the effect of tension, non-uniform wind and variations in cable tension
may affect the dynamic behaviour of a streamlined cable.

Having established the objectives of the research, the first streamlined cable model is
introduced. The model stems from the classic two-degree-of-freedom aeroelastic model
which, as discussed in the literature review, has more recently been used to model faired
off-shore structures.





Chapter 3

Classic Flutter Model with Tension

The two-degree-of-freedom aeroelastic model introduced in the literature review is useful in
understanding, at a high level, the stability of a classic wing. The main difference between
a classic wing and a streamlined cable is the addition of tension. In the current chapter,
the classic two-degree-of-freedom model is extended to include the effect of tension. Fully
unsteady fluid dynamic loading is included using a finite-state representation.

3.1 Structural Two-Degree-of-Freedom Model

The simplified two-degree-of-freedom model of the streamlined cable is a symmetric cross-
section with non-coincident centres of mass, shear, tension and aerodynamic forcing. Figure
3.1 shows an example cross-section with the aerodynamic and three structural centres.

The shear centre is the location on the cross-section where an applied torque results in
pure twist and an applied transverse force results in pure bending. The tension centre is
the location where an applied axial force results in pure extension and an applied moment
results in pure bending. A depiction and more detailed description of the cross-sectional
centres is given in section 2.2.1.

Fig. 3.1 Cross-section model with three offset structural centres.
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The classic flutter model reduces the bending and torsional elasticity to an axial and
torsional spring of stiffness kb and kt respectively. Similarly, the transverse restoring force of
tension can be reduced to a spring of stiffness kp acting at the centre of tension. The classic
flutter model extended to include the effect of tension is shown in figure 3.2. Positions of
the centres are taken with respect to the leading edge and are scaled by the semi-chord b.
The position of the centres of tension, mass and shear are given by p, r and s respectively.
These dimensionless positions vary from -1 for a centre located at the leading edge to 1
for a centre located at the trailing edge. The origin of the coordinate system for the overall
motion of the streamlined cable is located at the shear centre.

Assuming small displacements and employing d’Alembert’s principle, the dynamics
problem can be reduced to a statics problem. Figure 3.3 shows the elastic and inertial
forces acting on the streamlined cable cross-section, depicted by solid and dashed arrows
respectively.

Fig. 3.2 Classic two-degree-of-freedom model extended to include the effect of tension.

Fig. 3.3 Free-body diagram of the extended two-degree-of-freedom model (d’Alembert in-
ertia shown using dashed arrows).



3.2 Fluid-Dynamic Model 37

Taking the force and moment equilibrium about the shear centre gives the equations of
motion as [

m mbzr

mbzr Is

]{
v̈

θ̈

}
+

[
kb + kp kpbzp

kpbzp kt + kp(bzp)
2

]{
v

θ

}
=

{
0
0

}
, (3.1)

where Is is the mass moment of inertia about the shear centre, zr is the dimensionless distance
from the shear centre to the centre of mass s− r and zp is the dimensionless distance from
the shear centre to the tension centre s− p. The equations of motion (3.1) reduce to the
matrix form

Mcü+Kcu = 0, (3.2)

where

u =

{
v

θ

}
. (3.3)

Examining equation (3.1), it can be seen that the addition of tension introduces symmet-
ric, off-diagonal coupling terms in the stiffness matrix. Effectively, the addition of tension
increases the bending and torsional stiffness, irrespective of whether the centre of tension is
forward or aft of the shear centre. Also, as expected, when the tension is zero the equations
of motion reduce to the classic flutter form.

3.2 Fluid-Dynamic Model

According to thin aerofoil theory, the fluid-dynamic loading on an aerofoil section can be
separated into a lift force, drag force and moment acting at the quarter chord point (aero-
dynamic centre). In the current analysis, the drag force is considered negligible since, for
small angles of attack, the drag will be small in comparison to the lift. For example, in
an analysis completed by Patil et al. [102] on a high-aspect ratio wing (chord of 1 m and
half-span of 16 m), neglecting the effect of drag caused errors of 0.16% in the flutter speed
and 0.22% in the flutter frequency.

As described in section 2.3.2, the unsteady lift and moment per unit length acting at the
aerodynamic centre are

L = πρfb2 (U θ̇ − v̈−bsθ̈
)
+2πρfUb

(
Uθ − v̇+b(0.5− s)θ̇ −υo

)
(3.4)

and
Mq =−πρfb3 (U θ̇ −0.5v̈+b(0.125−0.5s)θ̈

)
. (3.5)
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Fig. 3.4 Free-body diagram of the extended two-degree-of-freedom model with fluid-
dynamic loading (d’Alembert inertia shown using dashed arrows).

Figure 3.4 shows the free-body diagram of the streamlined section including the fluid-
dynamic loads due to the free-stream fluid velocity U .

Including the fluid-dynamic loading in the equations of motion, the force and moment
about the shear centre can simply be included in equation (3.1) as{

L

Mq +Lb(0.5+ s)

}
. (3.6)

The equations of motion with the fluid-dynamic loading can be rewritten in the matrix form
of equation (3.2) as

(Mc −Mf) ü−Cfu̇+(Kc −Kf)u = ϒϒϒυυυ , (3.7)

where Mf, Cf and Kf are the fluid-dynamic mass, damping and stiffness matrices given
by equations (3.8), (3.9) and (3.10) respectively. The damping matrix is split to show the
non-circulatory (left matrix) and circulatory (right matrix) terms. To simplify the notation
µ = ρfπb2.

Mf =−µ

[
1 bs

bs b2(s2 +0.125)

]
(3.8)

Cf = µU

[
0 1
0 b(s−0.5)

]
−2µU

[
1/b s−0.5

s+0.5 b(s2 −0.25)

]
(3.9)

Kf = 2µU2

[
0 1/b

0 s+0.5

]
(3.10)

The ϒϒϒυυυ term in equation 3.7 is related to the finite-state approximation of the unsteady
component of the fluid-dynamic loading (υo term in the lift equation 3.4).
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To account for this unsteady fluid-dynamic term, a finite-state approximation derived by
Peters et al. [103] for a two-dimensional thin aerofoil is employed. Unlike theories which
assume simple harmonic motion a priori, an advantage of the finite-state theory is that it
holds for arbitrary motion (i.e. it is valid outside of the flutter boundary). Hodges [64] gives
a succinct summary of the finite-state theory, from which much of the implementation to
the extended two-degree of freedom model below is drawn.

Equations for the induced flow from the shed wake vorticity are derived based on the
assumption that the shed vortices travel at the same speed as the free-stream velocity and
remain in the plane of the aerofoil. The derivation leads to an induced flow parameter υo

approximated by the power series

υo =
1
2

N

∑
n=1

bnυn =
1
2


b1

b2
...

bN



T 
υ1

υ2
...

υN

=
1
2

bT
υυυ (3.11)

and N finite-state equations relating the induced flow to the aerofoil motion, written in
matrix form as

Anυ̇ +
U
b

υυυ = c
(
−v̈+U θ̇ +b(0.5− s)θ̈

)
. (3.12)

Equation (3.12) can be rewritten in terms of the displacement vector u as

Anυ̇ +
U
b

υυυ = Miü+Ciu̇, (3.13)

where

Mi = c

{
−1

b(0.5− s)

}T

and Ci = c

{
0
U

}T

. (3.14)

The terms b, A and c are given by

An = D+dbT + cdT +
1
2

cbT , (3.15)

where

Dnm =


1

2n , for n = m+1
−1
2n , for n = m−1

0, for n ̸= m±1

(3.16)
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bn =

(−1)n−1 (N+n−1)!
(N−n−1)!

1
(n!)2 , for n ̸= N

(−1)n−1, for n = N
(3.17)

dn =

1
2 , for n = 1

0, for n ̸= 1
(3.18)

and
cn =

2
n
. (3.19)

Equations (3.11) to (3.15) define the N finite-state equations and induced flow term υo.
The unsteady forcing term in the equation of motion 3.7 can therefore be written as

ϒϒϒυυυ =
−µU

b

[
bT

b(s+0.5)bT

]
υυυ . (3.20)

The definition of this unsteady term completes the derivation of the equations of motion of
the two-degree-of-freedom streamlined-cable model, which is given as the matrix equation
(3.7). Though the system has only two degrees-of-freedom, the finite-state approximation of
the induced flow term introduces an additional N equations. Therefore, the two-degree-of-
freedom model is described by N +2 coupled second-order equations. In the next section,
this system of equations is reduced to first-order by using a state-space representation. Then,
section 3.4 converts this first-order system of equations into an eigenvalue problem, which
can be used to analyse the model’s stability.

3.3 Two-Degree-of-Freedom Model State-Space Problem

Converting the system of N+2 second order equations into a first-order system of equations
follows a standard order reduction method used in mechanical vibrations and control theory,
for example by Newland [95] or Friedland [45]. First, the displacements and velocities (both
structural and induced flow) are combined into the single vector

q =


u
u̇
υυυ

 . (3.21)
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Then, the time derivative of q is

q̇ =


u̇
ü
υ̇υυ

 . (3.22)

Having defined the vector q and its derivative q̇, the N +2 second-order equations given by
the matrix equations (3.7) and (3.13) can be converted to N+4 first order equations, written
in matrix form as 

C M 0
I 0 0

0 −Mi An

 q̇+


K 0 −ϒϒϒ

0 −I 0

0 −Ci
U
b I

q = 0, (3.23)

where
M = Mc −Mf

C =−Cf

K = Kc −Kf.

(3.24)

The first order system of equations (3.23) can also be written in the compact matrix form

Aq̇+Jq = 0. (3.25)

Equation (3.25) gives the fully unsteady two-degree-of-freedom model in a form suitable
to be solved numerically in the time domain using an ordinary differential equation solver.
Alternatively, the state-space representation can be converted to an eigenvalue problem to
analyse the overall stability of the system, as described in the following section.

3.4 Two-Degree-of-Freedom Model Eigenvalue Problem

Reformulating the equations of motion of the two-degree-of-freedom system into an eigen-
value problem provides a means with which to investigate the stability of the streamlined
cable. The time domain, state-space equation (3.25) can easily be converted to an eigenvalue
problem. To reformulate the problem, assume a general response of the form

q = Qeλ t . (3.26)
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Substituting the general response into equation (3.25), the equation can be rewritten as the
eigenvalue problem

λQ =−A−1JQ. (3.27)

The eigenvalues and eigenvectors of this problem give information about the stability of
the system. The jth eigenvalue of the system of equations can be written in the general form

λ j = α j + iω j (3.28)

and can be real, imaginary or complex. The imaginary component of the eigenvalue ω j gives
the modal frequency and the real component α j the modal growth. The value α j is important
for stability analysis as it gives the growth of the response in time. Specifically, a positive
value indicates an unstable response growing in time, a negative value indicates a damped
response decaying in time and a value equal to zero indicates a stability boundary where
the response remains constant in time. The magnitude of ω j is of interest as it indicates
the frequency of vibration or, if the value of ω j is zero, that the response is non-oscillatory
and will either converge or diverge depending on the sign of α j. Hodges [64] helpfully
summarises the meaning of the eigenvalues in a table, reproduced here as Table 3.1.

Table 3.1 Response and stability characteristics of an eigenvalue.

α ω Response in time Stability

>0 ̸= 0 Growing oscillation Unstable
<0 ̸= 0 Decaying oscillation Stable
=0 ̸= 0 Constant oscillation Stability boundary
>0 =0 Divergence Unstable
<0 =0 Convergence Stable
=0 =0 Independent of time Stability boundary

3.5 Conclusions

In the current chapter, a two-degree-of-freedom streamlined-cable model was developed by
extending the classic flutter model – typically used to analyse the stability of structures such
as aircraft wings – to include the transverse effect of tension. The two-degree-of-freedom
model includes fully unsteady flow effects using a finite-state method which approximates
the induced flow velocity using N additional equations. Therefore, the motion of the stream-
lined cable is given by N+2 coupled, second order equations. A state-space method is used
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to reduce the system of equations to a first order form, which could be analysed in the
time domain using numerical methods. Finally, the reduced set of equations is presented as
an eigenvalue problem. The meaning of the eigenvalues in terms of investigating stability
is discussed. The two-degree-of-freedom model provides a simple representation for the
stability of a streamlined cable, and is useful in introducing some of the issues – such as
offset structural centres and fully unsteady flow – associated with modelling the dynamic
behaviour of a streamlined cable. However, an evident limitation of the two-degree-of-
freedom model is that effects due to the cable length, such as wave propagation, are ne-
glected. The next chapter presents a continuous streamlined cable model which aims to
address this issue.





Chapter 4

Continuous Streamlined Cable Model

A natural extension of the two-degree-of-freedom streamlined cable model is to a contin-
uous case where waves can travel in the spanwise direction. In this chapter, the equations
of motion of a continuous streamlined cable with quasi-steady fluid loading are derived. A
travelling wave solution is assumed which transforms the equations into a form where the
wave dispersion characteristics can be assessed. Spatial, temporal and power flow methods
are proposed as a means to study the overall stability of the continuous streamlined cable
model. Finally, the limitations of the continuous streamlined cable model are discussed.

4.1 Equations of Motion

Similar to the two-degree-of-freedom model, the continuous model includes translation in
y and rotation about x. Figure 4.1 depicts a view of the trailing edge of the continuous
streamlined cable with the fluid flow being out of the page. Consider a small element dx

of the streamlined cable. Figure 4.2 shows the tension P, shear S, bending M, torque T ,
lift L and moment (due to non-circulatory fluid effects) Mq acting on the element dx in the
x-y plane. Figure 4.3 shows an end-on view, in the y-z plane, of the same streamlined cable
element.

The unsteady lift and moment per unit length, acting at the aerodynamic centre, are
given by equations (3.4) and (3.5). To simplify the equations in the continuous model, the
induced flow term υo is neglected and the fluid effects are assumed to be quasi-steady. As
described by Leishman [82], the quasi-steady assumption is a good approximation when
the reduced frequency ωb/U is below 0.05 but yields inaccurate results for greater values
where the unsteady effects become significant. The quasi-steady lift and moment per unit
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length on the element dx, taking µ = ρfπb2, are given as

L = µ
(
U θ̇ − v̈−bsθ̈

)
+

2Uµ

b

(
Uθ − v̇+b(0.5− s)θ̇

)
Mq =−µb

(
U θ̇ −0.5v̈+b(0.125−0.5s)θ̈

) (4.1)

Fig. 4.1 Trailing edge view of the continuous streamlined cable model, the fluid velocity is
out of the page.

Fig. 4.2 Free-body diagram of streamlined cable element dx with tension P, shear S, bending
M, torque T , lift L and non-circulatory fluid moment Mq.

Fig. 4.3 Free-body diagram of an end-on view of the streamlined cable element dx.
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Following a procedure similar to Graff [53] (for a beam on an elastic foundation) and
Blevin [17] (for two-degree-of-freedom torsion-plunge coupled flutter) the transverse and
torsional equations of motion are derived. Assuming small angles and representing time
derivatives using dot notation, the force equilibrium in the y direction is

mv̈+m(s− r)bθ̈ =
∂P
∂x

ψ − ∂S
∂x

+L. (4.2)

Taking moments about the z-axis and neglecting rotary inertia and second-order terms, gives
the familiar shear and moment relation S = ∂M

∂x . Then, from classic bending beam theory,
the rate of change of shear is

∂S
∂x

= EI
∂ 4v
∂x4 . (4.3)

Substituting the shear expression (4.3) into equation (4.2), assuming constant tension and
taking the small angle approximation ψ = ∂v

∂x , the equilibrium equation becomes

m(v̈+(s− r)bθ̈) = P
∂ 2v
∂x2 −EI

∂ 4v
∂x4 +L. (4.4)

Similarly, from Figure 4.3, the moment equilibrium about the shear centre (assuming
constant tension, small angles and taking the torque as T = GJ ∂θ

∂x ) may be written as

Isθ̈ +m(s− r)bv̈ = GJ
∂ 2θ

∂x2 +P
∂ 2v
∂x2 (s− p)b+Mq +Lb(0.5+ s). (4.5)

Equations (4.4) and (4.5) give two coupled equations of motion for the continuous
streamlined cable with quasi-steady fluid loading. The fluid load L in equation (4.4) and
Mq + Lb(0.5+ s) in equation (4.5) are equivalent to equation (3.6) in the two-degree-of-
freedom model. Consequently, forming a displacement vector u = {y,θ}T, the fluid effects
can be written in terms of the same Mf, Cf and Kf matrices given by equations (3.8) to
(3.10). A proposed method for studying the dynamic behaviour and stability of this con-
tinuous streamlined cable is using wave-propagation techniques such as dispersion or using
power flow analysis.

4.2 Dispersion Analysis

Dispersion analysis provides a means to study the wave propagation along the continuous
streamlined cable. By assuming a travelling wave solution of the form v(x, t) = Y ei(γx−ωt),
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the dispersion equation relating the angular frequency ω and the wavenumber γ can be
determined from the coupled equations of motion. The analysis of dispersion relations
range from classic examples, such as the work presented by Graff on the propagation of
flexural waves in thin rods [53] to more complicated coupled-beams. For example, Bhaskar
[14] presents the general case of a triple-coupled beam in which flexural vibrations in two
directions are coupled with torsional vibrations.

The continuous streamlined cable model is structurally double-coupled, as the flexural
vibration in y is coupled to the torsional vibration θ . The continuous streamlined cable
model is further coupled due to its interaction with the surrounding fluid. To determine the
dispersion relation, travelling wave solutions

v(x, t) = Y ei(γx−ωt)

θ(x, t) = Θei(γx−ωt)
(4.6)

are substituted into the equations of motion (4.2) and (4.5). The resulting matrix equation is

(Wc −Wf)

{
Y

Θ

}
=

{
0
0

}
(4.7)

where

Wc =

[
−mω2 +EIγ4 +Pγ2 −m(s− r)bω2

−m(s− r)bω2 +P(s− p)bγ2 −Isω
2 +GJγ2

]
(4.8)

and
Wf =−ω

2Mf − iωCf +Kf. (4.9)

Equation (4.7) is given in terms of the matrices Wc and Wf to separate the structural stream-
lined cable terms from the fluid loading terms. Writing the relation in this way, it is easy
to observe that the terms in the continuous model align with the structural matrices (3.1)
and circulatory fluid loading matrices (3.9) and (3.10) of the two-degree-of-freedom model
derived in the previous chapter. For non-trivial solutions of equation (4.7), the determinant
of the 2 by 2 matrix Wc−Wf must be zero. Thus, the det(Wc−Wf) = 0 gives the character-
istic – or dispersion – function. The full dispersion function for the continuous streamlined
cable model is 6th order in γ and 4th order in ω , therefore no general solution formula exists.

In order to explore the wave propagation characteristics of the dispersion function,
the analysis can be broken into temporal and spatial analyses. For a spatial analysis, the
wavenumber γ is calculated for real values of the frequency ω . This equates to determining
how harmonic waves will propagate along the length of the cable. Based on the sign and
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magnitude of the real and imaginary parts of the wavenumber, a wave solution can be clas-
sified as one of three types listed below. Figure 4.4 provides a visual summary of the three
waves types.

1. A free-propagating wave, where γ is real. If the sign of γ is positive, the wave propa-
gates to the right, while if the sign is negative, the wave propagates to the left.

2. An evanescent wave, where γ is purely imaginary. If the sign of γ is positive, the wave
amplitude decays with distance x, while if the sign is negative, the wave amplitude
increases with distance x.

3. A leaky wave, where γ is complex. This wave can be thought of as a combination
of the free-propagating and evanescent waves. The leaky wave propagates and ei-
ther grows or decays with distance. The sign of the real part of γ determines wave
direction, while the sign of the imaginary part of γ determines the growth rate.

Fig. 4.4 Wave types in spatial analysis where ω is real.

Alternatively, a temporal approach investigates how waves which are periodic in space,
develop in time. Here, the frequency ω is calculated as a function of a real wavenumber
γ . Similar to the spatial analysis, the waves can be classified into three categories, listed
below, based on whether ω is real, purely imaginary or complex. Figure 4.5 provides a
visual summary of the three waves types.

1. If ω is real, the wave is free-propagating. Note that this solution is exactly the same
as the first wave described in the spatial analysis as both γ and ω are real. The sign of
the real part of ω must always be positive, as negative frequencies have no physical
meaning. i.e. the sign of the real part of ω indicates the direction in time, which must
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always be forward. As in the spatial analysis, the sign of the real part of γ indicates
the propagation direction.

2. If ω is purely imaginary, the amplitude of the wave, which is periodic with distance,
will grow or decay in time. A positive imaginary ω indicates growth whereas a nega-
tive imaginary ω indicates decay.

3. If ω is complex, the wave is a combination of the above two cases. The wave prop-
agates and either grows or decays in time based on the sign of the imaginary part of
ω .

Fig. 4.5 Wave types in temporal analysis where γ is real.

Thus, the stability of the streamlined cable system could be analysed using a spatial
and/or temporal method, where growth of a wave in space or time signals instability. An-
other proposed method to study the stability of the streamlined cable is using power flow
analysis. The next section describes how power flow could be used to study the stability of
the streamlined cable and gives example results for a general case.

4.3 Power-Flow Analysis

The use of power flow is proposed as a tool to assess the general stability characteristics
of the streamlined cable. Consider the streamlined cable is harmonically forced at a point,
the average power required to maintain a steady-state motion is a measure of the power
dissipated by damping. Reactive power, which balances the kinetic and potential energy
exchange, is also present but over the course of one cycle averages to zero. For a succinct
derivation of this result see Talbot [123]. Thus, the average driving-point power is directly
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related to the damping; if the damping becomes negative, the average power must also be
negative. For classic flutter, which is associated with negative damping, the average power
required to sustain a harmonic excitation should therefore be an indicator of stability. If
power is positive, the system is stable as energy must be provided to the system to sustain
the steady-state motion. Conversely, if power is negative, the system is unstable as energy is
being withdrawn from the system. Figure 4.6 summarises the power flow analysis method.

Fig. 4.6 Power flow analysis method, a harmonic force is applied and the sign of the power
required to sustain the steady-state motion indicates stability.

In the example provided here, the streamlined cable is considered infinite. Though no
cable will ever be infinite, it is a useful mathematical assumption as it eliminates the need to
treat boundary reflections. The infinite case will be equivalent to the results for a bounded
cable if the response from the point forcing decays to zero prior to reaching the boundaries.
An equivalent analogy holds if the cable tension varies with length. The result from the
infinite, constant tension case will approach the result for a cable of varying tension if the
length scale of the response occurs over a region which has a relatively small change in
tension. Figure 4.7 depicts when the infinite case can be a useful tool for analysing real,
bounded cables.

Fig. 4.7 Conditions for an infinite cable of constant tension to be valid for a finite cable of
varying tension.
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To apply power-flow analysis, a harmonic force Fe−iωt is applied at x = 0 and the
driving-point power is calculated. Cremer and Heckl [29] derive the general expression
for the driving-point power as

W =
1
2

F2
ℜ

(
1
Z

)
(4.10)

where Z = F/(−iωY (0,ω)) is the impedance. A harmonic torque T e−iωt could also be
applied, in which case Y would be replaced by Θ and F by T in the power equation (4.10).
Given the addition of an applied force, the equation of motion from equation (4.7) becomes

(Wc −Wf)

{
Y

Θ

}
=

{
F

0

}
. (4.11)

Prior to an example of the continuous streamlined beam, it is useful to examine the
power-flow relations for the more straightforward cases of a beam or string on an elastic
and viscous foundation, depicted in Figure 4.8. The variables m, c and k are the mass,
damping and stiffness per unit length respectively. These classic cases provide a useful
comparison to the streamlined beam. The fluid effects applied to the streamlined beam are
analogous to the stiffness, damping and mass terms of a beam/string on a foundation. In
both cases, the mass, damping and stiffness terms are constant over the length and depend
only on time.

The wavenumber γ and impedance Z for point-excited infinite beams and strings can
be found in texts such as Cremer and Heckl [29] and Graff [53]. Table 4.1 summarises
the closed-form solutions for an infinite beam in bending, transverse motion of a string and
bar in torsion on elastic and viscous foundations. The results for a beam, string or bar

Fig. 4.8 Beam and string on an elastic and viscous foundation.
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unsupported by the foundation are given by taking the stiffness k and damping c as zero.
Also worth noting, is that the string and bar follow the same differential equation and thus
give the same result where m is replaced by Ig and P by GJ.

Table 4.1 Wavenumber and impedance of structures on an elastic and viscous foundation.

Wave number γ Impedance Z

Bending beam γ4 = mω2+ciω−k
EI

4EIγ3

(1+i)ω

Transverse string γ2 = mω2+ciω−k
P

2Pγ

ω

Torsion bar γ2 =
Igω2+ciω−k

GJ
2GJγ

ω

Figure 4.9 shows a comparison of the driving-point power for a string and beam with
no foundation (k = c = 0). As the driving-point power for the string is independent of fre-
quency, it provides a convenient value with which to normalise the power. Thus, the power
normalised with respect to the tension result is given as W/Wp =

4W
√

Pm
F2 . Note that a bar,

excited by a harmonic torque, will follow the same relation as the string and be independent

of frequency. Thus the power for a torque input can be normalised as W/Wt =
4W

√
GJIg

T 2 .
The driving-point power of the beam varies as the inverse of the square of frequency.
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Fig. 4.9 String and beam normalised driving-point power as a function of input frequency.
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The addition of an elastic and viscous foundation alters the driving-point power. Figure
4.10 (a) shows the normalised power of the string with the individual effects of the addition
of an elastic or viscous foundation and Figure 4.10 (b) the result if both the stiffness and
damping are included. Figure 4.11 (a) and (b) give the equivalent plots for the beam. Note
that though the tension in the beam case is zero, the result is still normalised with respect to
the tension result to give consistent comparisons. The results are not unexpected, the elastic
foundation causes a cut-off frequency, which is analogous to the excitation point causing the
system to vibrate as a rigid body (infinite wavelength) and is equal to ωcut-off =

√
k/m. The

cut-off frequency thus provides a convenient value to normalise frequency as ω

ωcut-off
. The

viscous foundation causes a decrease in the power at lower frequencies and tends towards
the undamped case as the excitation frequency increases.

It is interesting in these classic examples to look at the effect of negative stiffness or
damping, which compares to the case of divergence or flutter. Taking the string case shown
in Figure 4.10 (b) the result if the stiffness or damping is negative is shown in Figure 4.12
(a) and (b) respectively. The negative damping result is as expected and causes the power to
switch from positive to negative indicating instability. Conversely, the negative stiffness case
gives positive power, even though negative stiffness is inherently unstable. Thus, caution
must be exercised when using the power flow method as it will not give an indication of
instabilities related to negative stiffness. To use the power-flow method the system should
first be checked for negative stiffness. If negative stiffness is present the system is statically
unstable; if the stiffness is positive a power-flow method may be used.
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Fig. 4.10 Normalised driving-point power of a string on an elastic and viscous foundation.
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Fig. 4.11 Normalised driving-point power of a beam on an elastic and viscous foundation.
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(a) Effect of negative foundation stiffness
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(b) Effect of negative foundation damping

Fig. 4.12 Effect of negative foundation values on normalised driving-point power of a string.

The string and beam solution are now combined to model a beam under tension on an
elastic and viscous foundation. The system is solved using a numerical Fast Fourier Trans-
form (FFT) method adapted from Hunt [68]. The FFT method is used to solve for the power
of a beam subject to increasing tension. Figure 4.13 shows the normalised results, where
the power and tension are normalised with respect to the P = Po case. The combination of
tension and bending is not linear as the wavenumber γ is related to tension as a 2nd power
and to the bending as a 4th power. Comparing the numerical results to the closed-form so-
lutions shows that the FFT method gives reasonable results. Without tension, the relation is
equivalent to that of a beam on a viscous foundation shown in Figure 4.11. As the tension
increases, the power relation tends towards the string solution given by Figure 4.10.
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Fig. 4.13 Power of a beam under tension P on a viscous foundation. Results are normalised
with respect to the P = Po solution.

Having explored the driving-point power relation for more classic cases, an example
of the power flow for the continuous streamlined cable model is given. Structurally, the
streamlined cable is a beam under tension but includes offset centres of mass, tension, shear
and aerodynamic forcing. Therefore, without wind, assuming a small amount of structural
damping (c=0.01), the driving-point response will follow a similar relation to that given
in Figure 4.13. The fluid loading gives stiffness and damping terms which are roughly
comparable to the effect of the elastic and viscous foundation in the previous cases.

As described by Blevins [17], a general result from classical flutter analysis is that po-
sitioning the centre of mass (COM) forward of the shear centre (SC) inhibits flutter (see
section 2.4.2 for more detail). Using this classic result as a starting point, the power flow of
an infinite streamlined cable under tension is compared for a position of the COM forward
and aft of the SC. To ensure there are no negative stiffness effects, the shear and tension
centre are taken as concentric and forward of the aerodynamic centre with a dimensionless
position of s = p = −0.6 (the discrete model presented in the next chapter is also used to
verify the no negative stiffness assumption). The wind is taken as 10 m/s, the fluid density
as 1.2 kg/m3 and the semi-chord of the cross-section as 25 mm. The driving-point power
over an input frequency range from 0 to 20 rad/s is calculated, which is within the bounds
of the quasi-steady assumption, as it gives a reduced frequency between 0 to 0.05. The
dimensionless position of the COM for the forward and aft case are taken as r = −0.65
and r = −0.45 respectively. Figure 4.14 shows the normalised driving-point power for a
harmonic force input for the two COM cases with and without wind. Figure 4.15 shows the
equivalent result for an applied harmonic torque.
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Fig. 4.14 Driving-point power of a streamlined beam, with and without wind, subject to an
applied harmonic force at x=0. The case with the COM aft of the SC gives negative power.
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Fig. 4.15 Driving-point power of a streamlined beam, with and without wind, subject to an
applied harmonic torque at x=0. The case with the COM aft of the SC gives negative power.

The results with no wind serve to verify that the model is giving sensible results as the
power relation agrees with the tensioned beam case (Figure 4.13 for P = Po). At low fre-
quencies, for a force input, the normalised power is about 1, indicating it is approximately
equal to the driving-point power for a tensioned string. As the frequency increases there is
a decrease in power due to the effect of the beam bending, which gives power as inversely
proportional to the input frequency. For the case of an input torque without wind, the nor-
malised power is approximately equal to 1, indicating the solution converges to the torsion
bar case.
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The results with wind generally agree with Blevin’s classic flutter result as shifting the
COM aft of the SC causes instability, as seen by the negative power result in both the input
force and input torque cases. The stable case with the COM forward of the SC gives positive
power over the range of investigated input frequencies. For the harmonic torque case, the
unstable case with the COM aft of the SC gives negative power over the range of investi-
gated input frequencies. For the harmonic forcing case, the power changes from positive to
negative power between 3.5 rad/s to 4.0 rad/s. In classic flutter analysis, it is the torsional
mode that becomes unstable to flutter as the wind speed increases. This could explain why
the power is negative over the entire range of investigated frequencies for the torsion input
case but not the forcing input case. As the forced case exhibits a stability boundary (power
changes from positive to negative) at a specific input frequency, it is explored in more detail.

Figure 4.16 compares the deflected position of the streamlined cable for a harmonic
force input of 3.5 rad/s and 4.0 rad/s. The figure shows that when the response becomes
unstable, there is a decrease in the amplitude of the y displacement and an increase in the
rotation angle θ , but the overall shape stays approximately the same. The deflection bowl
(the length scale over which the beam is deflected due to the point loading) is between 200
m to 300 m. Figure 4.16 depicts how the displacement response at x=0 changes for input
frequencies of 3.0 rad/s, 3.5 rad/s, 4.0 rad/s and 4.5 rad/s over one forcing cycle of period
T . From this depiction, a phase shift in position of y as the streamlined cable moves from
positive (3.0 rad/s and 3.5 rad/s) to negative power (4.0 rad/s and 4.5 rad/s) is seen. In the
positive power cases, at t = T/4 (when the force is zero), the streamlined cable has positive
y displacement. Conversely, in the negative power case, at t = T/4 the streamlined cable
has negative y displacement.

Figure 4.17 shows how the phase shift varies over the range of input frequencies. The
figure shows that the onset of negative power, between an input frequency of 3.5 rad/s to
4.0 rad/s, corresponds to the phase shift switching from negative to positive. In a classic
mass and spring system which is harmonically forced, the phase is always negative and the
displacement lags the force. Here, in the unstable streamlined cable case, the displacement
leads the force and the power is negative. Figure 4.17 also shows the phase shift relation
given changes of the viscous damping c (included to model a small structural damping).
It can be seen that the stability boundary (where the phase becomes positive) is related to
the magnitude of c. This result suggests that it is the torsional mode, here analogous to
the power given a harmonic input torque, that drives stability. For small changes in the
chosen value of c, the driving-point power given an input torque does not exhibit the same
sensitivity to the chosen value of c.
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Fig. 4.16 Mode shape of the displacement for the continuous streamlined cable for a positive
power (ω = 3.5 rad/s) and negative power (ω = 4.0 rad/s) case.
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Fig. 4.18 Normalised displacement over one cycle for stable (ω=3.0 and 3.5 rad/s) and
unstable input frequency (ω=4.0 and 4.5 rad/s).

This simple example illustrates how the power flow method could be used to investigate
the stability of a streamlined cable. Here only one wind speed is explored but the model has
potential to investigate the stability behaviour over a range of wind speeds and structural in-
put conditions to gain a better understanding of the streamlined cable’s dynamic behaviour
and stability. The continuous model is highly theoretical and some of the simplifying as-
sumptions do restrict its scope as an analysis tool.

One limitation of the continuous model it that both the tension and fluid velocity have
been assumed constant over the entire length of the streamlined cable. Though these as-
sumptions simplify the equations of motion, they limit the scope of the model in analysing
real streamlined cable applications. For example, many potential applications – such as a
tethered balloons and kites – orient the streamlined cable parallel to gravity in an environ-
ment with a non-constant velocity profile. In these applications, assuming constant tension
and constant fluid velocity may not be appropriate.

A second limitation of the continuous model is that the flow is assumed to be quasi-
steady. This assumption is valid when the reduced frequency ωb/U is below 0.05. To
include fully unsteady effects the induced flow from the shed vortex must be included, for
example, as it was in the two-degree-of-freedom model using the finite-state representa-
tion. As the continuous model is limited not only in the fluid dynamic assumption, but is
also constrained by the constant tension and constant fluid velocity profile, the inclusion
of fully unsteady flow was not pursued in the current work. Though the continuous model
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is subject to a number of limitations its appealing features are the relative simplicity and
computationally efficiency compared to large finite-element models.

4.4 Conclusions

This chapter has presented the derivation of the equations of motion for a continuous stream-
lined cable. Using the derived equations of motion a wave-technique was used to derive
the dispersion equation, which provides a means of studying the wave propagation in the
streamlined cable. As the dispersion equation is 6th order in wavenumber γ and 4th order
in frequency ω , spatial, temporal and power methods were proposed as possible methods to
study stability. Finally, the limitations of the continuous model were discussed.

The discussion concluded that the model is a computationally efficient method to ob-
tain information on the dynamics and stability of a simplified streamlined cable case. The
limitations of the continuous model in analysing a wider range of issues associated with
streamlined cable applications, such as varying tension and wind speed, suggests a less re-
strictive model is required. A discrete streamlined cable model, which overcomes some of
the discussed limitations, is presented in the next chapter.





Chapter 5

Discrete Streamlined Cable Model

To overcome the limitations of the continuous model, a discrete, small-displacement, nu-
merical model is developed. This discrete model can be used to investigate how non-linear
effects, such as varying tension and wind profile, affect the stability of a streamlined cable.
The discrete model takes into account the eccentricity of the aerodynamic, mass, tension
and shear centres. The effect of the applied external tension is included by means of a
geometric stiffness matrix. Fully unsteady fluid loading is included using the finite-state
representation described in chapter 3 for the two-degree-of-freedom model. The equations
of motion for the discrete model are given in a state-space form, which may be used for time
domain analysis, and are also reduced to an eigenvalue problem, which can be used to study
stability. Finally, as an initial verification of the discrete model, it is used to obtain the same
results as those from the continuous model.

5.1 Streamlined Cable Discretisation

The streamlined cable is discretised using a finite-element method. Figure 5.1 shows an
n element discretisation of a length ℓc of streamlined cable, with (a) showing the element
numbering and (b) the corresponding node numbering. In a general form, the mth element
is bounded by nodes j = m and k = m+ 1 where m = 1,2, . . .n. The general displacement
field of the discrete model comprises three translations (u, v, w) and three rotations (θ , φ ,
ψ) taken with respect to the x, y and z axes. In vector form, the displacement field is written
as u = {u,v,w,θ ,φ ,ψ}T.

A two node, twelve degree-of-freedom beam element is chosen to model the cable.
Figure 5.2 shows the mth element with six degrees-of-freedom at the bounding nodes j and
k.
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It is worth noting that, throughout this chapter, quantities representing a node are de-
noted by the subscript index j and those representing an element by an over-bar. The equiv-
alent properties for the entire streamlined cable have no index or over-bar. Following this
convention, the vector of displacements at the jth node is

d j = {u j,v j,w j,θ j,φ j,ψ j}T, (5.1)

the vector of the mth element displacements is

d̄ =

{
d j

d j+1

}
(5.2)

and the displacement vector for the discretised streamlined cable is

d = (d1,d2, ...,dn,dn+1)
T. (5.3)

The displacement field within an element is interpolated from the nodal displacements and
the shape function matrix N by

ū = Nd̄. (5.4)

The displacements are taken with respect to the spatial reference frame x-y-z. Aligning the
reference frame with one of the structural or aerodynamic centres can simplify the resulting
equations of motion.

(a) n element discretisation of a length ℓc of streamlined cable.

(b) Numbering of n+1 nodes of the n element streamlined cable discretisation.

Fig. 5.1 Streamlined cable discretisation showing element and node numbering. View is of
the trailing edge.



5.2 Reference Frame Transformation 65

Fig. 5.2 Two node, twelve degree-of-freedom streamlined beam element.

5.2 Reference Frame Transformation

The streamlined cable is assumed to have four centres: an aerodynamic centre, mass centre,
tension centre and shear centre. Each centre decouples the streamlined beam equations in a
different way. Aligning the spatial reference frame with any one of these centres provides
some simplification in the model derivation. By defining a general method to transform the
reference frame between centres, the simplifications offered by each centre can be exploited.

Following a similar convention to the two-degree-of-freedom and continuous model,
Figure 5.3 shows two reference frames x-y-z and x∗-y∗-z∗. The location of the reference
frames are taken with respect to the leading edge of the cross-section. The starred reference
frame is offset by z = (F∗−F)b from the x-y-z frame. The displacements taken with
respect to frame x-y-z and x∗-y∗-z∗ are defined as u and u∗ respectively. Since the two
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Fig. 5.3 Position of two reference frames x-y-z and x∗-y∗-z∗.

frames remain parallel (they are only translated and not rotated), the rotations θ , φ and ψ are
equivalent to θ ∗, φ∗ and ψ∗ respectively. Assuming no warping (i.e. that the cross-section
remains plane) and small displacements, the translation displacements in frame x∗-y∗-z∗ can
be written as a function of the displacements in frame x-y-z as

u∗ = u+ zφ

v∗ = v− zθ

w∗ = w.

(5.5)

Taking the time derivative of (5.5) to obtain the velocities and accelerations gives

u̇∗ = u̇− zψ̇

v̇∗ = v̇

ẇ∗ = ẇ+ zθ̇

ü∗ = ü− zψ̈

v̈∗ = v̈− zψ̇
2

ẅ∗ = ẅ+ zθ̈ − zθ̇
2.

(5.6)

Assuming small displacements, the second order centripetal terms are neglected and equa-
tions (5.5) to (5.6) relating the displacements, velocities and accelerations in the two frames
can be written as

u∗ = Tu

u̇∗ = Tu̇

ü∗ = Tü

(5.7)
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where T is the transformation matrix

T =



1 0 0 0 z 0
0 1 0 −z 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (5.8)

Similar to shifting displacements and rotations, equivalent forces and moments can be
determined between reference frames. Consider the loads f = {Fx,Fy,Fz,Mx,My,Mz}T cen-
tered at the origin of frame x-y-z and loads f∗ = {F∗

x ,F
∗
y ,F

∗
z ,M

∗
x ,M

∗
y ,M

∗
z }T centred at the

origin of frame x∗-y∗-z∗, as depicted in Figure 5.4. Moments are independent of the location
of the coordinate frame since x∗-y∗-z∗ consists of only a translation of x-y-z. Forces acting
in one reference frame can be converted to equivalent forces and moments in the translated
reference frame if

Fx = F∗
x

Fy = F∗
y

Fz = F∗
z

Mx = M∗
x −F∗

y z

My = M∗
y +F∗

x z

M∗
z = Mz.

(5.9)

Rearranging equations (5.9) in a matrix form gives

f = TTf∗. (5.10)

Fig. 5.4 Equivalent forces and moments with a coordinate system shift.
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The transformation matrix T can be used to shift a mass, damping or stiffness matrix
between reference frames. For example, assuming that the cross-sectional constitutive law
is known in terms of the starred reference frame as f∗ = K∗u∗, the transformation to the
shifted coordinate system follows from

f = TTf∗

= TTK∗u∗

= TTK∗Tu.

(5.11)

Therefore, an equivalent stiffness matrix (or mass, or damping matrix, as the above equa-
tions still hold) for a shift in the coordinate system can be written as

K = TTK∗T. (5.12)

Note that the same overall result can be obtained using a kinetic and potential energy
method, as demonstrated by Chen et al. [24].

5.3 Structural Streamlined Cable Model

The inertia and elasticity of the streamlined cable is modelled using classic mass and stiff-
ness finite-element matrices altered to account for the eccentricity of the structural centres.
The applied tension contributes geometric stiffening to the structure, included as an addi-
tional stiffness matrix.

To derive the elemental mass and stiffness matrices, the classic volume element mass
and stiffness matrices are converted to a cross-sectional form. The classic volume element
mass and stiffness matrices, as described by Cook [26], are given by the volume integrals

Me =
∫

Ve

ρ(y,z)NTNdV

Ke =
∫

Ve

BTEBdV
(5.13)

where N, B and E are the shape function, strain-displacement and material stiffness matrices
respectively. The density ρ is a function of the cross-section position since the streamlined
cable may be composite in construction. Assuming that the streamlined cable has a constant
cross-section over its length, the volume integral can be simplified to a length integral. The
length integral is a function of a cross-sectional mass or stiffness matrix denoted as Ma and
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Ka respectively. Following formulations similar to Blasques et al. [16] and Svendsen [121],
the integral equations (5.13) become

Me =
∫
ℓ
NTMaNdx

Ke =
∫
ℓ
BTKaBdx.

(5.14)

For cross-sections with complicated geometry and anisotropic material properties, the
cross-sectional matrices must be determined numerically. Examples of existing computa-
tional cross-sectional analysis software includes VABS (Variational Asymptotic Beam Sec-
tional Analysis) by Yu et al. [139] or BECAS (Beam Cross-section Analysis Software) by
Blasques et al. [16]. If the cross-section is highly coupled its cross-sectional matrices may
be fully populated.

In the current model, a simplified approach is used to obtain the cross-sectional matrices.
Though the simplified approach does not account for all the possible coupling, it offers
a direct means to explore how certain cross-sectional properties affect the dynamic and
stability behaviour of the streamlined cable model. In future work, if the model is used to
analyse a specific streamlined cable design, the simplified cross-sectional matrices can be
directly replaced by ones computed numerically using software such as VABS or BECAS.

The simplified cross-sectional approach uses the same assumption as the two-degree-
of-freedom and continuous models. The streamlined cross-section is assumed to have non-
concentric aerodynamic, mass, tension and shear centres. Figure 5.5 (a) shows the position
of the centres, taken with respect to the leading edge of the streamlined cable. Figure 5.5
(b) defines the position of the centres with respect to an element reference frame x-y-z with
dimensionless position F . The values of zq, zr, zp and zs are related to the leading edge
reference by equations (5.15). This definition is consistent with the transformation matrix
derivation, where F∗ is now replaced by the dimensionless position of one of the four cen-
tres (e.g. r, p, s). With this simplified cross-sectional model and the general expression
(5.14) for the mass and stiffness matrix of a constant cross-section element, the streamlined
beam mass and stiffness element matrices can be determined.

zq = (1/2+F)b

zr = (r−F)b

zp = (p−F)b

zs = (s−F)b

(5.15)
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(a) Position with respect to leading edge.

(b) Position with respect to reference frame.

Fig. 5.5 Cross-sectional reference frame.

5.3.1 Element Mass Matrix

To obtain the element mass matrix, the cross-sectional mass matrix Ma and the shape func-
tion matrix N must be defined. The matrix Ma is easily obtained using a transformation
matrix. Consider a reference frame x∗-y∗-z∗ with its origin at the centre of mass. The cross-
sectional mass matrix M∗

a is then a diagonal matrix with the vector {m,m,m, Ixx, Iyy, Izz}
forming the main diagonal, where m is the mass per unit length and Ixx, Iyy and Izz the mass
moments of inertia per unit length. The cross-sectional mass matrix M∗

a is transformed to
the frame x-y-z by

Ma = TTM∗
aT (5.16)

where T is given by (5.8) with z = zr from (5.15). Note that the shifted cross-sectional mass
matrix gives the same result as applying the parallel axis theorem to the individual mass
moment of inertia terms.
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The shape function matrix N follows from Cook’s derivation for a plane frame element
[26]. The shape function matrix is taken as a combination of C0 (continuity in the displace-
ment field but not its derivatives) and C1 (continuity in the displacement field and its first
derivative) functions. The C0 function is defined as

N0 =
{

N01, N02

}
=
{

ℓ−x
ℓ , x

ℓ

} (5.17)

and the C1 function as

N1 =
{

N11, N12, N13, N14

}
=
{

2x3

ℓ3 − 3x2

ℓ2 +1, x− 2x2

ℓ + x3

ℓ2 ,
3x2

ℓ2 − 2x3

ℓ3 ,
x3

ℓ2 − x2

ℓ

}
.

(5.18)

The u and θ displacement fields – associated with the longitudinal and torsional deforma-
tion respectively – are taken as C0. The v and w displacement fields – associated with shear
deflection – are taken as C1. As the cable is relatively long (i.e. the cross-sectional di-
mensions are small compared to the overall length), it is modelled as an Euler-Bernoulli
beam. The rotations φ and ψ are taken as w′ and −v′ respectively, where the prime denotes
a derivative with respect to x, and the rotary inertia Iyy and Izz are neglected. Following from
the Euler-Bernoulli assumption, the shape function describing the φ and ψ rotations is

N′
1 =

{
N′

11, N′
12, N′

13, N′
14

}
=
{

6x2

ℓ3 − 6x
ℓ2 , 1− 4x

ℓ + 3x2

ℓ2 ,
6x
ℓ2 − 6x2

ℓ3 ,
3x2

ℓ2 − 2x
ℓ

}
.

(5.19)

Combining the shape functions for the displacement fields u, v, w, θ , φ and ψ forms the
shape function matrix

N =



N01 0 0 0 0 0 N02 0 0 0 0 0
0 N11 0 0 0 N12 0 N13 0 0 0 N14

0 0 N11 0 N12 0 0 0 N13 0 N14 0
N01 0 0 0 0 0 N02 0 0 0 0 0
0 N′

11 0 0 0 N′
12 0 N′

13 0 0 0 N′
14

0 0 −N′
11 0 −N′

12 0 0 0 −N′
13 0 −N′

14 0


. (5.20)

Although the Euler-Bernoulli beam assumption has simplified the derivation, as dis-
cussed by Hodges and Yu [65], it limits the location of the reference frame to the shear
centre. Taking the reference frame to be located at the shear centre, F = s and zr = (r− s)b.
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Then, substituting Ma and N – (5.16) and (5.20) respectively – into (5.14) and integrating
gives the streamlined-beam element mass-stiffness matrix

Me = Mclassic +Mshifted (5.21)

where

Mclassic = mℓ



1
3 0 0 0 0 0 1

6 0 0 0 0 0
13
35 0 0 0 11ℓ

210 0 9
70 0 0 0 −13ℓ

420
13
35 0 −11ℓ

210 0 0 0 9
70 0 13ℓ

420 0
Ig
3m 0 0 0 0 0 Ig

6m 0 0
ℓ2

105 0 0 0 −13ℓ
420 0 −ℓ2

140 0
ℓ2

105 0 13ℓ
420 0 0 0 −ℓ2

140
1
3 0 0 0 0 0

13
35 0 0 0 −11ℓ

210

Sym. 13
35 0 11ℓ

210 0
Ig
3m 0 0

ℓ2

105 0
ℓ2

105



(5.22)

and

Mshifted = mzr



0 0 −1
2 0 −ℓ

12 0 0 0 1
2 0 ℓ

12 0
0 0 −7ℓ

20 0 0 0 0 0 −3ℓ
20 0 0

6zr
5ℓ 0 −zr

10 0 −1
2 0 −6zr

5ℓ 0 −zr
10 0

zrℓ
3 0 −ℓ2

20 0 −3ℓ
20 0 zrℓ

6 0 ℓ2

30
2zrℓ
15 0 ℓ

12 0 zr
10 0 −zrℓ

30 0

0 0 0 0 −ℓ2

30 0 0
0 0 1

2 0 −ℓ
12 0

0 0 −7ℓ
20 0 0

Sym. 6zr
5ℓ 0 zr

10 0
zrℓ
3 0 ℓ2

20
2zrℓ
15 0

0



. (5.23)

The mass matrix is separated into a “classic” and “shifted” component. This separation
shows that if the centre of mass is not offset and zr = 0, the mass matrix reduces to the “clas-
sic” form found in finite element texts such as Przemieniecki [104] or Cook [26]. Showing
the “shifted” components as a separate matrix makes it easier to see how terms are affected
by an offset centre of mass.

5.3.2 Element Elastic Stiffness Matrix

The derivation of the elastic stiffness matrix follows a similar formulation to the mass ma-
trix. To obtain the element stiffness matrix, the cross-sectional stiffness matrix Ka and the
strain-displacement matrix B must be defined. Hodges [62] and Svendsen [121] derive Ka

for a prismatic beam made of isotropic materials with known tension and shear centre posi-
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tions. Following the work by Svendsen [121], Ka is derived for the simplified streamlined
beam cross-section.

Consider a streamlined cross-section with two reference frames which take advantage
of the decoupled definitions of the centres. One is located at the centre of tension and one
at the shear centre. The reference frames are assumed to be parallel with both the bending
and shear principle axes. Assume a tension force and two uncoupled moments act at the
tension centre and two shear forces and a torque act at the shear centre. The corresponding
displacements for the given forces and moments are: longitudinal extension and bending
rotations taken at the tension centre and, shear translations and a torsional rotation taken at
the shear centre.

This somewhat unconventional definition, with displacement and forces taken with re-
spect to two reference frames, reduces the cross-sectional stiffness matrix to a diagonal ma-
trix defined here as K∗

a . The main diagonal of K∗
a is the vector {EA,GKy,GKz,GJ,EIx,EIy}T,

which is comprised of the classic beam theory axial, shear, torsion and bending stiffnesses.
Relating this definition to the streamlined cable cross-section of Figure 5.5, the position of
the reference frames at the tension and shear centres are defined by zp and zs respectively.
Following the same derivation as the general transformation matrix, the defined coordinates
give the cross-sectional stiffness matrix at the reference frame x-y-z as

Ka = TTK∗
aT (5.24)

where the transformation matrix is given by (5.8) with z = zp in the first row and z = zs in
the second row of the matrix. This results in the same cross-sectional stiffness matrix given
by Svendsen [121] and Hodges [62].

The strain-displacement matrix B must also be defined. Taking the result from Blasques
[16], the strain-displacement matrix for a constant cross-section beam element can be writ-
ten as

B = (R+
∂

∂x
)N (5.25)

where R is

R =



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (5.26)

Substituting Ka and B into (5.14) gives a general form for the element stiffness matrix
Ke. In the current model, the beam is modelled according to Euler-Bernoulli theory and
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the shear stiffness terms GKy and GKz are neglected. Following the mass matrix derivation,
the reference frame is taken at the shear centre making F = s and, therefore, zs = 0 and
zp = (p− s)b. Integrating (5.14) gives Ke as equations (5.27) to (5.29). Separating Ke into
a “classic” and “shifted” matrix shows that the “classic” matrix is equal to the results given
in texts such as Shabana [112], Cook [26] and Przemieniecki [104]. The “shifted” matrix is
a zero matrix when zp = 0, meaning the centre of tension is aligned with the shear centre.

Ke = Kclassic +Kshifted (5.27)

where

Kclassic =
1
ℓ



EA 0 0 0 0 0 −EA 0 0 0 0 0
12EIz
ℓ2 0 0 0 6EIz

ℓ 0 −12EIz
ℓ2 0 0 0 6EIz

ℓ
12EIy
ℓ2 0 −6EIy

ℓ 0 0 0 −12EIy
ℓ2 0 −6EIy

ℓ 0
GJ 0 0 0 0 0 −GJ 0 0

4EIy 0 0 0 6EIy
ℓ 0 2EIy 0

4EIz 0 −6EIz
ℓ 0 0 0 2EIz

EA 0 0 0 0 0
12EIz
ℓ2 0 0 0 −6EIz

ℓ

Sym. 12EIy
ℓ2 0 6EIy

ℓ 0
GJ 0 0

4EIy 0
4EIz



(5.28)

and

Kshifted =
EAzp

ℓ



0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0

12zp
ℓ2 0 −6zp

ℓ 0 0 0 −12zp
ℓ2 0 −6zp

ℓ 0
0 0 0 0 0 0 0 0 0

4zp 0 1 0 6zp
ℓ 0 2zp 0

0 0 0 0 0 0 0
0 0 0 0 −1 0

0 0 0 0 0

Sym. 12zp
ℓ2 0 6zp

ℓ 0
0 0 0

4zp 0
0



. (5.29)

The matrix Ke gives the element stiffness due to the material elasticity. The stiffness
due to the applied external tension is included in the discrete model through a geometric
stiffness matrix.
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5.3.3 Element Geometric Stiffness Matrix

This stiffness which arises due to external loading is referred to as stress-stiffening or geo-
metric stiffening. As the name implies, the additional stiffness is dependent on the geometry,
initial stress and deformation of the structure.

The geometric stiffness matrix for the streamlined cable model follows Svendsen’s [121]
derivation for the geometric stiffening of a wind turbine blade. Svendsen derives the geo-
metric stiffness matrix by substituting the beam displacement field into Washizu’s [131]
linearised equation for the potential energy of a volume element with an initial stress state.
Svendsen’s derivation is repeated here for the streamlined cable element subject to a tension
force P. In the streamlined cable model, only a longitudinal initial stress σxx due to tension
is considered. The potential energy, PE, of the volume element is

PE =
1
2

∫
Ve

σxx

[(
∂∆z
∂x

)2

+

(
∂∆y
∂x

)2
]

dV (5.30)

where ∆y and ∆z are the transverse displacement field components. Following the relations
described in section 5.2, the general transverse displacement of the cross-section can be
written as

∆y = v− zθ

∆z = w+ yθ .
(5.31)

The initial force and moments acting on the cross-section are related to the initial stress by

Fo
x =

∫
A
σxxdA

Mo
y =

∫
A
σxxzdA

−Mo
z =

∫
A
σxxydA.

(5.32)

Substituting in the displacement field equations (5.31) into the potential energy expression
(5.30) and integrating over the area of the cross-section gives

PE =
1
2

∫
ℓ

(
Fo

x w′w′−2w′
θ
′Mo

z +Fo
x v′v′−2v′θ ′Mo

y +T o
θ
′
θ
′)dx (5.33)

where the prime indicates a derivative taken with respect to x and

T o =
∫

A
σxx(y2 + z2)dA. (5.34)
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The stress integral T o is analogous to the material torsional stiffness. Equation (5.33) can
be written in the matrix form

PE =
1
2

∫
ℓ
(uT,u′T)

[
06 06

06 G

]{
u
u′

}
, (5.35)

where

G =



0 0 0 0 0 0
Fo

x 0 −Mo
y 0 0

Fo
x −Mo

z 0 0
T o 0 0

Sym. 0 0
0


. (5.36)

Equation (5.4) gives the displacement field u in terms of the shape function matrix and the
nodal displacements. Thus, the vector of displacements in equation (5.35) is{

u
u′

}
=

{
N
N′

}
d̄. (5.37)

Substituting (5.37) into the the potential energy expression (5.35), the expression is reduced
to

PE =
1
2

d̄TKgd̄, (5.38)

where Kg is geometric stiffness matrix

Kg =
∫
ℓ

[
NT,N′T][ 06 06

06 G

][
N
N′

]
dx. (5.39)

In order to integrate the expression and obtain the geometric stiffness matrix, the initial axial
force Fo

x , initial moments Mo
y and Mo

z and the stress integral T o must be defined. For the
simplified streamlined cable cross-section, these terms are given as functions of the applied
tension P and the position of the centre of tension zp.

Taking the shear centre as the origin of the reference frame and assuming the tension
force P acts through the tension centre, the initial forces and moments can be taken as
Fo

x = P, Mo
y = Pzp and Mo

z = 0. For an inhomogeneous cross-section with complicated
geometry the stress-integral T o typically needs to be evaluated numerically. However, the
term can be approximated if the stresses are assumed to be constant over the cross-section
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and given by σxx = P/A, where A is the cross-sectional area. The stress integral is then

T o = σxx(Iyy + Izz)

=
P
A

Ixx.
(5.40)

Though an approximation, the term captures the general behaviour of increasing the tor-
sional stiffness as tension increases. The approximation also provides a simple means to
compare the stress-stiffening torsion term T o to the analogous material torsional stiffness.
The term Ixx compares to the torsion constant J (for a homogeneous circular cross-section
they are equal). The stress due to tension σxx compares to the material shear stiffness G.
This comparison provides an indication of the significance of the torsional stress stiffening
term T o relative to the material torsional stiffness GJ.

Integrating equation (5.39) gives the element geometric stiffness matrix as

Kg =
P

30ℓ



0 0 0 0 0 0 0 0 0 0 0 0
36 0 −30zp 0 3ℓ 0 −36 0 30zp 0 3ℓ

36 0 −3ℓ 0 0 0 −36 0 −3ℓ 0
30Ix

A 0 0 0 30zp 0 −30Ix
A 0 0

4ℓ2 0 0 0 3ℓ 0 −ℓ2 0
4ℓ2 0 −3ℓ 0 0 0 −ℓ2

0 0 0 0 0 0
36 0 −30zp 0 −3ℓ

Sym. 36 0 3ℓ 0
30Ix

A 0 0
4ℓ2 0

4ℓ2



. (5.41)

The resulting matrix Kg is consistent with classic geometric stiffening results. If there is no
offset between the elastic axis and shear centre (zp = 0), the geometric stiffness matrix re-
duces to the case for a symmetric, homogeneous beam, as given in finite-element texts such
as Cook [26]. Having derived the element mass and stiffness matrices, they are assembled
into global mass and stiffness matrices to model the overall streamlined cable system.

5.3.4 Structural Model Assembly

The global element mass and stiffness matrices are obtained following conventional finite-
element methods. The element mass matrix M is equal to the mass matrix Me from equation
(5.21). The overall stiffness matrix K is the sum of the elastic and geometric stiffness
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matrices given by equations (5.27) and (5.41) respectively.

M = Me

K = Ke +Kg
(5.42)

The global mass and stiffness matrices are straightforward to assemble as the elements of the
streamlined cable sequentially attached, one after another. The assembly is easily written
in matrix form by dividing the element matrix in to four sub-matrices. The superscript of
the sub-matrix indicates the element and the subscripts indicate the bounding nodes. For
example, the stiffness matrix of the mth element, bounded by nodes j and k is

Km
=

[
Km

j j Km
jk

Km
k j Km

kk

]
. (5.43)

The global assembly of an n element streamlined cable is then

Kc =



K1
11 K1

21 0 · · · 0

K1
21 K1

22 +K2
22 K2

23
. . . ...

0 K2
32 K2

33 +K3
33

. . . . . .

...
. . . . . . . . . . . . 0

. . . . . . Kn−1
nn +Kn

nn Kn
nk

0 · · · 0 Kn
kn Kn

kk


. (5.44)

The global mass matrix follows the same convention to give Mc. The Mc and Kc matrices
form the structural model of the streamlined cable. Having defined a structural streamlined
cable model, an equivalent discrete model of the fluid dynamic effects is required.

5.4 Discrete Fluid Dynamic Model

The fluid-dynamic loading on the streamlined cable follows a similar formulation as the two-
dimensional case described in section 3.2. To simplify the derivation of the fluid-dynamic
loading, which accounts for fully-unsteady flow, the fluid effects are assumed to be lumped
at the nodes. The position, velocity and acceleration of the node is used to calculate the
corresponding lift and moment per unit span given by equations (3.4) and (3.5). The force
and moment at the node are obtained by multiplying the result by an appropriate length
scale ℓf j (here taken as an element length at interior nodes and half an element length at the
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end nodes). Figure 5.6 depicts how the fluid-dynamic forces are reduced to point forces and
moments at the nodes. Using a finite-state theory to include fully unsteady effects, the lift
and moment forces at a general node j are derived.

Fig. 5.6 Distributed lift and moment reduced to point force and moment at the nodes.

5.4.1 Unsteady Fluid-Dynamic Model

To be consistent with the structural streamlined cable model, the expressions for the fluid
loading at node j are derived with respect to a reference frame located at the shear centre.
The lift and moment per unit length are given by equations (3.4) and (3.5). These equations
are written in terms of a coordinate system located at the shear centre with the force and
moment acting at the aerodynamic centre (quarter chord). Writing this force and moment
as the vector fq j = {0,L j,0,Mq j,0,0}T, the force and moment can be transformed to an
equivalent force and moment at the shear centre using the transformation matrix T, given by
equation (5.8), with z = zq = (1/2+ s)b. The vector of fluid-dynamic forces and moments,
acting at node j, is given by (5.45), where µ = ρπb2 and the Mf j, Cf j and Kf j matrices for
node j are defined by (5.46), (5.47) and (5.48) respectively.

f j = µℓf jTTfq j

= µℓf jTT (Mf jd̈ j +Cf jḋ j +Kf jd j +ϒϒϒ jυ j
) (5.45)

Mf j =



0 0 0 0 0 0
0 −1 0 −bs 0 0
0 0 0 0 0 0
0 1

2b 0 −b2 (1
8 − 1

2s
)

0 0
0 0 0 0 0 0
0 0 0 0 0 0


(5.46)

Cf j =



0 0 0 0 0 0
0 −2U j

b 0 2U j(1− s) 0 0
0 0 0 0 0 0
0 0 0 −bU j 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(5.47)
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Kf j =



0 0 0 0 0 0
0 0 0 2U j

b 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(5.48)

The term ϒϒϒ jυ j accounts for the induced flow velocity and is given by

ϒϒϒ jυ j =−2
U j

b

{
0 1 0 0 0 0

}T
υ j. (5.49)

The induced flow term υ j is approximated using the finite-state method described in chapter
3. The method uses an N term power series approximation for υ j, given by equation 3.11 in
Chapter 3. In the discrete model, the finite-state power series approximation for the induced
flow at node j is

υ j =
1
2

N

∑
n=1

bnυn j =
1
2


b1

b2
...

bN



T 
υ1 j

υ2 j
...

υN j

=
1
2

bT
υυυ j. (5.50)

Substituting the power series approximation (5.50) into the induced flow velocity expression
(5.49) gives

ϒϒϒ jυ j =−U j

b

{
0 1 0 0 0 0

}T
bT

υυυ j. (5.51)

The additional N equations necessary to define the induced-flow term υυυ j are given by Peters
[103] finite-state equation, defined in Chapter 3 as equation (3.13). In the discrete model,
the matrix equation is written with respect to the nodal velocities and accelerations as

An jυ̇υυ j +
U j

b
υυυ j = Mi jd̈ j +Ci jḋ j (5.52)

where
Mi j = c

{
0 −1 0 b(0.5− s) 0 0

}
(5.53)

and
Ci j = c

{
0 0 0 U j 0 0

}
. (5.54)

The matrix An j and vectors b and c as defined by equations (3.16) to (3.19) in Chapter 3.
This completes the definition of the fluid-dynamic forcing at the jth node. The matrices
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derived in this section can be assembled into global fluid loading matrices which model the
fluid-dynamic forcing over the entire streamlined cable.

5.4.2 Fluid Dynamic Model Assembly

As the fluid-dynamic forces are assumed to act at the nodes, the global fluid-dynamic ma-
trices for the streamlined cable are given by block diagonal matrices. For example, for an n

element streamlined cable with k = n+1 nodes, the global fluid-dynamic mass matrix is

Mf =


Mf1 0 . . . 0

0 Mf2 . . . 0
...

... . . . ...
0 0 . . . Mfk

 (5.55)

where the diagonal terms Mf j are given by (5.46). Table 5.1 summarises the global matrices
used to model the fluid loading. The first column gives the global matrices, the second the
nodal matrix used as the block diagonal and the third the dimensions of the matrix blocks.
The dimension of the global matrices will be n+1 times the size of the block matrix as there
is one block for each node.

Table 5.1 The block matrices used to form the global fluid-dynamic matrices. N is the
chosen number of finite states and 6 is the degrees-of-freedom at a node.

Global matrix Blocks Block size

Mf Mf j 6×6
Cf Cf j 6×6
Kf Kf j 6×6
ϒϒϒ ϒϒϒ j 6×N

Mi Mi j N ×6
Ci Ci j N ×6
An An j N ×N
U U j

b I N ×N

Similar to the vector of nodal displacements given as (5.3), a single induced-flow vec-
tor is formed as υυυ = {υυυ1,υυυ2, . . . ,υυυn+1}T. Having the global structural and fluid-dynamic
matrices, the equations of motion for the streamlined cable can be formed.
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5.5 Equations of Motion

The global mass and stiffness matrices Mc and Kc – which model the inertia, elasticity and
geometric stiffness of the streamlined cable – and the fluid-dynamic matrices defined in
Table 5.1 are combined to form the streamlined cable equations of motion. The equations
of motion can be written in a simple matrix form as

Md̈+Cḋ+Kd−ϒϒϒυυυ = 0 (5.56)

where
M = Mc −Mf

C =−Cf

K = Kc −Kf.

(5.57)

The finite-state equation, given as (5.52) for a single node, becomes

Anυ̇υυ +Uυυυ = Mid̈+Ciḋ. (5.58)

In exactly the same way as presented in Chapter 3, the second-order equation of motion
can be reduced to first order using a state-space representation. Following the same proce-
dure, the displacements and velocities (both structural and induced flow) are combined into
the single vector

q =


d
ḋ
υυυ

 (5.59)

and its time derivative

q̇ =


ḋ
d̈
υ̇υυ

 . (5.60)

The equation of motion (5.56) and the finite-state representation (5.58) can be written in
terms of the vector q as

C M 0
I 0 0

0 −Mi An

 q̇+


K 0 −ϒϒϒ

0 −I 0

0 −Ci U

q = 0. (5.61)
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The eigenvalue problem for the discrete system follows the same representation as the two-
degree-of-freedom eigenvalue problem in Chapter 3. Writing equation (5.61) as

Aq̇+Jq = 0 (5.62)

and assuming general solutions of the form

q = Qeλ t (5.63)

gives the eigenvalue problem
λQ =−A−1JQ. (5.64)

As discussed in Chapter 3, the state-space representation may be used in numerical time-
domain simulations and the eigenvalue form is useful in studying the stability of streamlined
cable.

5.6 Comparison of Continuous and Discrete Models

As an initial verification of the discrete model, it is compared to the continuous model de-
veloped in Chapter 4. The power flow and mode shape results obtained with the continuous
model are obtained using the discrete model. To make an equivalent comparison to the
continuous model which assumes quasi-steady flow, the induced-flow term in the discrete
model is neglected. The boundaries of the discrete model are taken as pinned. The pinned
condition at the boundary is taken as no translational displacement u, v and w, no rotational
displacement θ and free rotational displacements φ and ψ .

Figure 5.7 compares the y and θ displacement of the continuous and discrete model,
which shows excellent agreement. The discrete model converges to the continuous model
result as the number of elements is increased. The difference in boundary conditions (pinned
versus infinite) in the two models does not impact the overall result as the response has
decayed to zero before reaching the boundaries.

Figure 5.8 shows the normalised power given a harmonic force input for cases with
the centre of mass forward and aft of the shear centre in a constant wind of U=0 m/s (see
Figure 4.16). The driving-point power results from the continuous and discrete models
show excellent agreement. The discrete model was also used to verify that the system
does not exhibit negative stiffness. To verify for negative stiffness, the eigenvalues of the
stiffness matrix K were calculated. For a statically unstable case there will be zero and/or
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negative eigenvalues; for a statically stable case the eigenvalues will all be positive. For
the streamlined beam properties used in the current example, the eigenvalues of discrete
model’s stiffness matrix are all non-zero and positive.
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Fig. 5.7 Comparison of continuous and discrete model displacement response to a harmonic
force input at x=0.
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Fig. 5.8 Normalised driving-point power for a harmonic force input. Calculated using the
continuous and discrete models.
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5.7 Conclusions

The two-degree-of-freedom and continuous models developed in Chapters 3 and 4 provided
a foundation for the discrete streamlined cable model developed in this chapter. The dis-
crete model accounts for unsteady fluid loading using the same finite-state representation
used in the two-degree-of-freedom model and includes wave-propagation effects such as
those explored in the continuous model. The results from the continuous model are used as
an initial validation of the discrete model. Comparisons of the displacement and driving-
point power calculated independently with each model show excellent agreement. The main
advantage of the discrete model is its ability to account for non-linear effects such as varying
fluid velocity, fluid density and tension along its length. The discrete model also provides
a platform for future work, which could investigate the effects of initial curvature and large
deformations.

The work presented thus far has focused on the development of theoretical models to
understand the dynamics and stability of a streamlined cable. The work presented in the
next chapter focuses on the more practical side of streamlined cable development, including
manufacturing and testing.





Chapter 6

Streamlined Cable Manufacture,
Properties and Experiments

The work presented in the previous chapters introduced mathematical and computer models
to analyse the dynamics and stability of a streamlined cable. Manufacturing a streamlined
cable and testing it outdoors raises a completely new set of challenges. To address the prac-
tical aspects of streamlined cable dynamics, a programme to manufacture and test stream-
lined cables was completed. The main goals were to prove manufacturing feasibility, assess
and model the structural properties of the manufactured cable and gain some insight on the
general behaviour of a streamlined cable subject to environmental conditions.

This chapter begins by describing the development of the manufacturing process. Four
manufactured samples are described and their cross-sectional properties determined using
two modelling methods. The results of the two models are compared to each other and
measured values. The second half of the chapter details the streamlined cable experiments
completed in parallel with the development of the manufacturing process. These include
wind tunnel, kite, balloon and horizontal field tests. The practicalities of the manufacturing
and testing are discussed throughout the chapter.

6.1 Streamlined Cable Manufacture

The streamlined cable design concept is a composite construction, the main components be-
ing cable, polyurethane foam and polyethylene film. The foam and film provide the stream-
lined shape and the fibre cable is the tension carrying element. The foam concept allows for
materials, such as steel wire, to be incorporated into the streamlined cable. The reason for
including additional materials is as a means to alter the cross-sectional properties (e.g. the



88 Streamlined Cable Manufacture, Properties and Experiments

Fig. 6.1 Schematic cross-section of the streamlined cable design concept.

position of the centre of mass). Figure 6.1 shows a schematic of a general streamlined cable
cross-section, which includes a wire to shift the centre of mass towards the leading edge.

The first prototype streamlined sections manufactured were relatively short 3.8 and 6.9
aspect ratio (length to chord) samples and provided a preliminary test of the design concept.
Davidson Technology Ltd. (DT Ltd. ) manufactured the first samples, with an aspect ratio
of 6.9. The 3.8 aspect ratio samples, with a chord length of 100 mm, were later produced at
the University of Cambridge by the current author. The streamlined sections were fabricated
by lining a NACA 0020 mould with a thin plastic film, mixing and injecting a two part foam
into the mould, sealing the mould and letting it set. The centre of mass was varied by
the addition of a brass rod or the removal of foam material. See Appendix A for more
detail on the manufacturing of the prototype sections. Due to their low aspect ratios, these
sections were not representative of streamlined cables. However, the work helped to assess
the feasibility of manufacturing streamlined cables with varying centre of mass using a
foam injection process. Figure 6.3 shows cross-sectional schematics of five manufactured
samples. Figure 6.2 shows a photo of samples (d) and (e) from Figure 6.3 while Figure 6.4
shows a side-view of the five manufactured sections.

(a) See Figure 6.3 (d).

(b) See Figure 6.3 (e).

Fig. 6.2 Cross-sectional view of two NACA 0020 streamlined samples with 100 mm chord.
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(a) Aerofoil 1: Foam filled (ρ=210 kg/m3).
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(b) Aerofoil 2: Foam filled (ρ=210 kg/m3), 8 mm diameter brass rod.
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(c) Aerofoil 3: Foam filled (ρ=210 kg/m3), 8 mm diameter brass rod, 18 mm diameter hole.
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(d) Aerofoil 4: Foam filled (ρ=120 kg/m3), 8 mm diameter brass rod, 18 mm diameter hole, tail removed.
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(e) Aerofoil 5: Foam fill (ρ=120 kg/m3), 8 mm diameter brass rod.

Fig. 6.3 CUED manufactured prototype sections tested in the wind tunnel with centre of
mass properties given in Table 6.1.
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Fig. 6.4 Five of the manufactured NACA 0020 streamlined samples.

Following the work at Cambridge, the design and implementation of manufacturing
streamlined cables greater than 50 m in length was contracted to Elson Space Engineering
Ltd. (ESE Ltd. ) and DT Ltd. The work was based in Somerset England. The contract was
funded by the SPICE project, as part of its investigation into the application of streamlined
cables to high-altitude tethered balloons.

In August 2012, the first 10 m long sample was produced by a prototype machine. Over
the course of the following year, the process and consequently the quality and length of
the manufactured streamlined cable improved. By August 2013, the machine could run
continuously and produce streamlined cables with varying centres of mass in the range of 50
m to 150 m. The manufacturing machine was built on site at ESE Ltd. The manufacturing
process can be broken into six overall steps shown in Figure 6.6 and detailed in the list
below.

1. The polyethylene film, cable and wire are unwound under tension from their drums.
A series of pulleys guide the cable, wire and film into position for foam injection.
The film is folded in half with the cable and wire inside. The fold-end will form the
leading edge and the open-end the trailing edge of the streamlined profile.

2. The two foam precursors, Daltofoam and Suprasec, supplied by Huntsman [69] are
mixed by a rotary shaft mixer designed by ESE Ltd. The mixture is then injected
near the leading edge of the profile.
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3. Once the foam is injected, the film is welded together at the trailing edge of the profile
and any excess film is cut-off.

4. The welded film – containing expanding foam, the fibre cable and the wire – enters
the NACA 0020 mould. The mould is a powered continuous track which drives the
entire process (i.e. it pulls the film and cables through the process by friction). Within
the mould, the foam expands and sets into its streamlined shape.

5. Upon leaving the mould, the streamlined cable is kept in a straight configuration for
a few meters to ensure the foam has cooled and set completely.

6. The streamlined cable is wound onto a drum of approximately 1 m in diameter for
storage and later use. The drum is powered by a small motor to wind the streamlined
cable onto the drum at the same rate it is produced.

Figure 6.5 shows an annotated photo of the final machine set-up and Figures 6.7 to 6.10
show details of the first four manufacturing steps. Note that there is no foam in the photos
as the machine is not in the process of producing streamlined cable.

Cable, film 
and wire

Mixer and injection

Foam precursors
Continuous track 

mould

Welding machine

Manufactu
ring direction

Fig. 6.5 Streamlined cable manufacturing machine.
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Fibre cable

Steel wire

Polyethylene 
film

Manufact
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Fig. 6.7 Step 1, the polyethylene film, fibre cable and steel wire ready to feed into the
manufacturing process.

Foam precursor 
valves

Foam mixer and 
water cooled sleeve

Mixer outlet

Manufacturing direction

Fig. 6.8 Step 2, foam mixer and injector.
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Film welding 
element

Roller to distribute 
expanding foam

Blade to trim film 
(not lowered)

Manufacturing direction

Fig. 6.9 Step 3, the film welding machine.

Half NACA 
mould section

Continuous 
track mould

Speed controls

Manufacturing direction

Fig. 6.10 Step 4, continuous track NACA 0020 streamlined cable mould.
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The design and implementation of a manufacturing process highlighted the challenges
associated with producing a streamlined cable. Throughout the project, improvements to the
overall process were identified. As this is the first known attempt to manufacture streamlined
cable of this type, it is worth noting some of the challenges encountered and lessons learnt.

The manufacturing process is very sensitive to temperature changes as they cause the
foam expansion and setting times to vary. The manufacturing process requires that: the film
is welded shut before the foam expands, the foam expands while in the mould and the foam
sets prior to leaving the mould. Consequently, changes in the timing of the foam reaction can
throw the entire manufacturing process off. A water-cooled sleeve was added to the mixer
and helped control the temperature of the produced foam. However, the location where the
machine was housed was not climate controlled and changes in the outdoor temperature
affected the foam reaction time.

The polyurethane foam was initially selected for its low density (specified as 65 kg/m3)
so that the streamlined cable was kept relatively light. When the foam is injected into the
streamlined cable, there is a trade-off between achieving the desired density and completely
filling the mould. A slight super-pressure in the mould gives a good shape but causes an
increase in the foam density.

In addition to injecting the correct amount of foam, the foam needs to be injected so that
it fills the profile without altering the position of the cable. If too much foam is injected
at the leading edge, it can cause the fibre cable to be pushed towards the trailing edge as
the foam expands. Too little foam at the leading edge gives a poor shape to the nose of the
aerofoil. Injecting the foam so that it sprays slightly was found to work well, as it distributed
the foam on the film and fibre cable.

6.2 Manufactured Samples and Their Properties

Over the course of developing the manufacturing process, various configurations of stream-
lined cable were constructed and tested. Figure 6.11 shows four manufactured samples and
Table 6.1 lists their properties.

The properties necessary for modelling the streamlined cable are the inertial and elastic
cross-sectional properties, as described in Chapter 5. In the following sections, these proper-
ties are determined from an inhomogeneous cross-section model (implemented in Matlab),
from BEam Cross-sectional Analysis Software (BECAS) developed at the Technical Uni-
versity of Denmark and from experimental measurements.

Both the inhomogeneous and BECAS cross-section models require the properties of the
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(a) Blue polyester. (b) Wound steel.

(c) Red polyester. (d) Polyester and steel.

Fig. 6.11 Manufactured 50 mm chord streamlined cable cross-sections with properties listed
in Table 6.1. (See Figure 6.12 for a schematic of each sample).

Table 6.1 Geometry and materials of four streamlined cables shown in Figure 6.11.

Sample
Cable or wire Cable or wire Foam Film

diameter mass density thickness

(mm) (kg/m) (kg/m3) (µm)

a) Blue polyester 6 2.9×10−2 108 150
b) Wound steel 5 10×10−2 104 150
c) Red polyester 6 2.9×10−2 98 50
d) Polyester and 6 2.9 ×10−2 86 50

steel wire 1.2 0.85 ×10−2

individual component materials as input. Some of these properties are not readily available
or easily measured. Table 6.2 gives the material properties used in the cross-sectional mod-
els. Values without a footnote specifying the source of information are measured values
from the streamlined cable samples. The work here aims to introduce methods to calculate
the cross-sectional properties and obtain approximate values to use in the streamlined cable
model. Therefore, as an approximation, all the materials are considered isotropic. Future
work could include a more thorough analysis to determine the cross-sectional properties of
the composite streamlined-cable cross-section.

6.2.1 Inhomogeneous Cross-Section Model

The inhomogeneous cross-section model assumes the cross-section is composed of multiple,
homogeneous, isotropic regions. To calculate the inertial and stiffness properties of a cross-
section with n homogeneous regions, the geometric area, centroid and second moments of
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Table 6.2 Material properties of streamlined cable components.

PE
PU Polyester Steel Steel

Symbol Units Foam Cable Cable Wire

ρ kg/m3 955 - 976 86 - 108 - - -
m

′
kg/m - - 0.03 0.10 0.01

E GPa 0.6 - 1.4 1 0.012 - 0.027 2 4 - 6.5 3 126 4 210 5

G GPa 0.85 1 0.0063 2 ≈ 0 ≈ 0 81 5

ν - 0.45 6 0.32 2 0.5 7 0.3 5 0.3 5

1Springer Handbook of Condensed Matter and Materials Data [88].
2Experimental measurement by Witkiewicz et al. [135].
3Estimate based on break load of 1390 kg and polyester cable stiffness from DeAndrade [34].
4Estimate based on break load of 17 kN and metallic area of 7x7 wound cable.
5Cambridge Engineering Databook [36].
6Experimental measurement by Nitta et al. [96].
7From synthetic cable estimate by Tjavaras et al. [128].

area – denoted by An, ŷn, ẑn, Iyn and Izn respectively – for each region must be determined.
Calculating these properties is straightforward for simple shapes such as circles. For more
complex shapes, such as the streamlined profile, the region is defined by a closed polygon.
The method presented by Steger [120] on the calculation of moments of polygons is used
to determine the geometric properties. As the number of sides of the polygon increases, the
better the polygon approximates the true geometry.

Knowing the geometric and material properties of each region, the inertial cross-sectional
properties are straightforward to calculate. If there are n components making up the cross-
section, the familiar Equations (6.1) to (6.6) – found in many mechanics texts such as Gold-
stein [51] and Likins [83] – give the mass per unit length, centre of mass and three mass
moments of inertia per unit length, respectively.

m
′
=

n

∑
i=1

ρiAi (6.1)

ŷ =
1
m′

n

∑
i=1

ρiAiŷi (6.2)

ẑ =
1
m′

n

∑
i=1

ρiAiẑi (6.3)

I
′
Gy =

n

∑
i=1

ρi
(
Iyi +Ai(ŷi − ŷ)2) (6.4)
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I
′
Gz =

n

∑
i=1

ρi
(
Izi +Ai(ẑi − ẑ)2) (6.5)

I
′
Gx = I

′
Gy + I

′
Gz (6.6)

The elastic cross-sectional properties are calculated using the method described by Hart-
suijker and Welleman [56], which extends the classic fibre model to one suitable for inho-
mogeneous cross-sections. The method can be used to calculate the elastic extension and
bending stiffnesses EA, EIx and EIy. However, the torsional stiffness GJ and shear centre
cannot be calculated using this method since, for non-circular geometry, the torsion constant
J is not equal to the second moment of area.

The elastic properties EA, EIx and EIy are determined with respect to the elastic centre.
Hartsuijker and Welleman [56] define them as “double letter symbols" since the value of E

varies over the cross-section. The axial stiffness and elastic centre of the inhomogeneous
section are given by

EA =
n

∑
i=1

EiAi (6.7)

yp =
1

EA

n

∑
i=1

EiAiŷi (6.8)

zp =
1

EA

n

∑
i=1

EiAiẑi. (6.9)

Knowing the location of the elastic centre, the bending stiffnesses are calculated using the
parallel axis theorem as

EIy =
n

∑
i=1

EiIyi +EiAi(ŷi − yp)
2 (6.10)

EIz =
n

∑
i=1

EiIzi +EiAi(ẑi − zp)
2. (6.11)

The inertial and elastic properties of the four samples given in Figure 6.11 were calcu-
lated using the described inhomogeneous method. The origin of the cross-sectional coordi-
nate system is positioned at the leading edge. Each region is considered to be isotropic and
the value of E is taken from Table 6.2. Figure 6.12 shows the inhomogeneous model of the
four sections with the homogeneous regions of each section listed in the legend. The calcu-
lated values of the inertial and elastic properties are compared to the BECAS and measured
results in section 6.2.3.
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Fig. 6.12 Inhomogenous model of 4 streamlined cable samples given in Figure 6.11 with
properties listed in Table 6.1.

6.2.2 BECAS Model

The main limitation of the inhomogeneous model is its inability to calculate the torsional
stiffness and shear centre. Additionally, each region is considered isotropic, when in fact,
elements such as the braided fibre rope are anisotropic. Blasques et el. [16] developed
BECAS to calculate the cross-sectional inertial and elastic properties of sections with com-
plicated geometry and anisotropic materials. The software uses a finite element method to
calculate all inertial and elastic properties, including the torsional stiffness and shear centre.

To obtain the cross-sectional properties of the four samples in Figure 6.11 from BE-
CAS, a four-node quadrilateral element mesh is required. An open source mesh generator
developed by Geuzaine and Remacle [48] called Gmsh was used to mesh the cross-sections.
Figure 6.13 shows a mesh of the blue polyester streamlined cable depicted in Figure 6.12
(a) using 1390 quadrilateral elements.

The cross-sectional properties of the four manufactured samples were calculated using
the BECAS model. Though the model has the scope to include anisotropic materials, as a
preliminary estimate, all the materials were considered isotropic. The convergence results
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Fig. 6.13 Gmsh quadrilateral mesh of a streamlined cable cross-section with 1390 elements.

given mesh refinement – for the inertial and elastic properties of the blue polyester sample
– are given in Table 6.3. The results show that the model is converging with an increasing
number of elements. The cross-sectional models of the remaining three samples show the
same overall convergence. The maximum and minimum percent difference of the six cal-
culated values m, I, EA, EIy, EIz and GJ are given with respect to a 5630 element run. The
calculated values of the inertial and elastic properties are compared to the inhomogeneous
model and measured results in the following section.

Table 6.3 BECAS model convergence. Maximum and minimum percent difference of m, I,
EA, EIy, EIz and GJ values relative to a 5630 element run.

Number of elements Minimum difference Maximum difference

850 2.0 % 7.4 %
1270 0.6 % 4.4 %
1630 0.2 % 2.4 %
3620 0.1 % 1.3 %

6.2.3 Measured Properties and Model Results

Measurements of the inertial and elastic properties of the manufactured streamline cable
were taken to compare the results with the inhomogeneous and BECAS models. The mass
per unit length and centre of gravity were measured for all samples. The bending stiffness in
one direction (EIz), shear centre and torsional stiffness were measured for the blue polyester
and wound steel samples. The measurement methodology is described in Appendix B.
Tables 6.4 to 6.7 compare the calculated and measured cross-sectional properties of the four
samples. A range is given for some values due to the range in material values in Table 6.2.

Comparing the results, the nine properties for each sample generally agree between the
models and measurements except for the bending stiffness EIz of the wound steel sample and
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the torsional stiffness GJ of both measured samples. More specifically, taking the measured
value (or where it is unavailable the BECAS value) as the baseline, the percent difference
varies between 1% to 29% for all values except the bending and torsional stiffnesses.

The calculated torsional stiffness compared to the measured value is 3.7 times greater
for the blue polyester sample and 4.5 times greater for the wound steel sample. In both
cases, the measured value is lower than the calculated one. A possible explanation for the
difference is that the skin is modelled as a closed thin-walled section. In reality, the film is
welded at the trailing edge and sometimes splits open or is not fully welded. As a rough
comparison to the streamlined cable skin, consider a 10 mm diameter tube made of 150
µm polyethylene film. Using Roark’s formulas [138], if the tube is closed, the torsional
stiffness is about 3,000 time greater than if the tube is open. Therefore, small defects in the
streamlined cable welding, causing the section to be “open” could explain why the modelled
torsional stiffness is greater than the measured value. The discrepancy in the calculated and
measured bending stiffness values for the wound steel sample is likely because the cross-
sectional models do not account for slipping between the strands of the wound steel cable.

The first six cross-sectional properties (with dimensions) given in Tables 6.4 to 6.7 are
calculated with respect to a reference frame located at the shear centre with the z-axis par-
allel to, and the y-axis perpendicular to, the chord length. The properties are the mass per
unit length m, the mass moment of inertia about the centre of mass IG, the axial stiffness
EA, the bending stiffness EIy, the bending stiffness EIz and the torsional stiffness GJ. The
remaining three properties r, p and s are the dimensionless position of the mass, tension and
shear centre respectively. The dimensionless form is consistent with the values used in the
models derived in Chapters 3 to 5. The dimensionless position is such that -1 is the leading
edge, 0 is the mid-chord point and 1 is the trailing edge.

Table 6.4 Properties of blue polyester sample given in Figure 6.11 (a)

Symbol Inhomogenous model BECAS Measured Units

m 0.077 0.076 0.085 kg/m
IG 1.3E-05 1.4E-05 - kgm2

EA 0.13-0.22 0.13-0.21 - MN
EIy 6.5 to 14 7.0 to 16 - Nm2

EIz 0.33 to 0.58 0.39 to 0.74 0.25 Nm2

GJ - 0.63 0.17 Nm2

r -0.37 -0.38 -0.33 -
p -0.79 to -0.70 -0.76 to -0.74 - -
s - -0.44 to -0.41 -0.56 -
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Table 6.5 Properties of wound steel sample given in Figure 6.11 (b)

Symbol Inhomogenous model BECAS Measured Units

m 0.15 0.15 0.16 kg/m
IG 1.9E-05 1.9E-05 - kgm2

EA 2.5 2.5 - MN
EIy 11 to 20 11 to 21 - Nm2

EIz 3.9 to 4.0 4.0 to 4.1 0.30 Nm2

GJ - 0.63 0.14 Nm2

r -0.63 -0.62 -0.55 -
p -0.88 to -0.86 -0.86 to -0.85 - -
s - -0.53 to -0.52 -0.59 -

Table 6.6 Properties of red polyester sample given in Figure 6.11 (c)

Symbol Inhomogenous model BECAS Measured Units

m 0.066 0.065 0.070 kg/m
IG 1.1E-05 1.1E-05 - kgm2

EA 0.12-0.20 0.12-0.20 - MN
EIy 3.7 to 8.0 3.7 to 8.2 - Nm2

EIz 0.29 to 0.51 0.32 to 0.56 - Nm2

GJ - 0.25 - Nm2

r -0.44 -0.45 -0.44 -
p -0.82 to -0.80 -0.80 to -0.79 - -
s - -0.49 to -0.47 - -

Table 6.7 Properties of polyester and wire sample given in Figure 6.11 (d)

Symbol Inhomogeneous model BECAS Measured Units

m 0.069 0.069 0.070 kg/m
IG 1.1E-05 1.1E-05 - kgm2

EA 0.36-0.44 0.35-0.43 - MN
EIy 5.3 to 10 5.4 to 11 - Nm2

EIz 0.32 to 0.53 0.34 to 0.58 - Nm2

GJ - 0.26 to 0.27 - Nm2

r -0.51 -0.51 -0.52 -
p -0.91 to -0.88 -0.91 to -0.88 - -
s - -0.52 to -0.49 - -
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6.3 Streamlined Cable Dynamics Experiments

Testing streamlined cable was an objective throughout the project and over the course of
the work has included wind tunnel testing, flying sections of streamlined cable as kite line,
using the streamlined cable as balloon tether and horizontal field tests. The streamlined ca-
ble itself being in the preliminary phase of development, the objective of the experiments
was not purely to gather data to validate the streamlined cable models. The objective of the
testing was also to assess the benefits and limitations of the potential streamlined cable ap-
plications, testing methods and measurement techniques. Consequently, as samples became
available through the development of the manufacturing process, they were incorporated
into experimental tests. Figure 6.15 gives a timeline of the manufacturing, experimental
testing and development of measurement techniques associated with the current work. The
experimental work was funded by the SPICE project, the manufacturing developed by ESE
Ltd. and DT Ltd. , the experimental set-up and testing undertaken by the current author
and an optical cable dynamics measurement system developed by Shaw [113, 114]. A brief
discussion on the wind tunnel, kite, balloon and horizontal tests is provided in the next
sections.

6.3.1 Wind Tunnel Tests

The initial, prototyped sections, with varying centres of mass manufactured at CUED were
tested. The sections were supported in the Markham wind tunnel (working section of 1.1 m
height and width of 1.7 m) using string as shown in Figure 6.14. The objective of the testing
was to see how changes in the centre of mass and point of attachment of the tensioned string
affected the stability of the aerofoil section. Table 6.8 gives the calculated and measured
position of the centre of mass of the cross-sections shown in Figure 6.3.

Aerofoils 1, 2, 3 and 5 showed unstable behaviour in the wind tunnel. They exhibited
strong growing oscillatory behaviour almost immediately once wind was introduced. Other
interesting phenomena, such as 360o flipping, was also observed. Aerofoil 4, which has the
forward most centre of mass, exhibited more stable behaviour than the other four aerofoils.
The aerofoil was taken up to a speed of 22 ms−1 and exhibited fairly stable behaviour.
Interestingly, on ramp down of the wind speed, the aerofoil went into a highly unstable
mode and oscillated to failure. This indicates that the effects of rapidly changing wind
speed could be an important focus of future work.

Although the controlled environment of a wind tunnel is appealing, the size of the wind
tunnel limits the length of streamlined cable which can be tested. The samples tested were
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relatively short and rigid and the aerodynamics at the ends likely influenced the overall
behaviour. For a given length of streamlined cable to exhibit cable-like behaviour, the cross-
sectional dimensions must be small relative to the overall length. However, as the cross-
section becomes smaller, the streamlined cable becomes more difficult to manufacture.

Fig. 6.14 Preliminary tests in the wind tunnel using the CUED manufactured sections sup-
ported under tension by two strings.

Table 6.8 Measured and calculated centre of mass of CUED manufactured streamlined sec-
tions. Position taken with respect to the leading edge.

Center of mass (% of chord)

Sample Measured Calculated

1 43 42
2 23 25
3 23 24
4 15 15
5 17 17
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6.3.2 Tethered Balloon and Kite Tests

As kites and balloons are proposed applications for the use of streamlined cable, they were
a natural choice of testing method. Kite and balloon flights were completed in conjunction
with Shaw, who used the flights as a test of his 3D optical measurement system. Kite and
balloon tests were carried out in Cambridge, Japan and Somerset and each group of tests is
briefly summarised below. Figures 6.16 to 6.18 at the end of this section show some of the
test configurations and results from Shaw’s optical measurement system.

The first tests were carried out with a kite, in Cambridge, in the fields of Churchill Col-
lege. The tests were part of work by Shaw to develop an optical cable dynamic measurement
technique. The technique uses two cameras to record the motion of the cable, then image-
processing techniques are used to identify the location of the tether in each frame. The
position of the cable in three-dimensions is determined from the stereo vision set-up of the
cameras and calibration techniques. The first tests were conducted with a simple kite-line
and, when the first 10 m streamlined section was available, it was attached in series with the
kite line and flown. The 10 m sample exhibited unstable behaviour and also showed that
the winding effected the streamlined cable shape. In an unloaded state, the 10 m sample
was curved, and even when under the tension of the kite line, did not straighten completely.
Observation of this behaviour fed back into the manufacturing process and measures were
taken to ensure that the foam cured fully in a straight position before being wound onto the
storage drum. Parts of the kite testing program was documented by the Royal Institution in
collaboration with the Royal Academy of Engineering [110, 111].

As part of the cable dynamics optical measurement work, members of the SPICE project
were invited to observe the launch of a tethered balloon in Japan. The tethered balloon
launch was for the Japan Space Elevator Competition (JSEA) and was flown up to altitudes
of 700 m. The current author and Shaw attended the competition and used the opportu-
nity to test the cable dynamic measurement technique and generally gain knowledge on the
practical issues of launching and operating tethered balloons.

When 50 m lengths of streamlined cable were successfully manufactured, they were
flown beneath a helium balloon with the assistance of ESE Ltd. The attempt highlighted
the difficulties of using balloons as a means for preliminary streamlined tether tests. The
additional dynamics of the balloon made it difficult to gain fundamental insight into the
stability of the streamlined cable itself. The drag on the balloon dictated the overall motion
of the balloon and, due to the weight of the streamlined cable and size of balloon available,
the configuration did not fly higher than approximately 20 m. Future work could consider
using a streamlined aerostat which would be more stable in the wind.
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Another challenge of the balloon and kite testing are the weather conditions. For kite
testing there must be sufficient wind to fly the kite and lift the cable; for balloon testing, if
the winds are too high the system will blow-over. Thus, the testing using both methods is
limited by having to wait and mobilise when appropriate weather conditions arise.

Fig. 6.16 Kite flying showing one of the cameras for the optical measurement technique
[113]. The red kite is seen at the top of the photo, the kite-line is not visible.

(a) Image of a tethered balloon. (b) Cable detected by Shaw’s algorithm.

Fig. 6.17 Demonstration of Shaw’s cable detection algorithm of the JSEA balloon [114].
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Fig. 6.18 Length of 50 m streamlined cable flown using a helium balloon in Somerset.

6.3.3 Horizontal Streamlined Cable Test

The final and simplest test was to permanently set-up a length of horizontal streamlined
cable in an open field, a few meters above the ground. Although this means that gravity
affects the alignment of the streamlined cable relative to the wind, the test was appealing due
to its simplicity and “hands-off” nature. The set-up could easily be left for days, collecting
data at various wind conditions.

Figure 6.19 shows a schematic of the experimental set-up consisting of a 50 m length of
both streamlined and bare cable, supported horizontally. A chain block and load cell were
attached in series on each cable to adjust and measure the tension. Swivels, with rotational
Hall effect sensors incorporated into them, were fixed at both ends of the streamlined cable
to measure the orientation. Finally, bi-axial accelerometers were attached to both cables.
The wind speed and direction were measured by an anemometer and wind-vane affixed to a
nearby building. The sensor output wires were run to this building, which served to house
the data logging equipment.

An aerial view of the set-up location is shown in Figure 6.20. The red path shown
indicates the location of the cable set-up as measured by GPS. Figure 6.21 shows a photo
of the horizontal set-up, with the bare red polyester cable just visible above the light yellow
streamlined cable.
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Fig. 6.19 Schematic of horizontal experimental set-up.

Fig. 6.20 Aerial view of the experimental location with GPS measurements [52].

Fig. 6.21 Side-view of the horizontal experiment.
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Fig. 6.22 Overview of sensors and data-logging set-up.

Eight channels were collected with a Vishay 6200 Strain Smart data acquisition system:
two load cells, two Hall effect sensors, two accelerometers, the anemometer and the wind-
vane. Figure 6.22 gives a general overview of the data-logging system including sensor
information and photos of the sensors in place.

Over the course of the horizontal field experiment, problems related to the construction
and degradation of the streamlined cable were identified. These issues are presented and
briefly discussed in this section.

One of the first issues initially became apparent during tests under a balloon with the
wound steel cable: the streamlined cable would twist under tension. When the wound steel
streamlined cable was tested horizontally the same twisting behaviour was observed. Initial
hypotheses of why the cable twisted were that it was a side-effect of the manufacturing
process or due to the wound steel cable not being torque balanced. It was concluded that the
twisting was due to the rotational imbalance of the wound steel cable as the twist became
worse with increased tension and the braided polyester streamlined cables did not show
the same behaviour. Figure 6.23 shows the twisted configuration of the wound steel cable
supported horizontally under tension.

At this stage of the project, feeding more than one lengthwise element had not been in-
corporated into the manufacturing process. The wound steel cable was chosen in the stream-
lined cable construction as a straightforward method to move the centre of mass of the cable
towards the leading edge (relative to a polyester streamlined cable). A search for alternative
inner cables, with similar mass per unit length and diameter, which were torque balanced
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Fig. 6.23 Twisting behaviour of the wound steel streamlined cable under tension.

yielded only a few options. Of the options, a 5 mm diameter “rotationally resistant” cable
consisting of wound elements in opposing directions was selected. The rotationally resistant
cable was incorporated into a streamlined cable. However, when tensioned, the streamlined
cable exhibited the same twisting behaviour but to a lower extent. The unavailability of a
cable with large enough mass per unit length to significantly alter the centre of mass and
small enough diameter to fit at the nose of the aerofoil motivated the development of in-
cluding both a braided fibre cable and steel wire into the streamlined cable manufacturing
process.

Further issues which became apparent through testing were related to the streamlined
cable’s wear and degradation. One of the appealing features of the horizontal set-up was that
it could be left to collect data over the course of a few days. However, when left exposed to
the sun and rain, the polyurethane foam degraded relatively quickly. For example, as seen in
the Figure 6.11 and 6.23, the polyurethane foam used to manufacture the streamlined cable
is initially firm and pale yellow to white in colour. Figure 6.24 shows a streamlined cable
after being exposed to the sun for two days, the foam has begun to degrade, the signs of
which are a loss of firmness and discolouration to a darker brownish-yellow. A potential
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solution to this problem would be using an opaque film so that the foam is not exposed to
the sun. However, the transparent film was helpful in developing the manufacturing process
to see defects, foam quality and cable position.

In addition to the environmental factors contributing to the degradation of the stream-
lined cable, the loading also caused the foam to crack and the wire in the polyester and steel
sample to move within the cross-section. Figure 6.25 shows a backlit view of the stream-
lined cable where cracks have developed due to the applied tension. As the streamlined
cable is tensioned, the polyester cable and film extend axially. Therefore, the foam, which
is fused to the film and cable, must also extend. If the foam cannot elastically deform with
the film and cable, cracks develops.

Fig. 6.24 Streamlined cable foam degradation to a brownish-yellow colour.

Fig. 6.25 Streamline cable crack.
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Fig. 6.26 Steel wire movement after cyclic loading of the polyester and steel wire stream-
lined cable.

Figure 6.26 shows the polyester and steel sample after it has been loaded at various
tensions. Two dark brown curved lines are visible, the top one is a residual stain from a
previous location of the steel wire and the bottom curve is the steel wire itself. Loading
and unloading the streamlined cable seems to have forced the steel wire to shift along the
length and, even when the streamlined cable itself is under tension, the steel wire is in
a compressed state causing this curved shape. How the streamlined cable is terminated
likely plays an influential role in this behaviour. In the horizontal experiment, the tension
was applied to the fibre rope and the two ends of the steel wire are free. This behaviour
highlights how composite cross-sections can complicate the cable termination.

As demonstrated by the horizontal streamlined cable experiment, the issues associated
with a streamlined cable are not only related to stability. Running the horizontal experiment
helped highlight and identify some of the practical issues associated with implementation
of a streamlined cable.

6.4 Conclusions

This chapter has described how a manufacturing process for streamlined cable was devel-
oped and the produced cable incorporated into a horizontal field experiment. The manu-
facturing process initially began on a small scale by prototyping short streamlined sections
using foam injected into a mould. This process was scaled-up by ESE Ltd. and DT Ltd. who
developed a streamlined cable manufacturing machine. The machine successfully produced
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lengths of streamlined cable between 50 m to 150 m. Two cross-sectional models were used
to obtain the cross-sectional properties of the samples, which are necessary for the dynamic
modelling presented in the previous chapters. The results of these two cross-sectional mod-
els compared well with each other. Where possible, the calculated cross-sectional properties
were also compared to experimental measurements. All the calculated values matched the
measured results to within 29% apart from the torsional stiffness. The large discrepancy
in the torsional stiffness result was attributed to whether the polyethylene film, forming an
exterior skin of the streamlined cable act as a closed or open thin-walled section. Finally,
various experiments using the manufactured streamlined cable were described including
wind tunnel, kite, balloon and a horizontal field test. The horizontal field test was an ex-
periment monitoring the behaviour of a 50 m length of streamlined cable subjected to wind
loading. The results from the cross-sectional modelling and the experimental measurements
from the horizontal test are used in the next chapter to help validate the dynamic models
presented in the previous three chapters.



Chapter 7

Model Validation and Experimental
Results

In order to build confidence that the two-degree-of-freedom and discrete models give correct
results, they are used to model two benchmark cases: the Goland wing and a beam under
tension. The wing case is also used to examine the effect of assuming steady, quasi-steady or
fully unsteady aerodynamic loading. The properties of the manufactured cable calculated in
Chapter 6 and the discrete model are used to model the horizontal set-up. The experimental
results are used to determine the natural frequencies of the system and verify whether the
system suppresses VIV. The behaviour predicted by the discrete model and the observed
behaviour are compared.

7.1 Benchmark Case: Goland Wing

The Goland wing is a relatively short, uniform, cantilevered wing often used to validate the
behaviour of aeroelastic models, for example by Patil et al. [101] and Murua et al. [92].
Goland’s original paper [49] defines the properties of the cantilevered wing and solves for
the flutter speed and frequency. However, it should be noted that although the methodology
is correct, due to numerically incorrect aerodynamic parameters, the calculated result is
incorrect. The correct flutter speed and frequency are given in a short appendix of a later
paper by Goland and Luke [50]. Table 7.1 gives the physical properties, flutter speed and
flutter frequency of the Goland wing.

Disregarding fluid effects, the Goland wing is an inertially eccentric (centre of mass is
offset from the shear centre) beam. This eccentricity causes the torsion and bending of the
beam to be coupled. Banerjee [10] derives explicit expressions for the natural frequency and
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mode shapes of a bending-torsion coupled beam and uses the Goland wing as an illustrative
application of the derived expressions. Table 7.2 gives the first four natural frequencies of
the cantilevered wing neglecting fluid effects.

The eigenvalue problems (3.27) and (5.64) define the stability, at a prescribed wind
speed, of the two-degree-of-freedom and discrete models respectively. As described in
section 3.4, solving the eigenvalue problem gives eigenvalue solutions of the form λ j =

α j + iω j. To determine the stability boundary, eigenvalues are calculated at increasing wind
speed. When the increase in wind speed causes the real part of one of the eigenvalues (α j) to
transition from negative to positive, the system becomes unstable. The wind speed at which
α j = 0 is the stability boundary.

Table 7.1 Properties of the Goland wing.

Symbol Property Value Units

L Span 6.096 m
b Semi-chord 0.9144 m
m Mass per unit length 35.72 kg/m
Is Moment of inertia per unit length 8.643 kgm

EIz Bending stiffness 9.773×106 Nm2

GJ Torsional stiffness 9.876×105 Nm2

r Centre of mass -0.14 (43% chord)
s Shear centre -0.34 (33% chord)

ρa Air density 1.226 kg/m3

U f Flutter speed 137.2 m/s
ω f Flutter frequency 70.69 rad/s

Table 7.2 Natural frequencies of Goland wing without fluid effects.

Mode Natural frequency (rad/s)

1 48.2
2 95.7
3 244
4 348
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7.1.1 Two-Degree-of-Freedom Goland Wing Model

To model the Goland wing as a two-degree-of-freedom system, the elasticity and inertia
of the uniform cantilever beam are reduced to equivalent forms. Using the closed-form
solution for the tip deflection of a cantilever beam subject to a distributed load [36], the
bending and torsional elasticity can be reduced to equivalent springs of stiffness

kb =
8EI
ℓ4 (7.1)

and
kt =

2GJ
ℓ2 (7.2)

respectively. As the natural frequencies and equivalent stiffness of the beam is known, the
equivalent inertia is calculated from the eigenproblem form of the structural equations of
motion (3.1). The calculated equivalent mass per unit length is m=22.9 kg/m and rotary
inertia about the centre of mass is Ig=6.26 kgm. Having reduced the cantilever beam to
an equivalent two-degree-of-freedom form, the eigenvalues are calculated with increasing
wind speed to analyse stability.

Figures 7.1a to 7.1c show how the eigenvalues, separated into the frequency and growth
components, vary with increasing wind speed for the steady, quasi-steady and unsteady
aerodynamic load assumptions. Any location where the growth rate becomes positive indi-
cates a flutter or divergence condition.

Comparing Figures 7.1 (a), (b) and (c), it is apparent that the dependence of the eigen-
values on wind speed differs dramatically between aerodynamic assumptions. Table 7.3
summarises the calculated flutter speed and frequency and compares the result to the closed-
form solution. The quasi-steady assumption yields the worst result, this is because the flutter
occurs at a relatively high reduced frequency of 0.47. Typically, values above 0.2 are consid-
ered highly unsteady [82]. Unsurprisingly, the unsteady aerodynamic loading assumption,
which is the most comprehensive of the assumptions, best models the Goland wing with
about a 7% error in both the calculated flutter speed and frequency.

7.1.2 Discrete Goland Wing Model

The Goland wing case is also used to validate the aeroelastic behaviour of the discrete
model. Neglecting fluid effects, Banerjee’s explicit expressions [10] for the natural frequen-
cies and mode shapes of a bending-torsion coupled beam are used to ensure that the discrete
model captures the correct structural coupling. Figure 7.2 shows the convergence of the
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(a) Steady aerodynamic loading, flutter occurs at 91.6 m/s and 66.9 rad/s.
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(b) Quasi-steady aerodynamic loading, flutter occurs at 48.1 m/s and 94.0 rad/s.
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(c) Unsteady aerodynamic loading, flutter occurs at 127 m/s and 75.4 rad/s.

Fig. 7.1 Growth rate and frequency of eigenvalues of the two-degree-of-freedom Goland
model assuming steady, quasi-steady and unsteady aerodynamic loading.
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Table 7.3 Flutter boundary of two-degree-of-freedom Goland wing model.

Aerodynamic assumption
Flutter speed Flutter frequency

(m/s) (% error) (rad/s) (% error)

Steady 91.6 33 66.9 5.3
Quasi-steady 47.8 65 94.0 33

Unsteady 128 6.8 75.3 6.5

first four bending-torsion natural frequencies of the beam, normalised with respect to the
analytical solution. As expected, the higher modal frequencies require a greater number of
elements to converge to the correct solution. With nine elements, the model captures the first
four frequencies to within 0.8% of the closed-form solution. Figures 7.3 and 7.4 compare
the closed-form mode shape solution to the result from a 10 element discrete model for the
first two bending-torsion coupled modes. The bending and torsion modes are normalised
so that the largest mode shape displacement is unity. The closed-form solution is shown
as a continuous line and the discrete model by a marker at each node. The discrete model
correctly models the eccentric beam as the markers representing the nodal displacements lie
directly along the closed-form solution.

As the discrete model correctly reproduces the structural behaviour of the wing, the
aeroelastic behaviour is verified. The stability of the discrete Goland wing model is anal-
ysed by calculating the eigenvalues of the discrete system, given by equation (5.64), for
increasing wind speed. Similar to the two-degree-of-freedom case, eigenvalue results for
the steady, quasi-steady and unsteady aerodynamic loading assumptions are compared in
Figures 7.5 (a), (b) and (c).
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Fig. 7.2 Convergence of Goland wing natural frequencies
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Fig. 7.3 Mode 1 of the Goland wing without fluid effects. Calculated from a 10 element
discrete model and compared to the exact solution.

Fig. 7.4 Mode 2 of the Goland wing without fluid effects. Calculated from a 10 element
discrete model and compared to the exact solution.

The discrete and two-degree-of-freedom models show similar variation of the eigenval-
ues with wind speed. The most immediate difference between the figures produced from
the two models is the greater number of eigenvalues in the discrete case. However, the first
two eigenvalues in both models, which are complex conjugate pairs, follow the same overall
pattern for the steady, quasi-steady and unsteady cases. Table 7.4 gives the flutter speed and
frequency calculated from the discrete model and percent difference from the exact result.
Similar to the two-degree-of-freedom case, the steady and quasi-steady assumptions give
poor estimates of the flutter boundary. However, the fully unsteady 10 element discrete
model yields a flutter speed and frequency within 0.15% of the exact solution. In fact, Table
7.5 shows that the discrete model estimates the flutter speed to within 1% with as few as 2
elements.
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(a) Steady aerodynamic loading, flutter occurs at 102 m/s and 65.0 rad/s.
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(b) Quasi-steady aerodynamic loading, flutter occurs at 64.6 m/s and 87.8 rad/s.
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(c) Unsteady aerodynamic loading, flutter occurs at 137 m/s and 70.7 rad/s.

Fig. 7.5 Growth rate and frequency of eigenvalues of the 10 element discrete Goland model
assuming steady, quasi-steady and unsteady aerodynamic loading.
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In conclusion, the fully unsteady discrete model has proven to correctly model the struc-
tural and aeroelastic coupling of the Goland wing case. Although this validates the flexural,
torsional and aeroelastic behaviour of the discrete model, it does not include the effect of
tension, which is addressed in the following section.

Table 7.4 Flutter boundary of discrete Goland wing model.

Aerodynamic assumption
Flutter speed Flutter frequency

(m/s) (% error) (rad/s) (% error)

Steady 102 25 65.0 8.1
Quasi-steady 64.6 53 87.8 24

Unsteady 137 0.2 70.7 0.8

Table 7.5 Discrete model of Goland wing flutter speed convergence.

Number of elements Flutter speed (m/s) Percent difference

1 124.5 9.2 %
2 135.8 1.0 %
3 136.6 0.41 %
4 136.8 0.27 %
10 137.0 0.15 %

7.2 Benchmark Case: Tensioned Beam

As described in section 5.3.3, the discrete streamlined cable model includes the effect of ten-
sion through a geometric stiffening term. The closed-form solution of a uniform tensioned
beam is used to verify that the tension is correctly incorporated into the model.

Bokaian [19] gives expressions for the natural frequencies and mode shapes for a uni-
form beam under tension subject to a number of end conditions. Bokaian defines the dimen-
sionless tension parameter

τ =
Pℓ2

2EI
, (7.3)

which gives an indication of whether beam or string behaviour dominates. Beams with val-
ues of τ ≥ 12 behave like a string; for values of τ ≤ 12 the beam effects are significant. The
discrete model results are compared to the analytical solution by modelling a fixed-fixed
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beam with the cross-sectional properties of the manufactured red polyester sample (calcu-
lated by the BECAS model) described in section 6.2.3. However, in order to compare the
behaviour to the closed form solution, all the structural centres are assumed to be concen-
tric. As the discrete model includes both beam and string behaviour, the length and tension
of the validation case are chosen to give a value of τ = 8.4 so that the model exhibits mixed
beam and string behaviour. Table 7.6 gives a summary of the tensioned beam parameters.

Table 7.6 Properties used in the tensioned beam validation case.

Symbol Property Value Units

ℓ Length 1 m
P Tension 100 N
m Mass per unit length 0.065 kg/m
Ig Moment of inertia per unit length 1.1 ×10−5 kgm2

EIy Bending stiffness 6.0 Nm2

τ Dimensionless tension parameter 8.4 -

Figure 7.6 shows the calculated natural frequencies of the first four modes normalised
with respect to the analytical solution. With 6 elements, the discrete model calculates the
first four natural frequencies to within 1% of the closed-form solution. Figures 7.7 and 7.8
compare the theoretical and discrete model solutions for the first two mode shapes. The
closed-form solution is shown as a continuous line and the discrete solution with markers
at each node. The discrete results show good agreement to the closed-form solution. Com-
paring the discrete model to this simple analytical case builds confidence that the geometric
stiffening matrix correctly accounts for the effect of tension.
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Fig. 7.6 Convergence of beam-string model.
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Fig. 7.7 Mode 1 of the tensioned beam. Calculated from a 10 element discrete model and
compared to the exact solution.

Fig. 7.8 Mode 2 of the tensioned beam. Calculated from a 10 element discrete model and
compared to the exact solution.

The comparison of the discrete model to the Goland wing and tensioned beam cases has
served to benchmark the discrete model. The two cases provided a means to verify that
the model correctly accounts for inertial eccentricity, unsteady fluid effects and an applied
tension. The comparison is very much between two theoretical models. The experimental
results and observations acquired through the horizontal field experiment provide a real
world comparison. In the next section the experimental results are analysed and compared
to the discrete model.

7.3 Experimental Results

The horizontal experimental set-up described in Chapter 6 may not be representative of a
specific streamlined cable application. However, the experiment provides an opportunity to
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draw comparisons between a simplified model of the set-up, collected data and overall ob-
servations. The simplified model neglects the effect of gravity and assumes the streamlined
cable is straight and subject to a constant external tension. Natural frequencies of the system
are compared through impulse tests. A check on whether the streamlining reduces VIV is
completed by analysing the measured frequencies on the bare and streamlined cable. The
observed flutter behaviour is compared to the that predicted by the model.

7.3.1 Impulse Testing

As a simple test to determine the natural frequencies, the accelerometers were used to mea-
sure the impulse response of both the bare and streamlined cable. The acceleration was
measured at a fixed location and an impulse was applied at various locations along the cable.
The characteristics of the impulse were not measured. The natural frequencies are obtained
from the measured acceleration response and compared to those obtained analytically or
from the discrete model.

The bare cable provides a simple system with which to validate the measured values.
The natural frequencies of the bare cable should approximately match the theoretical solu-
tions for a taut string given by ωn =

nπ

L

√
P
m . Figure 7.9 shows the power spectral density

(PSD) of the measured acceleration impulse response. The PSD is calculated from Welch’s
method using a Bartlett window and 50% overlap. The theoretical natural frequencies are
calculated based on the measured mass per unit length of 0.03 kg/m, cable length of 50
m and applied tension of 785 N. The measured results show fairly good alignment for the
first nine natural frequencies. Some discrepancy is expected between the analytical solution
and the measured results due to effects such as cable sag (see Irvine and Caughey [71]) and
wind loading. The measured wind speed varied throughout the measurement interval from
0 to 2 m/s. A wind speed of 2 m/s corresponds to a Reynolds number of approximately 700
and therefore a Strouhal number of approximately 0.2 (see Figure 2.16). Therefore, vortex
shedding would likely have occurred at frequencies below 80 Hz and may have affected the
measured results.

The same impulse test was repeated on the streamlined cable. For the streamlined cable,
there is added complexity since the cross-section only has one axis of symmetry. Applying
an impulse to the same point on the cross-section for a 50 m long cable, even without the
addition of wind, is difficult. Figure 7.10 shows the measured PSD for the acceleration
impulse response of the streamlined cable. The measured results are compared to a discrete
streamlined cable model assuming no wind and pinned boundaries. The impulse is assumed
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Fig. 7.9 Power spectral density of the measured acceleration impulse response of the bare
red polyester cable under 785 N tension. The vertical lines show the natural frequencies
calculated from the analytical solution for a taut string.

to be applied and measured along either the y or z axes, defined in the discrete model as
axes perpendicular and parallel to the chord length respectively. The frequency response
function H is given by

H =
(
−ω

2Mc +Kc(1+ iη)
)−1

(7.4)

where Mc is the streamlined cable mass matrix and Kc is the streamlined cable stiffness
matrix. A complex stiffness is included to account for some structural damping with the
loss factor η approximated as 0.01. Each element of the matrix H corresponds to the input
and response at given nodes, i.e. the element on the nth row and mth column corresponds to
the response for a unit impulse applied at the mth node and measured at the nth node. Figure
7.11 shows the discrete model acceleration PSD for input and response nodes corresponding
to the experimental test. Comparing the experimental and discrete model PSD plots does
not show an exact match, but does give natural frequencies which follow the same general
pattern and spacing. This comparison provides at least a little confidence that the discrete
model gives reasonable results.

7.3.2 Vortex-Induced Vibration

The main advantages of streamlining a cable are the reduction in drag and VIV. In order to
verify whether the manufactured streamlined cable inhibits VIV, the recorded frequencies
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Fig. 7.10 Power spectral density of the measured acceleration impulse response of the
streamlined PolyWire cable under 785 N tension.
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Fig. 7.11 Power spectral density determined from a 36 element discrete model of the stream-
lined PolyWire cable under 785 N tension.
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of the bare and streamlined cable are compared to the theoretical vortex shedding frequency.
The acceleration of the streamlined and bare cables, and the wind speed were recorded for a
15 minute (900 second) windy period. Figures 7.12 (a) and (b) plot the measured response as
spectrograms for the bare and streamlined cable respectively. The x-axis of the spectrogram
gives frequency, the y-axis time and the plotted colour indicates the relative amplitude of
the response (warm colours indicate high amplitude and cool colours low amplitude).

The estimated vortex shedding frequency at a given time is calculated from the measured
wind speed, the Strouhal number and the characteristic length. The Strouhal number for the
bare, circular cross-section cable is taken as 0.2 (see Figure 2.16) and the characteristic
length is the 6 mm cable diameter. The Strouhal number for the streamlined profile is
taken from Yarusevych and Boutlier [137] who compare the vortex shedding properties of
NACA 0012, NACA 0018 and NACA 0025 aerofoils which have boundary layer separation
without reattachment at low Reynolds numbers (up to 40,000). They find that the Strouhal
number – scaled with a characteristic dimension of the aerofoil height when projected onto
a plane normal to the flow direction – is approximately constant at 0.2. The authors also
note the Strouhal number for flat plates oriented perpendicular to the flow direction, which
is comparable to an aerofoil oriented perpendicular to the flow, is approximately 0.14. Over
the course of the experiment, the streamlined cable was observed to align itself with the wind
as the wind speed increased. The estimated vortex shedding frequency for the streamlined
profile can therefore be taken as a range bounded by the aligned and perpendicular cases.
The Strouhal number, characteristic length and vortex shedding frequency estimates for the
bare cable, aligned streamlined cable and perpendicular streamlined cable are summarised
in Table 7.7.

The vortex shedding frequencies given in Table 7.7 are calculated from the measured
wind speed and overlaid on the spectrogram as a solid black line. For the bare cable, the
measured response shows a correlation to the vortex shedding frequency as the high am-

Table 7.7 Vortex shedding frequency from Strouhal number for circular and streamlined
profiles, note that St = f l/U .

Profile shape and orientation
Strouhal Characteristic Vortex shedding

number St length l frequency f

- (m) (Hz)

Circular cross-section 0.2 0.01 fc = 20U
Aerofoil aligned with flow 0.2 0.01 f∥ = 20U
Aerofoil perpendicular to flow 0.14 0.05 f⊥ = 2.8U
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plitude response shown by warm colours generally follows the estimated vortex shedding
frequency. Comparatively if aligned, the streamlined cable does not exhibit such a strong
correlation between the measured frequencies and the expected vortex shedding frequency
range. The figure does show excitation at the expected frequencies if the profile is perpen-
dicular to the wind. The above comparison is not meant to be an exhaustive analysis of the
vortex shedding characteristics. It provides an indication that the manufactured streamlined
cable reduces VIV when aligned and highlights the potential for problems to arise if the
section is not aligned with the wind.

(a) Bare cable. (b) Streamlined cable.

Fig. 7.12 Spectrogram of bare and streamlined cable under a 300 N tension. The black line
indicates the theoretical vortex shedding frequency given the measured wind speed.
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7.3.3 Experimental Observations

The horizontal set-up of the streamlined tethers yielded some interesting observational data.
The manufactured streamlined RedPoly and PolyWire cables were tested over a number of
days. The two cables have the same inner fibre cable and the PolyWire sample has a small
1.2 mm diameter steel wire at the leading edge. Section 6.2 gives a detailed description
of the samples with Tables 6.6 and 6.7 listing their cross-sectional properties. The main
difference between the two streamlined cables is the position of the centre of mass. The
RedPoly sample has a centre of mass located at r=-0.44, which corresponds to a position
that is 27% of the chord length, measured from the leading edge. The PolyWire sample has
a centre of mass located at r=-0.52, or 24% of the chord from the leading edge.

The RedPoly and PolyWire cable tests were each run on different occasions. Each test
was set-up in the field when the weather forecast predicted a period of windier days. The
aim of the test was to compare the behaviour of the two cables in approximately similar
wind conditions. The wind speed and direction data over the course of each test period is
summarised by a wind rose. Figures 7.13 (a) and (b) give the wind roses for the RedPoly
and PolyWire tests respectively. The wind rose shows the frequency of wind from a given
direction, at a given speed. The wind roses show that for both testing periods the wind
came most frequently from the north-east, meaning it blows from the north-east towards the
south-west. The streamlined cable is oriented approximately 45 degrees counter-clockwise
from the north, meaning it runs from north-west to south-east (see Figure 6.20). Thus, the
cable is oriented perpendicular to the highest frequency wind direction. The maximum wind
speed seen by the RedPoly cable, in a direction perpendicular to the cable orientation, was
about 9 m/s. The maximum perpendicular wind speed seen by the PolyWire cable was about
6 m/s.

Over the course of the testing the PolyWire cable was observed to align itself with the
wind and did not exhibit any unstable behaviour. Unfortunately, the data from the orienta-
tion sensors did not prove very useful in empirically quantifying the cable’s orientation. At
higher wind speeds, the central portion of the streamlined cable was observed to align itself
with the wind but the ends of the streamlined cable did not appear able to overcome the
friction in the swivels. Conversely, the RedPoly sample exhibited very unstable behaviour.
At wind speeds between 4.5 to 6.5 m/s at a tension of 700 N the cable oscillated wildly and
fluttered. The observed unstable behaviour was recorded with a HD Sony video camera at
50 frames per second (FPS) with 48,000 Hz audio. According to the Nyquist criteria, the
maximum observable of the video and audio sampling rates are 25 Hz and 24,000 Hz re-
spectively. The oscillation frequency was interpreted frame-by-frame from the video to be
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Fig. 7.13 Wind rose diagrams summarising the wind speed and direction data for the Red-
Poly and PolyWire test periods.
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8.3 Hz. As a verification of the visually measured frequency, the power spectral density of
the audio frequency was also analysed. Figure 7.14 gives the PSD of the audio signal which
shows a small peak at 8.3 Hz. The increase in the audio power spectrum at the visually ob-
served flutter frequency gives better confidence that the 8.3 Hz frequency is not an aliased
frequency.
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Fig. 7.14 Power spectrum of flutter audio with vertical line indicating the visually observed
flutter frequency.

The stability of the RedPoly and PolyWire streamlined cables was calculated using the
discrete model described in Chapter 5. The discrete model of the horizontal streamlined ca-
ble set-up assumes the cable is straight, under constant tension and has pinned, torsionally-
fixed boundaries. The wind is assumed to act uniformly along the length of the cable. This
general configuration will be taken as the base-case streamlined cable model and is depicted
in Figure 7.15. The cross-sectional properties of the base-case discrete model are taken
as either the BECAS calculated properties of the RedPoly and PolyWire samples, repeated
here in Table 7.8.

The observed behaviour of the RedPoly and PolyWire experiments is compared to the
results of the simplified base-case model. The eigenvalues for the discrete model are cal-
culated at increasing wind velocities and checked for instability, in the same way the flutter
speed was determined for the Goland wing case. The convergence of the flutter speed value

Fig. 7.15 Base-case pinned-pinned streamlined cable subject to constant tension and wind.
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Table 7.8 Base-case streamlined cable properties as calculated by BECAS

Symbol RedPoly PolyWire Units

m 0.065 0.070 kg/m
IG 1.1E-05 1.1E-05 kgm2

r -0.44 -0.52 -
EA 0.16 0.16 MN
p -0.80 -0.90 -

EIy 6.0 8.1 Nm2

EIz 0.45 0.45 Nm2

GJ 0.25 0.27 Nm2

s -0.48 -0.51 -

for the discrete model is verified and used to choose an appropriate number of elements
with which to model the base-case. The flutter speed U f and frequency ω f of the base-case
with the properties of the RedPoly and PolyWire properties, at tensions of 0 N, 400 N and
800 N were calculated with an increasing number of elements. Figures 7.16 and 7.17 show
the convergence of the flutter speed and frequency, normalised with respect to the value
calculated using 50 elements. Based on the flutter speed and frequency of the RedPoly and
PolyWire base-cases, modelling with 28 elements or more gives less than 1% error.

Having checked the convergence of the discrete model, the flutter results are compared
to the experimentally observed behaviour. As described above, at a tension of 700 N, the
RedPoly sample was observed to flutter at 8.3 Hz in winds between 4.5 to 6.5 m/s. Con-
versely, no flutter behaviour was observed in the PolyWire sample, which was subject to
wind speeds up to 6 m/s. The discrete model predicts the onset of instability at much lower
wind velocities around 0.6 m/s to 0.7 m/s at a frequency of 1.3 Hz. Instability is also pre-
dicted in both the RedPoly and PolyWire samples. Table 7.9 summarises the experimentally
observed and calculated flutter instabilities.

Table 7.9 Experimentally observed and model predicted flutter speed and frequency.

Cable Method Flutter speed (m/s) Flutter frequency (Hz)

RedPoly
Observed 4.5-6.5 8.3

Discrete model 0.6 1.3

PolyWire
Observed None None

Discrete model 0.7 1.3
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Fig. 7.16 Convergence of 50 m RedPoly streamlined cable model. Values are normalised
with respect to the 50 element result.
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Fig. 7.17 Convergence of 50 m PolyWire streamlined cable model. Values are normalised
with respect to the 50 element result.

Other than the fact that instability was predicted and observed in the RedPoly case, the
discrete model results do not agree with the experimental observations. The base-case dis-
crete model is a simplification of the experimental set-up and does not account for a number
of effects such as gravity or gustiness. As discussed in Chapter 6, the calculated cross-
sectional properties may also differ from the experimental case as they are an estimate based
on practical measurable properties and available material data. As well, the manufacturing
process and testing itself imparted inconsistencies such as variable foam density and posi-
tion of the steel wire over the length. As such, exact like-for-like comparisons are difficult
to make. However, the discrete model can be used to explore how some of these various
effects, such as the cross-sectional properties and gustiness, affect the system’s stability.
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7.4 Conclusions

This chapter has explored both analytical and experimental validation cases for the two-
degree-of-freedom and discrete streamlined cable models. The discrete model gave excel-
lent agreement with the analytical benchmark cases of the Goland wing and tensioned beam.
The experimental results from the horizontal set-up were compared to a simplified discrete
model of the experiment. The impulse response of the bare cable was compared to ana-
lytical solutions and the experimental data gave good agreement for the first nine natural
frequencies. The experimentally measured impulse response for the streamlined cable was
compared to the discrete model results. The experimental and model results showed general
agreement for the first few natural frequencies and gave approximately the correct spacing
between natural frequencies. As a verification of the VIV suppression characteristics of
the streamlined cable, a spectrogram of the bare cable and streamlined cable response in
a windy period spanning 15 minutes was compared to the published vortex shedding fre-
quency values. The bare cable response did appear to follow the vortex shedding frequency
whereas the streamlined cable did not, giving an indication that the streamlined cable does
suppress VIV. Finally, the observed flutter behaviour between the RedPoly and PolyWire
samples was compared to the behaviour predicted by the simplified discrete model of the
horizontal set-up. Though the experimentally observed values do not compare well with
the model’s predicted values, they did show that the stability is affected by changes in the
streamlined cable properties. Specifically, the movement of the centre of mass towards the
leading edge of the PolyWire cable was observed to increase its stability. Though the exper-
imental set-up and the discrete model are perhaps too dissimilar to compare like-for-like, the
experiments have given insight into some of the practical issues associated with designing,
manufacturing and implementing a streamlined cable. In the next chapter, the scope of the
discrete model as a tool to investigate stability is demonstrated. The discrete model is used
to investigate how properties such as the streamlined cable’s cross-sectional characteristics,
the wind loading profile and variations in tension affect stability.





Chapter 8

Model Results

The streamlined models developed in the current work are general in nature, therefore they
could be used to model a number of streamlined cable applications. Furthermore, for a
given application, the models can be used to investigate how variation of the models’ input
parameters affect stability. The modelled and measured properties of the manufactured
streamlined cables provide a realistic starting point from which to investigate the stability
of streamlined cables. The developed models are used to explore the effect of varying
properties – such as changes in the location of the centres, magnitude of tension, length,
stiffness, distribution of wind and variation of tension – on the stability of the streamlined
cable.

8.1 Base-Case Definition

The 50 m samples of manufactured streamlined cable are taken as a realistic base-case from
which to explore the stability of streamlined cables. The properties of the RedPoly and the
PolyWire streamlined cables from Table 7.8 are used. The base-case is taken as the simple
configuration described in section 7.3.3 and consists of a straight length of streamlined
cable, subject to a constant external tension, uniform wind and pinned boundary conditions
(see Figure 7.15).

To reduce the base-case to a form compatible with the two-degree-of-freedom model,
the elasticity needs to be represented by equivalent spring stiffnesses. The bending spring
stiffness is estimated from the analytical expression for the central deflection of a pinned-
pinned beam subject to a distributed load [36] as

kb =
384EIzz

5ℓ4 . (8.1)



138 Model Results

The torsion stiffness is estimated from the analytical solution for a fixed-fixed shaft subject
to a distributed torque as

kt =
8GJ
ℓ2 . (8.2)

The stiffness due to tension is estimated from the analytical solution for the first natural
frequency of a string under tension as

kp =
(

π

ℓ

)2
P. (8.3)

The discrete and two-degree-of-freedom models are used to explore how changes in the
base-case properties affect the stability.

8.2 Centre of Mass Position

In classic flutter analysis of a wing, which is not subject to tension, the relative location of
the centre of mass and the aerodynamic centre to the shear centre strongly influences the
wing’s stability. As described in the literature review, Blevins [17] helpfully summarises
the stability results for the classic two-degree-of-freedom flutter case with quasi-steady fluid
loading as Table 2.2. The classic results indicate that divergence is present when the aero-
dynamic centre is forward of the shear centre and flutter is present when the centre of mass
is aft of the shear centre. The RedPoly sample has an aerodynamic centre forward, and
a centre of mass aft, of the shear centre, indicating that it will flutter and diverge. The
PolyWire sample has an aerodynamic centre aft, and a centre of mass forward, of the shear
centre, indicating that it will not flutter nor diverge. The two-degree-of-freedom and discrete
model, which include fully-unsteady fluid loading, are used to explore how stability of the
base-case, with and without the inclusion of tension, compare to each other and this classic
result.

8.2.1 Neglecting Tension

Neglecting the effect of tension, the only difference between the extended two-degree-of-
freedom model detailed in Chapter 3 and Blevins classic flutter model is the inclusion of
fully-unsteady fluid effects. Figures 8.1 (a) and (b) show how the flutter and divergence
speeds vary with changes in the position of the centre of mass. The calculated results are for
the base-case with the RedPoly and PolyWire cable properties. The dimensionless location
of the centre of mass ranges from -1 to 1 and corresponds to the coordinate system depicted
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in Figures 3.2 and 5.5. According to this coordinate system, -1 is the leading edge, 0 is the
semi-chord and 1 as the trailing edge. The red, blue and green dotted vertical lines show the
values of the dimensionless position of the mass, shear and aerodynamic centre locations r,
s and q respectively.

The results of Figure 8.1 (a) compare well with Blevins criteria. The RedPoly sample
has an aerodynamic centre forward of the shear centre which indicates that the section will
always diverge. This corresponds to the result in Figure 8.1a (a) since, even though the
divergence speed varies with the location of the centre of mass, it exists for a centre of mass
located anywhere along the chord of the streamlined section. Figure 8.1a (a) also shows
agreement to Blevins flutter speed condition since flutter exists for all values of the centre
of mass aft of the shear centre. In fact, the flutter speed asymptotes towards infinity as it
approaches the shear centre.

Figure 8.1 (b) shows the equivalent results for the base-case with PolyWire properties.
Blevin’s criteria holds for flutter but not strictly for divergence. For the PolyWire sample,
the aerodynamic centre is aft of the shear centre yet, the results show that the streamlined
cable diverges if the centre of mass is aft of a value slightly greater than the aerodynamic
centre. Unlike conventional divergence, the divergence in this case is associated to the
inertia of the system. In a physical sense, this instability is related to the fact that when the
centre of mass is aft of the aerodynamic centre, the lift and d’Alembert inertia force form a
couple acting to rotate the body in the same direction as the displacement. When the centre
of mass is aft of the aerodynamic centre, the lift and inertia force couple act in a direction
opposite the displacement. This is consistent with the inertia of the system being relatively
high compared to the torsional stiffness. The flutter condition follows Blevins criterion, as
the figure shows that flutter occurs only when the centre of mass is aft of the shear centre.

Overall the unsteady two-degree-of-freedom model compares well to Blevins general
quasi-steady results for flutter but not always for divergence. The difference between the two
results is likely due to the fact that wings have relatively high torsional stiffness compared
to a streamlined cable. Thus, divergence due to the inertia is not usually within the realm of
realistic solutions for a wing.

The same analysis is completed using a discrete 35 streamlined-beam-element model of
the base-case. Figures 8.2 (a) and (b) show the flutter and divergence with varying position
of the centre of mass for the RedPoly and PolyWire samples, respectively. For positions of
the centre of mass aft of the shear centre, the two-degree-of-freedom model results in Figure
8.1 and the discrete model results in Figure 8.2 are nearly identical. However, for positions
of the centre of mass forward of the shear centre, where the two-degree-of-freedom model
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(a) RedPoly properties. The intersection of the flutter and divergence speeds with the r value for
the RedPoly sample predicts flutter and divergence at 2.4 m/s and 2.9 m/s respectively.
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(b) PolyWire properties. No intersection of the flutter and divergence with the r value of the Poly-
Wire sample predicts no flutter or divergence.

Fig. 8.1 Predicted flutter and divergence speed as a function of the position of the centre of
mass using the two-degree-of-freedom base-case model with RedPoly or PolyWire proper-
ties and no applied tension.

predicts no flutter, the discrete model does. The additional flutter region found in the discrete
model corresponds to higher frequency instabilities. For example, taking the RedPoly case,
the flutter frequencies for positions of the centre of mass aft of the shear centre vary between
3.0 rad/s to 5.6 rad/s. Conversely, the flutter frequencies for positions of the centre of mass
forward of the shear centre vary between 61 rad/s to 64 rad/s. This demonstrates one of the
limitations of the two-degree-of-freedom model: the elasticity of the system is reduced to
represent a specific mode of vibration and thus overlooks other modes of instability. For
the region where the first mode is unstable, the two-degree-of-freedom model provides a
simple, computationally efficient alternative for analysing instability.

The analysis of a case without tension is representative of existing work on streamlined
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(a) RedPoly properties. The intersection of the flutter and divergence speeds with the r value for
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(b) PolyWire properties. No intersection of the flutter and divergence with the r value of the Poly-
Wire sample predicts no flutter or divergence.

Fig. 8.2 Predicted flutter and divergence speed as a function of the position of the centre
of mass using the discrete base-case model with RedPoly or PolyWire properties and no
applied tension.

bodies such as aircraft wings. The differentiating factor for a streamlined cable is the addi-
tional applied tension.

8.2.2 Including Tension

The two-degree-of-freedom and discrete models are now used to investigate the impact of
the addition of an applied tension. The models are used to calculate the flutter and diver-
gence speed at varying tensions for the base-case with both RedPoly and PolyWire proper-
ties.

Figure 8.3 (a) and (b) show how the flutter and divergence speeds for the RedPoly and
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PolyWire samples vary with increasing tension. At a tension of zero, the flutter and di-
vergence speeds agree with the results obtained in Figures 8.1 and 8.2 from the previous
section. Looking at the discrete model results, as the tension increases from zero, the flutter
speed of the RedPoly case decreases exponentially from 1.8 m/s to about 0.6 m/s at 500 N.
The PolyWire cable is stable to flutter at zero tension but as the tension increases there is a
critical point – in the range shown here at approximately 75 N – where an onset of flutter
occurs. At the critical tension, the flutter speed asymptotes to infinity and, as the tension is
further increased, the flutter speed decays exponentially. At tensions above approximately
250 N, the flutter speed results from the RedPoly and PolyWire case converge to approxi-
mately the same value. The results from the two-degree-of-freedom do not give the same
critical values, but do follow the same general relationship as the discrete model. For in-
creasing tension, both models show a decrease in stability to flutter. Two-degree-of-freedom
model is more computationally efficient, and for this case, appears to be a useful tool to gain
a preliminary understanding of the a simple streamlined cable’s stability behaviour.

Opposite to the flutter case, the divergence case in Figure 8.3 (b) shows an increase in
stability with increased tension. At zero tension, the value of 3.5 m/s for the discrete Red-
Poly case matches the result found in the previous section. Then, as the tension increases,
the divergence speed increases and appears to approach a limit of about 20 m/s. The addi-
tion of tension to the PolyWire case appears not to affect the divergence condition. Without
tension there was no divergence and, with increasing tension, no divergence speed is found.

The reason for the decrease in flutter stability and increase in divergence stability with
increased tension can likely be attributed to the fact that the centre of tension in both the
RedPoly and PolyWire configurations is forward of the mass and aerodynamic centres. As
described in the derivation of both the two-degree-of-freedom and discrete models, the ad-
dition of tension effectively increases the stiffness of the streamlined cable. The effect of
increasing the tension appears to have the same general result found in classic flutter theory,
where the shear centre is replaced by the tension centre. In the case of the RedPoly and
PolyWire cross-sections, the centre of tension is forward of the aerodynamic centre caus-
ing an increase in divergence stability and the centre of tension is forward of the centre of
mass causing a decrease in the flutter stability. The next section takes a more in depth look
into how the behaviour of the RedPoly and PolyWire base-case varies with changes in the
location of the centre of tension.

In the current section, the two-degree-of-freedom model was seen to give the correct
overall flutter and divergence relations to increases in tension. However, it did not give cor-
rect magnitudes and a known limitation is that it neglects higher mode instabilities. Used
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Fig. 8.3 Predicted flutter and divergence speed with increasing tension using the discrete
and two-degree-of-freedom base-case model with RedPoly or PolyWire properties.

within these known limitations, the two-degree-of-freedom model shows promise as a pre-
liminary tool and is appealing due to its simplicity and computational efficiency. For a
thorough analysis of a streamlined cable system, any two-degree-of-freedom model results
would need to be verified using the discrete model. Therefore, in the interest of removing
repetition by presenting results from both the two-degree-of-freedom and discrete model,
for the remainder of this chapter, only the discrete model is used.

8.3 Position of Tension Centre

The influence of the location of the centre of tension, as the magnitude of the tension in-
creases is explored. The analysis is completed with the same 35 streamlined-beam-element
model used in the previous section.
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Fig. 8.4 Predicted stability from the discrete model of the base-case at varying tension.
Contours show the relation for values of the centre of tension p ranging from 1 (location at
leading edge) to -1 (location at trailing edge) in increments of 0.1.

Figures 8.4 and 8.5 shows the variation of the flutter and divergence speed with tension.
The thick line in each plot shows the result for the baseline RedPoly or PolyWire case and
are equivalent to results shown in Figure 8.3 in the previous section. The contours give the
relationship for various locations of the centre of tension over a range from p=-1 to p=1 in
increments of 0.1. This corresponds to moving the centre of tension from the leading edge
to the trailing edge. The cool colours indicate a location near the leading edge and warm
colours a location near the trailing edge.

Sub-figures 8.4(a) and 8.4(b) show the flutter and divergence relations for the RedPoly
sample; sub-figures 8.5(a) and 8.5(b) show the equivalent relations for the PolyWire sample.
The RedPoly case has a centre of mass of r=-0.44. With increasing tension, the RedPoly
case becomes more stable to flutter when p>-0.4 and less stable to flutter when p<-0.5. This
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Fig. 8.5 Predicted stability from the discrete model of the base-case at varying tension.
Contours show the relation for values of the centre of tension p ranging from 1 (location at
leading edge) to -1 (location at trailing edge) in increments of 0.1.

indicates that for values of p>r, there is an increase in flutter stability and for values of
p<r, there is a decrease in flutter stability. This result is attributed to the fact that as the
tension increases, the stiffness effects become dominated by those due to tension, instead of
those related to bending and shear. Drawing an analogy to classic flutter, the same general
stability condition of having the centre of mass forward of the centre associated with the
stiffness (classically the shear centre) appears to hold, i.e. as tension increases the system
is more stable with a centre of mass forward of the centre of tension. For the divergence
results, the same analogy to the classic flutter model holds. For p<q, where q = −0.5 is
the aerodynamic centre, the divergence speed increases and for p>q the divergence speed
decreases. Note that for the RedPoly case, increasing the flutter and divergence stability
have opposing requirements. For a change in the position of the centre of tension only,
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greater flutter stability requires the centre of tension to move towards the trailing edge and
for greater divergence stability requires it to move towards the leading edge.

Figures 8.5(a) and 8.5(b) show the results for the PolyWire sample, which support the
general conclusions from the RedPoly case. For the flutter case, moving the centre of tension
towards the trailing edge causes an increase in stability. When the centre tension is aft of
the centre of mass, located at r=-0.51, no flutter stability can be found. For the divergence
case, values of p<q are stable.

This analysis has shown how the respective locations of the cross-sectional centres play
an important role in the streamlined cable’s stability behaviour. The stability of the stream-
lined cable appears to follow the same general criteria as classic flutter, except, for a stream-
lined cable a trade-off exists between the influence of the stiffness acting at the shear and
tension centres. In the preceding analysis, the effect of movement of the centre of mass and
centre of tension have been analysed. To get a broader understanding on the influence of the
location of the four centres, a more high level analysis is undertaken.

8.4 Position of Structural Centres

As seen in the previous analysis, the location of centres relative to one another plays an im-
portant role on the overall stability of the streamlined cable. To get a general understanding
of which configurations of the positions of the centres offers greater stability, a preliminary
analysis is completed.

In the current model, there are four centres which may or may not be coincident. As-
suming no centres coincide, there are 24 permutations of the order. Based on the geometry
of a streamlined body, the 3 structural centres are unlikely to be located between the semi-
chord point and the trailing edge. The position of the aerodynamic centre will not vary
significantly from the quarter chord point. Therefore, as an initial analysis of the affect of
the location of the centres, the 24 cases were run assuming that the aerodynamic centre is
always located at quarter chord and that the remaining 3 centres are evenly spaced around
it. Here the spacing is taken as 1/8th of the semi-chord b and it is assumed that no two cen-
tres are ever more than 1/8b apart. Given this assumption, Figure 8.6 depicts the possible
locations of the centres along the cross-section.

For each permutation, the base-case discrete model with the PolyWire properties was
used to determine the flutter and divergence speed over a range of tension. Figure 8.7 shows
the permutation tree with the flutter and divergence speed, with increasing tension, indicated
by the colours below. As shown in the colour bar, cool colours denote lower wind speed
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Fig. 8.6 Possible location of the centres, giving 24 permutations of the order.

(below approximately 10 m/s) and warm colours denote high wind speeds up to 30 m/s.
Grey results indicates that no flutter or divergence speed was found within the specified
wind speed range of 0 to 30 m/s. Consequently, more stable permutations are indicated by
warm and/or grey colours whereas unstable configurations are indicated by cool colours.
The flutter speed corresponds to the left column and the divergence speed the right column
beneath a given permutation. The numbers along the bottom of the figure given a reference
number for each of the 24 configurations.

As may be expected from the previous analysis, and indeed general flutter theory, the
most stable configurations to flutter and divergence are when the centre of mass is forward
of the other three centres and the shear and tension centre are forward of the aerodynamic
centre. This behaviour is observed in the cases 13 through to 18, which all have the centre of
mass forward of the remaining three centres. The left-hand columns give the flutter stability,
which is similar behaviour for cases 13 to 17. For these cases the flutter stability increases
with an increase in the tension. In terms of divergence, given by the right-hand columns, the
only two cases which exhibit stability (since no values for divergence are found within the
studied range) are cases 13 and 15. Both of these cases have the shear and tension centre
forward of the aerodynamic centre, a result consistent with the classic flutter theory.

Of cases 13 to 18, the one inconsistent with the classic flutter theory is case 18. Case
18 has a centre of mass forward of the shear centre, but the model predicts a decrease in
the flutter frequency with an increase in tension. It is interesting to compare case 18 to
case 17, the only difference between the two being that the shear and tension centre have
switched positions. Both models predict the same divergence behaviour but opposing flutter
behaviour. The reason for this interesting difference is not immediately clear and it could
be investigated in more detail. However, this case is just one example of the many inter-
esting aspects of the plot which could be analysed. In addition to the 23 other permutation
cases in this plot alone, the figure could be re-run for cases with, for example, different
spacing between the centres, stiffness and inertial properties, boundary conditions or cable
length. The goal of the present analysis is not to analyse each individual case, but to gain an
overall understanding of how the positions of the cross-sectional centres may affect stabil-



148 Model Results

ity and demonstrate how the streamlined cable model could be useful tool in the analysis,
development and design of streamlined cables.

Fig. 8.7 Flutter and divergence speed, with increasing tension for the 24 location permuta-
tions. For each permutation case the left column corresponds to the flutter speed and the
right column the divergence speed.

8.5 Sensitivity Analysis

Using the discrete model, the sensitivity of the flutter stability to changes in the boundary
conditions, length, stiffness and fluid density are briefly examined. The examples given
here are not for a specific application. However, throughout the analysis, the relevance of
each parametric change to potential applications is discussed. Though the analysis does not
present an exhaustive parametric study, it provides some insight on the stability of stream-
lined cables and demonstrates the model’s potential as a design and analysis tool. The
analysis thus far has taken compared the behaviour of the base-case with the RedPoly and
PolyWire sample properties. Of the two cases, the PolyWire sample is the more stable of
the two due the fact that the aerodynamic centre is aft of both the shear and tension centre
and the centre of mass is forward of the shear centre. As such, for the following sections the
base-line parameters are always taken as those from the PolyWire sample.

Depending on the streamlined cable application, various boundary conditions may be
implemented. For example, the Goland wing model presented in Chapter 7 assumed fixed-
free boundaries to represent an aircraft wing. A tethered balloon or kite could be considered
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as pinned at the bottom with an applied external drag and lift force at the top. The base-case
assumes pinned-pinned, torsionally-fixed boundaries, similar to the observed behaviour of
the horizontal streamlined cable experiments. In the horizontal experiment set-up, swivels
were included at the boundaries in an attempt to create torsionally free boundaries. As a
simple sensitivity case, the affect of using torsionally-free versus torsionally-fixed bound-
aries is explored. An analogy for this case could be investigating the influence of friction in
the swivels (i.e. a high friction swivel is comparable to being fixed).

Figure 8.8 shows how the flutter velocity varies with tension for both boundary condi-
tions. It can be seen that, for this particular configuration, the addition of torsional freedom
increases the stability at low tension (around 100 N). For tensions greater than 200 N, the
stability for both cases are approximately equal. These results indicate that the friction in
the swivels would only affect the overall the flutter stability at relatively low tensions.
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Fig. 8.8 Sensitivity of flutter speed of PolyWire sample to variations in the boundary condi-
tions.

Using the pinned-pinned, torsionally-free case as a reference, the sensitivity of the
streamlined cable model to variations in length, stiffness and fluid density is explored.
Changes in length could be related to a number of potential streamlined cable applications.
For example, relative to the 50 m base-case, short lengths of streamlined cable could be
used to reduce drag on the bridle line of kites or the ropes of racing yachts. Longer lengths
of streamlined cable could be used as the tether of a high-altitude balloon or the line of a
kite-power generator. Figure 8.9 shows how the flutter speed as a function of tension is
affected by changes in the base-case streamlined cable length. The overall results show that
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Fig. 8.9 Sensitivity of flutter speed of PolyWire sample to variations in length.

shorter lengths are more stable and longer lengths are less stable to flutter.

The sensitivity of the model to changes in stiffness is also explored. The streamlined
cable model has axial, bending (in two directions) and torsional stiffness denoted by EA,
EIy, EIz and GJ respectively. Figure 8.10 shows how the flutter boundary for the base-case
varies with changes in the four stiffness properties. It is evident from the figure that the
torsional stiffness plays the most significant role in terms of the flutter stability. In fact,
the variations in the axial and bending stiffness do not visibly alter the overall stability. As
a general conclusion, a lower torsional stiffness appears to give a more stable streamlined
cable. An analogy could be drawn to a weather-vaning system, which can be thought of as
having a torsional stiffness of zero.

A final case, explores how the fluid density affects stability. The potential applications
of this scenario relate to both increases and decreases in fluid density. Decreases in fluid
density are relevant to streamlined cables operating at very high altitudes, for example,
as a high-altitude balloon tether. The natural extension of the model to applications with
increased fluid density are for a streamlined cable operating in water, for example as a towed
cable array or off-shore riser. Figure 8.11 shows how the flutter speed boundary changes
with variations in fluid density. The relationship does not appear to be straightforward. The
model predicts an increase in stability for both increasing and decreasing fluid density. The
relationship is complex due to the interaction of the unsteady fluid effects from the apparent
fluid velocity, apparent mass and the induced-flow from shed vortices. The densities of 0.1ρ ,
0.5ρ and ρ correspond to air densities at an altitude of 18 km, 6.5 km and 0 km respectively.
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Fig. 8.10 Sensitivity of the flutter velocity to changes of the stiffness.

The density of 5ρ is not directly related to any of the applications discussed in the current
work, but shows that the flutter speed tends to increase as the density increases. For the
given baseline case explored, densities equivalent to those of water (i.e. 1000ρ) gave no
flutter speed within the studied fluid speed and tension range.

The sensitivity analysis presented here takes an initial look at how changes in certain
parameters, which are related to specific streamlined cable applications, affect the overall
stability. For the a streamlined cable with the PolyWire case properties and with pinned-
torsionally free boundaries, the overall findings were that shorter and less torsionally rigid
configurations are more stable. The conclusions drawn are of a very general nature and if
anything, what the analysis perhaps demonstrates most clearly, is how the predicted sta-
bility is specific to a given situation. This emphasises the importance of having models to
accurately predict the stability behaviour for a given set of input parameters.
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Fig. 8.11 Sensitivity of flutter speed of PolyWire sample to variations in fluid density.

8.6 Fluid Velocity Profile

Any environmental application of a streamlined cable, be it outside or underwater, will be
subject to spatially and temporally varying fluid velocity profiles. Here, the effect of spa-
tially varying fluid velocity profiles is explored using the discrete streamlined cable model.
A simple fluid loading profile is considered: a central region xℓ of the streamlined cable is
subject to a fluid speed U and the rest of the cable to a fluid speed Uo. The wind profile
loading is depicted in Figure 8.12. The modelled streamlined cable has the PolyWire prop-
erties with pinned-pinned and torsionally-free boundaries. The velocity Uo is considered
as constant and relatively small, taken here as 0.1 m/s, compared to the local velocity U .
The flutter stability boundary is determined by calculating the eigenvalues for an increasing
value of U , and checking the result for positive growth rate. The flutter velocity is taken as
the minimum velocity of U to give a positive growth rate. This flutter velocity is calculated
for a range of wind loading ratios (xℓ/ℓc), tensions and streamlined cable lengths.

Fig. 8.12 Simple localised fluid excitation. Fluid flows with velocity U over the central
region xℓ.
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Figure 8.13 shows how the flutter velocity and frequency varies with changes in the
extent of the wind zone xℓ/ℓc for constant tensions of 50 N, 100 N, 250 N and 500 N. Values
of xℓ/ℓc = 1 indicate a uniform wind profile. This case is equivalent to the base-case and it
can be seen that the values match those given in Figure 8.8. As the extent of the wind zone
xℓ/ℓc approaches zero, the wind loading becomes equivalent to a point load and the flutter
velocity tends to infinity. The figure shows how even this simple wind loading case can
exhibit interesting behaviour. For this particular case, the flutter velocity in Figure 8.13(a)
appears to asymptote when the extent of the wind zone is approximately 0.25. By examining
the corresponding flutter frequency, shown in Figure 8.13(b), a step change in the frequency
is seen at this xℓ/ℓc = 0.25 point.
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Fig. 8.13 Predicted stability of the base-case for a localised wind of changing length scale
under constant tension P. The local wind acts at the center of the streamlined cable.
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Looking a little more closely at how the stability varies with changes in the wind velocity
profile, the deflected shape for the 100 N tensioned case at five loading profiles is examined.
Figure 8.14 shows the same results as Figure 8.13, but only for the P=100 N case and shows
the location of the five chosen cases A, B, C, D and E corresponding to loading fractions
of approximately 0.01, 0.2, 0.3, 0.5 and 1 respectively. For all the investigated cases, no
significant displacement was exhibited in the axial or fluid flow directions. The deflected
shape is dominated by the y and θ displacements, which correspond to the plunge and
pitch motion of the streamlined cross-section. Figures 8.15 to 8.19 show the normalised
deflected shape in y and θ over the course of half a cycle of period T . The deflections are
normalised by Qmax, which is the eigenvector element with the largest absolute value. This
normalisation converts the selected element Qmax to have unity for its real part and zero for
its imaginary part.
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Fig. 8.14 Predicted stability of the base-case for a localised wind of changing length scale
under constant tension P. The local wind acts at the center of the streamlined cable.
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Figure 8.15 shows the deflected shape for Case A, for a wind zone of 0.01. The wind
zone acts over a relatively small length scale and is comparable to applying a point load at
the centre of the streamlined cable. This can be seen in the deflected shape, as there is a
slightly pointed shape where the load is applied at x/ℓc = 0.5. Case B, shown in Figure 8.16,
is subject to a wind zone extent of 0.20, and has a very similar deflected shape to Case A.
Indeed, the deflected shape for wind profiles of xℓ/ℓc < 0.25 (occuring before the jump in
frequency) are all of the same general form. Interestingly, the deflection bowl (length scale
between the two nodes on either side of the loaded region) for the cases between xℓ/ℓc =

0.01 to 0.25 is approximately 25% of the overall length. It appears that once the length scale
of the wind loading matches the length scale of the deflection bowl, the flutter instability
changes to a different mode. As the length scale of the wind loading approaches this scale,
the wind velocity to onset flutter tends to infinity. For cases with an extent of the wind zone
greater than 0.25, the flutter frequency and deflected shape changes. Take for example, cases
C and D with xℓ/ℓc = 0.3 and 0.5 with the deflected shapes shown in Figures 8.17 and 8.18
respectively. For these two cases the flutter instability occurs at a lower frequency and the
deflected shape is asymmetric about the loading point. This behaviour can be compared to
the mid-point being fixed and the wind exciting a flutter instability on a cable which is half
the length. Beyond a wind zone of 0.25, the flutter frequency and deflected shape remains
approximately constant until the cable is almost uniformly loaded and xℓ/ℓc = 0.96. For a
wind zone greater than 0.96, as seen in Figure 8.13(b), there is another jump in the flutter
frequency. The instability for Case E occurs at a frequency between the previous two cases
and the deflected shape is shown in Figure 8.19. In summary, the analysis shows how the
wind loading profile can significantly alter the flutter instability behaviour.

Another aspect which is explored, is how the overall length affects the flutter instability
for this simple wind profile case. Figure 8.20 shows the flutter velocity and frequency,
similar to Figure 8.13, but for a constant tension of 250 N and changing overall cable length
from 25 m to 1,000 m. Note that the ℓc=50 m case here is equivalent to the P=250 N case
in the previous figures. Interestingly, the relation to the extent of the wind zone does not
seem to change with length, it keeps the same overall form but changes in magnitude. For
shorter cable lengths, the streamlined cable is more stable and the flutter velocity increases;
at greater cable lengths the streamlined cable is unstable in even slight wind. Figure 8.21
shows the deflected shape for streamlined cable lengths of 25 m, 50 m and 100 m when
xℓ/ℓc = 0.3 (case A shown in Figure 8.20). At first glance the figure appears to plot the
deflected shape for only one case. However, on closer inspection it can be seen that the
deflected shapes are almost identical for the three streamlined cable lengths and all overlap.
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Fig. 8.15 Displacement in y and θ over half a cycle for Case A (depicted in Figure 8.14a).
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Fig. 8.16 Displacement in y and θ over half a cycle for Case B (depicted in Figure 8.14a).
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Fig. 8.17 Displacement in y and θ over half a cycle for Case C (depicted in Figure 8.14a).
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Fig. 8.18 Displacement in y and θ over half a cycle for Case D (depicted in Figure 8.14a).
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Fig. 8.19 Displacement in y and θ over half a cycle for Case E (depicted in Figure 8.14a).
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Fig. 8.20 Predicted stability of the base-case of length L under a tension of 250 N given a
localised wind. The local wind acts at the center of the streamlined cable.
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Fig. 8.21 Displacement in y and θ over half a cycle for 3 cable lengths for loading case Case
A (depicted in Figure 8.20a).

This section has demonstrated the ability of the discrete streamlined cable model to
investigate the effect of varying wind profile. An example of a streamlined cable subject
to a centrally localised wind was given. The effects of varying tension and length were
explored. Given changes in length and tension, the magnitude of the critical flutter speed
and frequency changed but the overall relation to the extent of the wind zone kept the same
general form. This relatively simple case displayed some interesting interactions between
the mode of instability and the profile of the wind loading. For example, the mode of
instability experienced a sudden change in behaviour when the extent of the wind zone
became greater than the length of the deflection bowl. The example presented here was
for a streamlined cable of particular properties and boundary conditions, chosen based on
known values from the manufacturing and experimental work discussed in Chapters 6 and
7. The example serves to demonstrate the complex relationship between the details of the
wind input and the system’s stability. As the example has shown, the discrete model can
be used as a tool to investigate how a specific wind profile affects the stability for a given
streamlined cable configuration.
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8.7 Varying Tension

Many of the mentioned applications such as tethered balloons, kite-power generators, towed
cables and off-shore risers require a vertical configuration. The tension along the length of
such a vertical set-up varies due to gravity. The effect of varying tension can be investi-
gated using the discrete streamlined-cable model. A simple case is given to demonstrate the
model’s capabilities and provide an initial investigation of how varying tension may affect
a streamlined cable’s dynamic behaviour.

Figure 8.22 depicts the straight vertical configuration subject to a top tension Ptop. The
system roughly parallels that of a tethered balloon or kite, where the tension Ptop would be
the tension provided from the lift of the balloon or kite. The streamlined cable is divided into
N elements each subject to a tension PN dependent on the mass of the streamlined cable m,
the length of an element ℓ and gravity g. A constant uniform fluid velocity U is assumed to
act over the entire length of the streamlined cable. As in the previous section, the boundaries
of the cable are considered as pinned and torsionally free.

The flutter velocity is calculated for a range of top tensions for streamlined cables 50
m, 100 m and 500 m in length. The streamlined cable is assumed to have the PolyWire
cross-sectional properties. Figure 8.23 shows how the flutter speed varies with increased
top tension. The results are shown as a function of the top tension normalised with respect
to the weight of the streamlined cable mℓcg. A normalised tension of Ptop/mℓcg= 1 provides
only enough tension to support the weight of the streamlined cable and means the tension
at the bottom of the cable is zero. The figure also compares the variable tension case to
corresponding constant tension case. The constant tension case assumes gravity is zero so
that the tension over the length of the cable is equal to the tension applied at the top. The
equivalent tension case for each length is shown with a dashed line.

The results show that as the magnitude of Ptop increases, the constant and variable ten-
sion cases converge. The two cases converge because for relatively high applied tensions,
the change in tension due to gravity becomes negligible. At lower normalised tensions, the
applied tension and weight of the cable are of similar magnitude. In this particular case, for
the same top tension, the effect of the decrease in tension due to gravity causes an increase in
the critical flutter speed. Comparing the deflected shape at the flutter point for the constant
and variable tension cases shows how the inclusion of variable tension causes a dramatic
change to the mode of instability.

Figures 8.24 and 8.25 show the unstable motion of the constant tension and variable
tension cases at a normalised tension of 1.75 over half a cycle of period T (denoted by
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Fig. 8.22 Varying tension with gravity.
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Normalised top tension Ptop/mLg where g = 9.81 m/s2

F
lu
tt
er

sp
ee
d
(m

/s
)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

Ptop <mgℓ

A

ℓc = 50 m
ℓc = 100 m
ℓc = 500 m
Varying tension, g = 9.81 m/s2

Constant tension, g = 0 m/s2

Fig. 8.23 Flutter speed with varying tension along the streamlined cable.

A in Figure 8.23). The constant tension case shows a mode shape which is asymmetric
about the mid-point of the cable. Conversely, the variable tension case is not symmetric and
the instability occurs at a higher frequency mode. The wavelength of the unstable mode
is greater in the upper portion of the cable where the tension is higher. For example, at
t = 1/4T of the variable tension case (Figure 8.25), the wavelength of the y displacement
in the upper and lower portion of the streamlined cable are approximately 0.4ℓc and 0.6ℓc

respectively.

The example given here demonstrates the discrete model’s ability to handle variable
tension and highlights how the variation in tension may affect the overall stability. In cases
where the applied tension is of the same order as the weight, the unstable mode loses its
symmetry. When the applied external tension is high relative to the weight of the cable, the
solution approaches the constant tension case. The case presented here is for a specific set
of input conditions and illustrates the scope of the model as a tool to investigate the dynamic
behaviour of variable tension streamlined cables.

8.8 Conclusions

This chapter demonstrates how the developed discrete model can be used to analyse the sta-
bility of a streamlined cable. The cross-sectional properties obtained through measurement
and modelling of the manufactured cable were used as a baseline from which to investi-
gate the behaviour of a streamlined cable. The model’s capabilities to explore a number of
problems were demonstrated by applying it to study how variations in the cross-sectional
properties, wind profile and tension distribution influence the overall stability of the system.
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Fig. 8.24 Deflected shape of the 100 m length assuming constant tension at Case A (depicted
in Figure 8.23).
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Although the results given are for a streamlined cable case with no specific application
in mind, the work underlines how the stability of a streamlined cable is sensitive to a number
of parameters. The presented analysis emphasised the important role the relative positions
of the structural centres play in determining stability. Results similar to those from classic
aeroelastic theory were found, except they incorporated the additional influence of the centre
of tension. The centre of tension appears to influence stability in the same way as the
shear centre. This seems a logical finding as both centres are related to the stiffness of
the structure. The affects of variable flow velocity and tension profiles were investigated.
The results demonstrated that these inputs play an important role in determining the overall
stability of the cable, as they alter the mode of instability.

The developed discrete model is a simple model which can explore the dynamics and
stability of a streamlined cable. It includes a number of effects such as unsteady fluid
flow, off-set structural and loading centres and geometric stiffening. The results from the
examples given illustrate how the stability of a streamlined cable is highly case dependent.
This underlines the importance of having validated and accurate models to help predict the
dynamics and stability of streamlined cables. The current model is general in nature and
provides a foundation for future work on streamlined cables.



Chapter 9

Conclusions and Recommendations for
Further Work

This chapter summarises the work completed and reviews the objectives of the research.
The conclusions drawn and limitations discussed naturally point to the areas of interest for
future research, which are also presented and discussed.

9.1 Conclusions

The overall objective of the undertaken research was to help build a better understanding of
the dynamics and stability of streamlined cables through theoretical modelling and experi-
mental testing. As presented in the literature review, a stable streamlined cable is desirable
for applications such as high-altitude tethered balloons and kite-power generators because
of its potential to reduce drag and VIV. Though the streamlining offers benefits in terms of
reduced drag and VIV suppression, it also introduces the potential for instabilities such as
divergence and flutter. The general aim of the current work was to contribute to the under-
standing of the dynamics and stability of streamlined cables. To summarise how this aim
was achieved, the contributions of the presented research are listed below. After which, a
more thorough discussion of each contribution is given.

1. A review of existing and potential applications of streamlined cables – including
faired towed cable arrays, faired risers, high-altitude tethered balloons and kite power
generators – established the current need for the development of streamlined cables
and appropriate models to characterise their dynamic behaviour.
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2. Modelling tools were developed and verified against benchmark cases and compared
to experimental results. The models provide a tool to assess and predict the dynamic
behaviour and stability characteristics of a streamlined cable.

3. A streamlined cable manufacturing process was developed in conjunction with the
SPICE project, ESE Ltd. and DT Ltd. Simple tools to analyse the properties of
the manufactured cable were created and where possible compared to experimental
measurements or results from existing cross-sectional analysis tools.

4. A number of experimental tests using the manufactured streamlined cable were con-
ducted, including tests in the wind tunnel, with kites, with balloons and a horizontal
set-up equipped with a number of sensors to monitor the behaviour. The streamlined
cables tested exhibited both stable and unstable behaviour.

5. Model results for a baseline streamlined cable were given to demonstrate the capabil-
ities of the model and gave preliminary results on how the position of the structural
centres, a non-uniform fluid loading profile and variations in tension can affect the
stability and dynamics of a streamlined cable.

Prior to presenting any new work, a review of the existing body of work demonstrated
the wide range of relevant research areas spanning structural dynamics of beams and cables,
aeroelasticity and composite structures. The review focused first on the existing applications
of streamlined cables, which are limited to off-shore towed cable arrays and risers. Recent
research in high-altitude tethered balloons and kite power generators has further fuelled
interest in the use of streamlined cables. To provide appropriate streamlined cable models,
the current research drew from theory developed for fixed wing aircraft, helicopters, wind
turbines, composite structures and cable dynamics.

Three models were developed over the course of the presented work, each laying a bit
of groundwork for the next. The first model was an extension of the classic two-degree-
of-freedom flutter model to include the effect of tension acting offset from the conven-
tional bending and torsional stiffness terms. The relatively simple structural model pre-
sented a convenient opportunity to include more comprehensive aerodynamic theory. In
the two-degree-of-freedom model, a finite-state induced-flow theory was used to model
fully unsteady-flow around the aerofoil. The second model presented was a continuous
streamlined cable model with the scope to include wave-propagation effects in the spanwise
direction of the streamlined cable. Here, wave-propagation techniques including spatial,
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temporal and power flow analysis were introduced as a means to study the stability char-
acteristics of the streamlined cable. The final most comprehensive model developed, was
a discrete, finite-element model of the cable for small deformations. This model has the
scope to deal with complex cross-sectional properties including offset structural centres and
cross-coupling, stress-stiffening effects from the applied external tension and non-linear ef-
fects such as varying fluid loading profiles and variations in tension along the cable length.

A more practical approach to streamlined cable development was taken alongside the
theoretical approach. A manufacturing process for streamlined cable was developed through
the SPICE project by ESE Ltd. and DT Ltd. The manufacturing process was the first of
its kind to produce streamlined cable of this type, which was of composite construction
with the internal tension element being streamlined using PU foam and a polyethylene skin.
The manufacturing process allowed for the centres of mass to be altered. Two streamlined
cables with similar cross-sectional properties, but with different positions of the centre of
mass, were manufactured and tested. The experimental tests demonstrated that moving the
centre of mass towards the leading edge gave a more stable overall construction, which was
generally consistent with the findings from the developed streamlined cable models.

In the final chapter, the capabilities of the streamlined cable model were demonstrated
and some of the dynamic behaviour of the streamlined cable were explored. The initial
findings found that the most stable cross-sectional configurations for flutter and divergence
for a streamlined cable under tension had centres of mass forward of the tension and shear
centre, and tension and shear centres forward of the aerodynamic centre. This finding was
consistent with classic flutter theory generally used for fixed wing aircraft. The effect of
varying fluid loading profile and varying tension were shown to have an important influence
on the stability boundary. Depending on the fluid loading profile, the mode shape and
frequency of the unstable mode can vary significantly. Similarly, for a system under varying
tension, the change in the mode shape affects the frequency and magnitude of the critical
flutter velocity.

The work presented provided a base-line model from which further work on streamlined
cables can be completed. Recommendations for further work to continue the streamlined
cable development process, both theoretically and empirically, are provided in the next sec-
tion.
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9.2 Recommendations for Further Work

The recommendations for further work can roughly be divided into the areas related to the
theoretical modelling and areas related to the manufacturing and testing. Continuing work
in both areas is important as different sets of problems are addressed, all of which contribute
to the development and implementation of streamlined cables.

The models developed in the current work provide a foundation for future research. The
discrete, finite element streamlined cable model is for small deformations from an initially
straight configuration and has used eigenvalue analysis to assess the stability characteris-
tics. Recommendations for future work include extending the model to include initial and
large deformations. The discrete model presented has been developed in a way to facilitate
a transition to time domain and control theory analysis. Specifically, the chosen unsteady
aerodynamic model (finite-state flow induced model) is written in terms of the time domain.
This could be useful in the analysis of certain streamlined cable applications. For example,
control strategies using winching at the bottom have been suggested for high-altitude teth-
ered balloons applications and form the basis of kite-power generators. As the presented
model is general in nature, further work could focus on using the model to analyse more
specific applications such as a high-altitude tethered balloon or kite-power generator.

In extending the model to large deformations, future work should include the effect of
drag. In the current work, the focus was on building a simple, preliminary model to assess
the fundamental stability and dynamics of a streamlined cable. As the model developed
was for small deformation, the effect of drag was neglected since the streamlined cable is
assumed to be initially straight and aligned with the wind. Given a small displacement from
the aligned configuration, the force of lift generated is significantly larger than that of drag
for small angles of attack, thus drag was neglected. For large deformations, this may not be
the case. Thus, it is recommended that further work includes the effect of drag and quantifies
its effect on the overall stability.

In terms of the manufacturing process and experimental testing, the current work has
provided some of the necessary groundwork. There is scope to improve the streamlined
manufacturing process. Nevertheless, the streamlined cable machine is functioning and can
produce streamlined cable for future testing. Testing vertical configurations of streamlined
cable is desirable as it would provide a better representation of potential streamlined cable
applications. These future tests could include more experiments using balloons or kites or,
similar to the horizontal test, the streamlined cable could be supported more permanently
using a crane or by hanging the streamlined cable off a structure such as a bridge.
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Overall, this works has shed light on a complicated and multi-disciplinary problem.
The benefits of a streamlined cable are highly dependent on the context within which it is
used. For cases where potential reduced drag and VIV benefits have been identified, the
current work provides tools to help assess and characterise the dynamics and stability of the
streamlined cable so these benefits may be exploited.
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Appendix A

Prototype Streamlined Section
Manufacturing

In the initial stages of manufacturing, short streamlined sections were prototyped at the
Cambridge University Engineering Department (CUED). The prototyped sections were man-
ufactured by injecting foam in a rapid prototyped NACA 0020 mould. To alter the position
of the centre of mass, a brass rod was included within the section or part of the foam ma-
terial was removed. Figures A.1 and A.2 show the mould disassembled and two die halves
from an end-on view.

Fig. A.1 Disassembled mould showing the frame and one half of the die.
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Fig. A.2 End-on view of the two die pieces which form the NACA 0020 mould cavity.

To manufacture a section, the mould was lined with thin plastic sheeting, the internal
elements (cable, wire, brass rods, etc.) were secured to one of the end plates and the mould
was assembled except for the opposite end-plate. Then, a two-part foam, from Huntmans
Polyurethane [69], was mixed and injected into the mould. The final end-plate was then
quickly fastened, sealing the expanding foam inside the mould. Manufacturing these short
sections highlighted two issues: sufficiently mixing the foam and quickly injecting it into
the mould. The mixing and injecting stage is very time sensitive since the foam begins to
expand as soon as the two precursors are combined. Two mixing and injection methods
were tested.

The first was using a specially designed static mixing and injection system from Nord-
send EFD [97]. The system consists of an injection gun and a specially designed mixing
nozzle. The injection gun has two barrels which are filled with the two foam precursors.
When injected, the two foam precursors are forced through the nozzle, which has an inter-
nal ladder-like system to mix the two parts as they travel through it. Figure A.3 shows the
injection gun and three types of static mixing nozzle. The design was appealing due to its
relative simplicity (no moving parts) and the fact that the nozzle could easily be incorpo-
rated into a larger scale manufacturing process. Unfortunately, through testing, none of the
nozzles sufficiently mixed the two parts to produce a good quality foam.

The second mixing method used a electrically driven mixer to combine the two foam
precursors inside a large syringe-like injector manufactured at CUED. Figure A.4 shows the
mixing paddle and the foam injector. This method produced much higher quality foam than
the commercial nozzles.

Having produced foam of sufficient quality, another challenge was ensuring that the
correct amount of foam was injected into the mould. Too little foam and the desired shape
would not be achieve; too much foam and the density would be greater than desired. Figure
A.5 shows some of the short streamlined samples produced at CUED using the second
mixing method.
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Fig. A.3 Nordson EFD two part mixing system.

(a) Assemble foam injector. (b) Disassemble injector and mixing paddle.

Fig. A.4 Mixing paddle and the injector which consists of a plunger, nozzle and barrel.
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(a) 8 mm brass rod at leading edge. (b) 8 mm brass rod at leading edge. 18 mm hole
and trailing edge foam removed.

Fig. A.5 NACA 0020 streamlined samples with 100 mm chord.

Prototyping these sections highlighted some of the design challenges for the full-scale
continuous streamlined cable production. Specifically, identifying the required level of mix-
ing to produce high quality foam, the sensitivity of the process to timing, the challenge of
incorporating additional internal elements to change the location of the centre of mass and,
finally, the trade-off between producing low density foam and achieving a good fill of the
mould.



Appendix B

Measurement of Streamlined Cable
Properties

The current section describes and reports the experimentally measured cross-sectional prop-
erties of the manufactured streamlined cable. The measured properties include: the centre of
mass, the shear centre, the bending stiffness and the torsional stiffness. For each measured
property the experimental methodology is described and the measured results are presented.

Centre of Mass

To measure the centre of mass, a small test section of the streamlined cable was used. Pins
were placed on either side of the section at a measured location along the chord. Figure
B.1 shows how the section is supported by the pins and with the trailing edge placed on the
mass balance. The position of the centre of mass can be determined knowing the total mass
of the section, the location of the pins and the weight indicated on the balance. Using the
same cross-sectional conventions described in Chapters 3 to 5 gives the equation

m(r−F) = N(1−F) (B.1)

where m is the total mass of the sample, r is the dimensionless position of the centre of
mass, N is the mass measured on the balance and F is the dimensionless position of the pin.
Equation (B.1) gives the unknown distance to the centre of mass in terms of the measured
values. To improve the accuracy of the results, measurements were taken for a position of
the pin ranging along the chord. By plotting the moment relationship as (1−F)/m+F/N

versus 1/N the slope of the best fit line is equal to the position of the centre of mass. Figure
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B.2 gives an example plot for the blue polyester sample, with the line of best fit shown. Table
B.1 summarises the measured results for the four samples. The coefficient of determination
R2 for all the measurements was greater than 0.98, indicating a high quality of the best fit
line.

Fig. B.1 Test set-up to measure the centre of mass of manufactured streamlined cable sec-
tion.
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Fig. B.2 Measured results for the PolyWire sample. The slope of the best fit line gives the
dimensionless position of the centre of mass r.
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Table B.1 Dimensionless position of the centre of mass r from best fit line of measured
results and the corresponding coefficient of determination R2.

Sample Centre of mass r R2

Blue polyester -0.33 1.0
Wound steel -0.55 0.98
Red polyester (RedPoly) -0.44 1.0
Polyester and steel (PolyWire) -0.52 1.0

Shear Centre

The shear centre is defined as the location where torsion and shear decouple. If a transverse
force is applied at the shear centre, the beam will deform in pure translation; if the force is
applied offset from the shear centre, the beam will both translate and twist. To determined
the location of the shear centre a piece of the streamlined cable was mounted in a simply-
supported configuration. A small mass was placed at varying positions along the chord and
the movement of the streamlined cable was recorded. To record the movement, a small piece
of mirror was fastened to the cable and a laser pointer was set-up vertically (a hanging string
was used to align the laser to vertical). The laser hits the piece of mirror and is reflected
onto a piece of graph paper. The general set-up is shown in Figure B.3.

Fig. B.3 Test set-up to determine the shear centre of a streamlined cable section.
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If the force from the mass causes pure translation, the point on the graph paper from the
reflected laser will not move. If the mass causes the beam to twist, the point from the laser
reflection will move. The results of the experiment are plotted below in Figure B.4 for the
blue polyester and wound steel samples. The intercept of the best fit line with the location
where the movement of the laser is zero (i.e. intercept with the x-axis of the graph) gives
the location of the shear centres. The shear centre for the blue polyester and wound steel
sample are measured at 11.1 mm and 10.3 mm from the leading edge respectively.

Position of mass from leading edge (mm)
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Blue polyester shear centre at 11.1 mm

Wound steel shear centre at 10.3 mm
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Fig. B.4 Movement of reflected laser given an applied load at varying position along the
cross-section. The shear centre corresponds to the location where the load causes no move-
ment of the reflected laser.

Bending Stiffness

The bending stiffness was measured by simply supporting a section of streamlined cable,
adding a mass to the centre of the section and measuring the deflection. The stiffness EIz

can be calculated from classic beam theory knowing the magnitude of the applied force and
the resulting deflection. The deflection at the centre point of the beam is

v
(
ℓ

2

)
=

Fℓ3

48EIz
(B.2)

where F is the applied load, ℓ is the length of the beam, v is the translational displacement
and EIz is the bending stiffness [36]. Plotting the deflection v versus Fℓ3

48 gives Figure B.5,
where the slope of the best fit line corresponds to EIz. Measurements were taken for the
blue polyester and wound steel samples and yielded a bending stiffness of 0.25 Nm2 and 0.3
Nm2 respectively. The coefficient of determination R2 for both linear fits is equal to 0.96.
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Fig. B.5 Measured displacement and loading to determine EIz.

Torsional Stiffness

The torsional stiffness was measured by hanging the streamlined cable section vertically
with the top end clamped and the bottom end free. A known moment was applied using a
mass and pulley system and the rotation of the section was recorded. A photograph of the
set-up is shown in Figure B.6.

Fig. B.6 Test set-up to determine the torsional stiffness of the streamlined cable.
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Knowing the relation T = GJ θ

ℓ from classic beam theory, the torsional stiffness GJ can
be calculated from the applied torque and the measured rotation. Figure B.7 plots the torque
relation so that the slope of the best fit line gives GJ. The measured results give a torsional
stiffness for the blue polyester and wound steel cable of 0.17 Nm2 and 0.14 Nm2 with R2

of 0.95 and 0.92 respectively. During the experiment, after the loading was removed it was
observed that the streamlined cable did not return to its original position. This hysteretic
behaviour is seen from the difference in the two measured rotation values at the initial torque
and final torque measurements. These measurements correspond to 0.05 Nm and 0.03 Nm
for the blue polyester and wound steel samples respectively.
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Fig. B.7 Measured torque and deflection to give torsional stiffness.
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