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Abstract

Wind-turbine gearboxes continue to exhibit a high rate of premature failure despite use

of the best in current design practices. Since gearbox is one of the most expensive compo-

nents of a wind turbine, higher-than-expected failure rates increase cost of energy. Most

of the problems in wind-turbine gearboxes appear to emanate from bearings. High-speed

bearings and planet bearings exhibit a high failure rate and are identified as two of the

most critical components. This dissertation addresses two key issues associated with these

bearings: skidding in high-speed bearings and fault detection in planet bearings.

First part of this dissertation focuses on skidding in high-speed bearings. High-speed

bearings operate under low loads and high speeds and therefore, are prone to skidding.

Skidding can lead to premature failure, long before classical fatigue failure. Yet the

mechanism of skidding in ball bearings is poorly understood, especially under combined

axial and radial loads and time-varying operating conditions. We develop a dynamic

model to analyse the skidding behaviour of angular-contact ball-bearings under axial and

radial loads and time-varying speeds. The model includes gyroscopic effect. The traction

forces between rolling elements and raceways are calculated using elastohydrodynamic

lubrication theory. The analysis suggests that the skidding mechanism changes with

operating condition, and any skidding criterion developed for thrust bearings cannot be

applied to bearings operating under combined loading conditions or time-varying speeds.

We derive simple analytical equations to predict the occurrence of skidding under axial

as well as combined loading conditions. These equations are computationally cheap and

provide an insight into the influence of different geometrical and operational parameters

on the skidding behaviour.

Second part of this dissertation focuses on understanding vibration signatures of planet

bearings containing localized faults. Various models are available in the literature to sim-

ulate vibration signatures of bearings with localized faults, but all of these models are

limited to fixed-axis bearings. Vibration signature of a planet bearing is different from

a fixed-axis bearing because of the complicated and time-varying vibration transmission

path caused by the epicyclic drivetrain. We develop an analytical model of a planetary

drivetrain to simulate this complicated transmission path. The model includes a flexible

ring-gear and a planet bearing with localized faults. The findings show that the vibration

signatures contain multiple modulation sidebands around fault frequency and its harmon-

ics. We identify the sources of these sidebands and provide a mathematical explanation

of their formation. The vibration signatures are also validated against experimental mea-

surements. An assumption commonly made in the literature on bearing-fault detection
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is that the impulse due to a bearing fault is proportional to the load acting on a rolling

element at the time of impact. In this dissertation, we show theoretically and experimen-

tally that these impulses depend on the rolling-element speed not load. There is some

load dependence but it is secondary compared to the speed dependence.

The findings from this dissertation will: improve the reliability of high-speed bear-

ings by estimating the amount of skidding at the design stage; improve the condition-

monitoring and fault-detection algorithms for planet bearings.
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Chapter 1

Introduction

Premature failures of wind-turbine gearboxes increase cost of energy. Most gearbox fail-

ures initiate in bearings. High-speed bearings and planetary bearings exhibit a high rate of

premature failure. This chapter introduces the motivation behind studying these bearing

failures, introduces the objectives of this research, and outlines the chapters comprising

this thesis.

1.1 Motivation and Research Objectives

Most modern wind turbines use a gearbox (figure 1.1) to convert low rotational speed of

the rotor (10-15 rpm) to high rotational speed of the generator (1200-1800 rpm). As the

power generation capacity of wind turbines is going up, failure rate of these gearboxes is

increasing. Wind turbines are designed to last 20 years, but average life of a wind-turbine

gearbox is only 5 years [128]. Since gearbox is one of the most expensive components

of a wind turbine, higher-than-expected failure rate increases cost of energy. Most of

the problems in wind turbine gearboxes appear to emanate from bearings. High-speed

bearings and planetary bearings (figure 1.1) exhibit a high rate of premature failure and

are identified as two of the most critical components [94]. This calls for development of

methods to understand failure modes and to detect faults in these components in order

to increase the average life of a wind-turbine gearbox.

This research has two main objectives:

1. to investigate skidding in high-speed bearings;

2. to understand the vibration signatures of planet-bearing faults.

High-speed bearings are susceptible to skidding failure as they operate under high

speeds and low loads. Many methods have been developed over the years to predict

1
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High-speed bearings

Figure 1.1: Layout of a typical wind turbine gearbox (modelled in RomaxWIND [3])

skidding in ball bearings, but most of these methods are quasi-static, computationally

expensive, and limited to thrust bearings. Since wind-turbine bearings operate under

combined axial and radial loads, a computationally-cheap method is required to predict

skidding under these conditions at the design stage. This research addresses the following

questions on bearing skidding:

• is skidding mechanism under combined-loading condition different from the skidding

mechanism under axial loading condition;

• is it possible to predict the occurrence of skidding under axial as well as combined

loading conditions using simple analytical methods;

• how do time-varying operating conditions influence skidding behaviour;

• is a skidding prevention criterion, developed for axially loaded bearings, applicable

for combined loading conditions or time-varying speeds?

Planet bearings, located inside the planetary drives of wind-turbine gearboxes, exhibit

a high failure rate despite the use of best in current design practices. Vibration based

methods are used to detect faults in wind-turbine gearboxes. Various methods are avail-

able to detect localized faults (spalls or pits) in fixed-axis bearings, but few methods are

available to detect faults in planet bearings. Detecting faults in planet bearings is difficult

because of their complicated vibration-transmission path. In this research, we find out

if it is possible to detect planet-bearing faults using vibration measurements. The work

addresses the following questions:
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• how does the presence of a localized planet-bearing fault change the vibration re-

sponse of a planetary drive;

• how do different planet-bearing faults (inner race, outer race and rolling element)

manifest themselves in a vibration spectrum;

• how does ring-gear flexibility influence the vibration signatures of planet-bearing

faults;

• how does the impulse due to a bearing fault change with operating speed and load?

Answers to all these questions will improve the current understanding of skidding and

fault detection in wind-turbine bearings, and will help to improve reliability of wind-

turbine gearboxes.

1.2 Thesis Outline

This thesis comprises of three main chapters: review of the previous work relevant to this

research, prediction of skidding in high-speed bearings, and detection of localized faults

in planet bearings.

Chapter 2 reviews the previous work on bearing skidding and planetary-fault diag-

nostics. It contains: failures in wind-turbine gearboxes, various bearing skidding models,

elastohydrodynamic lubrication theory, and various models to simulate planetary-drive

dynamics.

Chapter 3 investigates the skidding behaviour of angular-contact ball-bearings. A

numerical model, which includes gyroscopic effects, is developed to predict skidding under

various operating conditions. Rolling-element motion and skidding mechanism is studied

in detail for bearings operating under axial loads, combined axial and radial loads, and

time-varying speeds. Simple analytical equations are also derived to predict the occurrence

of skidding for the operating conditions mentioned above.

Chapter 4 describes a dynamic model, which includes a flexible ring-gear and a planet

bearing containing with a localized defect, used to determine vibration signatures of planet

bearing faults. Sources of modulation sidebands present in the fault signatures are identi-

fied and an explanation of their formation is provided. Theoretically predicted vibration

signatures of planet-bearing faults are validated against the experiments conducted in

collaboration with Whiteley [127]. Speed and load dependence of the impulse due to a

bearing fault is also investigated theoretically as well as experimentally.

Chapter 5 summarises the key conclusions of this research and provides some sugges-

tions for the future work which directly follows from this research.
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Chapter 2

Literature Review

This chapter reviews the previous work done in the areas relevant to this research.

The chapter provides an overview of gearbox failures in wind turbines; reviews

various methods available to predict skidding in bearings; provides an overview

of elastohydrodynamic lubrication theory; briefly explains vibration behaviour of

healthy planetary drives; and reviews methods to simulate and detect localized

faults in fixed-axis and planet bearings.

2.1 Failures in Wind Turbines

Wind energy is the fastest growing renewable energy sector with an average annual growth

rate of around 30 % during the last 10 years. In order to harvest energy most efficiently and

reliably, various wind-turbine design concepts have been developed over the years [83,101].

Modern wind turbines are enormous with power capacity of 2.5-5 MW, rotors of 100-

120 m diameter and tower heights upto 100 m [74,87]. Most of the modern industrial

designs of wind turbines utilize a gearbox which connects the rotor shaft to high-speed

shaft and increases rotational speed from 10-15 rpm (at rotor) to 1200-1800 rpm – the

speed required by most generators to produce electricity. Direct-drive technology has

also gained much attention recently. In direct-drive turbines traditional gearboxes and

high-speed generators are replaced with bigger low-speed generators. The rotor hub is

directly attached to a generator avoiding multiple rotating components like gears and

bearings and hence possibly improving the system reliability. The trend began in smaller

turbines and is now being incorporated in turbines size upto 3 MW. The downside is their

low torque to weight ratio, larger diameter and difficulty in maintaining air gap in such

large diameters [83]. In spite of eliminating gearboxes, direct-drive wind-turbines do not

appear to have lower failure rate than geared wind-turbines. The aggregate failure rates

5
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Figure 2.1: Trend of geared and gearless turbine installations during 1995-2005.
Data taken from Hansen and Hansen [51]

of inverter and electronics in direct-drive wind-turbines are greater than the failure rate

of gearboxes in geared wind-turbines [120,124]. For this reason wind-turbine market is still

dominated by geared-turbine concepts (figure 2.1).

The wind energy industry has experienced high gearbox failure rates from its in-

ception. Since gearboxes are one of the most expensive components of a wind turbine

(about 13% of the total cost [4,12]), higher-than-expected failure rates are adding to the

cost of energy production. There are more failures associated with generators and turbine

electronics than gearboxes (figure 2.2a) but still gearbox is considered as a critical com-

ponent because of higher downtime per failure compared to other components [47,92,107,115]

(figure 2.2b). For a typical turbine, 20% of the downtime is due to gearbox failures and

an average gearbox failure takes about 250 hours to repair [109]. Major reasons behind

long downtime per gearbox-failure include requirement of big and cumbersome replace-

ment equipments such as cranes etc. and sometimes unavailibility of spare parts also

contributes to prolong repair time. Figure 1.1 shows the layout of a typical wind turbine

gearbox modelled in RomaxWIND [3] software. There are two planetary stages followed

by a parallel-gear stage transmitting power to the high-speed shaft which is connected to

a generator. Most of the problems in wind-turbine gearboxes are generic in nature i.e. not

specific to a single manufacturer or turbine design and majority of these failures appear

to initiate in bearings, which may later advance to gears due to excessive vibrations and
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Figure 2.3: Typical smearing wear on bearing raceways. Source: NSK new bearing
doctor catalogue [2].

misalignments [94]. High-speed bearings, planet bearings and intermediate-shaft bearings

(figure 1.1) exhibit a high rate of premature failure and are considered to be some of the

most critical components [94,109].

The root cause of failures in high-speed bearings is not fully understood so far, but it is

not classical fatigue failure as these bearings fail well before their L10 life∗ [33]. A commonly

observed wear mode in these bearings is smearing [33] (like the one shown in figure 2.3).

One of the main causes of smearing wear is sliding or skidding between rolling elements

and raceways [1]. Since high-speed bearings of a wind-turbine gearbox operate under high

speeds and low loads, these bearings are prone to skidding. Skidding behaviour of a

bearing depends on the traction forces generated in the lubricant film trapped between

two contacting surfaces. In section 2.2 we discuss the skidding behavior of bearings in

detail followed by a brief overview of elastohydrodynamic lubrication theory in section 2.3.

Planet-bearings failures in wind-turbine gearboxes can be caused by many factors such

as low lubricant-film thickness due to low speeds and high loads, and poor internal load-

distribution due to planet deformation and misalignment [96]. Detection of planet-bearing

faults using vibration measurement requires a thorough understanding of their vibration

behavior. In section 2.4 we discuss the vibration behaviour of healthy planetary-drives.

Various methods have been developed over the years to detect localized faults in fixed-

axis bearings using vibration measurements. An overview of these methods is presented

in section 2.5.

∗L10 life is the fatigue life attained by 90% of the bearings from a group containing identical bearings
operating under identical conditions.
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2.2 Skidding in Bearings

Skidding in bearings is the gross sliding of rolling elements on raceways. Skidding oc-

curs when the traction forces between rolling elements and raceways are not enough to

overcome viscous drag and inertial forces. Gross sliding in bearings could lead to high

subsurface shear stress and eventually to premature failure long before the classical fatigue

failure. A minimum load must be applied to a bearing in order to avoid skidding. The

value of this minimum load increases with speed due to the increase in both the drag and

the inertial forces with speed. Load corresponding to the fatigue-life limit of a bearing

decreases as the operating speed increases. Therefore, the acceptable operating region of

a bearing is bounded by the fatigue-life limit and the minimum load required to prevent

skidding (figure 2.4). In order to determine the extent of this acceptable operating region,

methods to predict skidding under various operating conditions are required. This section

outlines various simulation methods available in the literature to analyze rolling-element

motion inside a bearing and skidding criteria proposed by various researchers based on

analytical calculations and experimental observations.

2.2.1 Simulating the Skidding Behaviour

Much work has been done to understand the skidding behaviour of ball and roller bearings.

Researchers have developed various analytical and numerical models of varying complex-

ity to simulate rolling-element motion inside a bearing. These models can be split into two

broad categories: quasi-static models and dynamic models. The quasi-static models are
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based on force equilibrium and neglect inertial effects while the dynamic models capture

inertial effects but require a time integration scheme to achieve a solution because of the

nonlinear nature of friction between rolling elements and raceways. The following para-

graphs describe different modelling approaches attempted in the past, their underlying

assumptions and limitations.

2.2.1.1 Models for Ball Bearings

Jones [72] provides the first mathematical theory to analyze the motion of rolling elements

in ball bearings. He derives the expressions for friction forces resulting from interfacial slip

at ball-race contacts. The normal pressure distribution over the elliptical contact area is

determined in accordance with Hertz theory of elastic contact [57] and a dry friction model

is employed to evaluate the friction forces. Jones later extends his theory for arbitrarily

loaded ball and roller bearings constraint in an elastic supporting structure [73]. He solves

the entire assembly of bearings, shaft and supporting structure as a single elastic system.

This work discretizes a shaft into multiple nodes. Each node represents either a bearing

connection or an applied-load point. The elastic compliance of these nodes is defined with

respect to the supporting structure using influence coefficients in five degrees of freedom

to determine the exact internal load distribution in all the bearings in a system.

One of the limitations of Jones’ theory [72,73] is its dependence over raceway control

hypothesis to achieve a solution. At high rotational speeds, centrifugal force acting on a

rolling element becomes significant and is balanced by the inner and outer race contact

forces. This force balance condition leads to different contact angles at the inner and outer

races (figure 2.5). According to this hypothesis, a ball is assumed to roll without spin on

one raceway and roll with spin on another. The raceway at which no spin occurs is said

to be the controlling raceway which controls the motion of the ball about its own axis

and the bearing axis. It is also further assumed that the gyroscopic moment acting on a

ball is resisted by frictional forces acting at the controlling raceway only and gyroscopic

slippage does not occur in a plane normal to the bearing plane as shown in figure 2.5.

The validity of the raceway control hypothesis is questioned by Harris [55,56]. In a

lubricated ball-bearing, a lubricant film is formed in between rolling elements and race-

ways. In order to generate viscous traction in a lubricant film, relative sliding between

contacting surfaces is required. A relative sliding on either inner or outer raceway would

require ball to rotate in the plane normal to the bearing plane, this would lead to sliding

on both inner and outer raceways. Therefore, gyroscopic motion is resisted at both the

inner and outer raceways and not at the controlling raceway alone. Harris [56] develops

an improved model to predict rolling-element slippage in angular-contact ball-bearings
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Figure 2.5: Forces acting on a ball according to raceway control hypothesis. Mg is
the gyroscopic torque, µ is the friction coefficient, Finn and Fout are the inner and
outer contact forces.

under constant axial load without using the raceway control assumption. He finds that

the results obtained from his analytical model more closely approximate the measured

data (reported by Poplawski and Mauriello [103]) than the raceway control method, which

further proves the inadequacy of raceway control hypothesis. Harris also investigates the

raceway control hypothesis for dry bearings with Coulomb friction conditions and finds

if the ball rotation due to gyroscopic moment is resisted by static friction forces at the

contact interfaces, then the raceway control theory is adequate to analyze ball motion

and bearing performance [56].

The quasi-static analysis techniques proposed by Jones [72,73] and Harris [55,56] give a

good insight into the frictional behaviour of ball bearings and also show the existence of

skidding. However, these methods cannot be used to analyze combined radial and axial

loads or time-varying operating conditions both of which are important for wind turbine

applications. The inadequacy of quasi-static models for these operating conditions is

because of two main reasons: absence of any ball-cage interaction and no consideration

of dynamic effects.

Under combined radial and axial loads, a load zone is formed inside a bearing. The

rolling elements lying inside the load zone are loaded and drive the cage, whereas the

rolling elements outside the load zone are unloaded and are driven by the cage. Hence ball-

cage interaction is important under these conditions. A detailed understanding of dynamic

behaviour of rolling elements and cage is required to calculate these interaction forces.

Meeks and Tran [93] propose a six degree of freedom model to simulate cage transient

motion in a bearing. They adopt the quasi-static methods of Jones [72] and Harris [55] to

determine the internal load distribution in a bearing, and a dynamic formulation is used to

obtain ball-cage collision forces. The gyroscopic effects are considered in the quasi-static
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model to calculate internal loads but the dynamic model lacks gyroscopic coupling terms

in the equations governing the ball motion. Their model might be suitable for predicting

cage dynamics and its failure modes, but it is not suitable to predict skidding under

combined loading conditions because of the absence of gyroscopic terms in the dynamic

model formulation.

Houpert [61,62] proposes a novel equivalent-stiffness methodology to calculate impact

forces between rolling elements and cage pillars which take into account the Hertzian

contact stiffness as well as the structural stiffness of a cage pillar. He also demonstrates

the influence of hydrodynamic effects on bearing internal load distribution which in turn

affects ball-cage forces. He finds that consideration of hydrodynamic effects increases the

size of the load zone and reduces the peak load values, especially if the applied load is

low.

Gupta [42] proposes a dynamic model to study the ball motion and the skidding char-

acteristics in thrust ball bearings. He later extends his model for combined axial and

radial loads by including the cage dynamics [43], but his model ignores the variation in slip

speed and traction properties along the minor axis of the contact ellipse between rolling

elements and raceways. Traction force and moment calculations adopted by Gupta are

based on a semi-empirical EHD lubrication model. From the numerical analysis, Gupta [44]

finds that the slip speed between rolling elements and raceways increases with radial to

axial load ratio. The ball motion and underlying skidding mechanism under combined

axial and radial loads is not studied in detail.

Tu et. al. [123] study the effect of inner-race acceleration on the skidding behaviour

of deep-groove ball-bearings using a dynamic model. As with previous studies, they find

that skidding decreases with increasing load. Their model does not include the gyroscopic

effects which is a reasonable assumption for deep-groove ball-bearings as the theoretical

spin-axis of a rolling element is parallel to the bearing axis. For an angular-contact ball-

bearing, spin axis of a rolling element is not aligned with the bearing axis and gyroscopic

effects are important.

At high operating speeds, centrifugal force acting on the rolling elements amplifies the

difference between inner and outer race contact angles and therefore, increases the risk

of scuffing damage due to excessive spinning at the contact interfaces [82]. Harris [54] finds

that by reducing the ball mass by 50% significant improvements in bearing life could be

achieved due to lower centrifugal force generation. This is achieved by making the balls

hollow. Another solution is to use an arched or four contact-point ball-bearings because

of their high load carrying capacity as the applied load is distributed among four contact

points.
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Hamrock and Aderson [49] perform the first analysis of an arched ball-bearing. A quasi-

static axial-load analysis method is developed considering centrifugal effects. Ignacio

Amasorrain et al. [64] propose a more generic calculation procedure to obtain internal

load distribution for four contact-point ball-bearings operating under combined loading

conditions. More recently, Leblanc and Nelias [81,82] extend Jones theory [71] of bearing

internal kinematics from two to four contact points.

Four contact-point ball-bearings, in general, are assumed to have more fatigue life

compared to a conventional bearing with two contact points because of load sharing be-

tween two outer-race contacts. However, under certain operating conditions, this benefit

is counterbalanced by increase in sliding within contact interfaces [81]. Thus, careful in-

vestigation of dynamic characteristics of these bearings must be done before selection.

2.2.1.2 Models for Roller Bearings

Harris presents an analytical method [53] for predicting skidding in cylindrical-roller bear-

ings which allows designers to investigate skidding phenomenon at the initial design stage.

He uses a semi-empirical EHD lubrication theory to obtain traction forces between rolling

elements and raceways. It is shown that skidding occurs when drag forces acting on a

rolling element exceed frictional driving forces. In order to establish equilibrium between

these forces, cage speed decreases and inner race skids past the roller surface. Slip-speed

results obtained from Harris’ model [53] show good agreement with test data, except at low

load conditions. This discrepancy between analytical results and test data is attributed to

the break down of empirical relationships for EHD contacts, used in the analysis, at low

loads. The analysis also shows that skidding can be reduced by increasing the contact

force on rolling elements, but increasing the contact force reduces the fatigue life of a

bearing. Hence, a balance must be achieved between the load required to avoid skidding

and the load which limits the bearing fatigue-life.

Chang et al. [22] find the same inconsistency while comparing their skidding model with

experimental data at low load, despite use of an analytical rather than empirical EHD

lubrication model. They suggest that one possible reason behind this variation is the

influence of cage dynamics on roller slippage which is neglected in their model. They

also suggest that at low loads test data can involve large uncertainties because of the

sensitivity of cage slip to lubricant supply rate.

Dynamic models developed by Gupta [45] make it possible to simulate dynamic per-

formance of roller bearings in time domain, but the complexity involved requires long

computational times. Creju et al. [26,27] propose a simpler and relatively cheap method

to consider roll-slip dynamics of taper-roller bearings. Their analysis follows a two step
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approach: the first step uses static equilibrium to determine load distribution on rolling

elements, and the second step uses a dynamic model to determine rolling-element motion

inside a bearing. Tractive forces are calculated using slicing technique. According to slic-

ing technique, contact area along a roller length is divided into number of strips or slices,

and analysis is performed on each slice separately. This skidding model is later extended

to double-row taper-roller bearings to investigate fatigue life and heat generation [11,95].

Selvaraj and Marappan [112] carry out an experimental investigation on some of the

factors influencing the skidding behaviour in cylindrical-roller bearings. Experimental

analysis reveals that: (i) skidding increases with increasing speed and decreasing load,

which is consistent with the findings of Harris [53] and Gupta [45]; (ii) skidding increases with

increase in lubricant viscosity because of the reduction in traction forces between rolling

elements and raceways caused by increase in film thickness at high lubricant viscosities;

(iii) skidding increases with increase in number of rolling elements, because the contact

force on a rolling element decreases as we increase the number of rolling elements in a

bearing.

2.2.2 Criteria to Predict Onset of Skidding

Kliman [79] introduces a simple equation to calculate the minimum axial load required to

prevent skidding in thrust bearings by minimizing the difference between inner and outer

raceway contact angles. According to Kliman, skidding occurs when a non-dimensional

parameter zFc/Fa exceeds cotβ; where z is the number of rolling elements, Fc is the

centrifugal force, and Fa is the applied axial force.

Hirano and Tanoue [60] devised an experiment to investigate ball motion in an angular-

contact ball-bearing by using magnetized balls and by measuring the alternating current

induced by change in magnetic flux caused by these magnetized balls. The findings for

bearings under pure radial load suggest that: (i) skidding occurs at unloaded region and

it increases with radial clearance, and (ii) skidding decreases with increase in applied load.

Hirano [59] later carries out a similar experimental investigation for angular-contact ball-

bearings under pure thrust load. Measured data of angular velocities of balls and cage

suggest that the skidding occurs when the parameter zFc/Fa exceeds 0.1. Hirano does not

provide any analytical justification for this empirical criterion. For Hirano’s test bearing,

Kliman’s criterion gives zFc/Fa = cotβ = 1.22 which is different from the value proposed

by Hirano (0.1). So, we can see that the two criteria are not in agreement. Poplawaski and

Mauriello [103] later establish that the parameter zFc/Fa alone is not sufficient to predict

onset of skidding.

Boness and Gentle [14] also propose a ball-bearing force-equilibrium model using an
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EHD traction equation, derived by Gentle and Cameron [37]. Using this model, Boness [13]

develops the following empirical equation to calculate the minimum load required to avoid

skidding in thrust ball bearings.

σmax = 0.00733(2ω2
iR)0.22(2Rzη)−0.175 GPa, (2.1)

where σmax is the contact pressure, ωi is the inner-race speed (rpm), R is the pitch radius

(mm), z is the number of rolling elements and η is the lubricant viscosity at operating

temperature (Pa.s).

Poplwaski et al. [102] use SHABERTH [25], a computer program developed by SKF In-

dustries, to perform a parametric study on the influence of rolling-element size, number

of rolling elements, contact angle, raceway curvature, lubricant type and bearing preload

on contact stress, fatigue life and load required to prevent skidding. This work serves as

a design guide for bearing selection and performance evaluation based on skidding.

Most of the criteria described above to determine onset of skidding are limited to bear-

ings operating under constant axial loads. Recently, Liao and Lin [84] develop a method to

calculate rolling-element forces in ball bearings by taking into account contact angle vari-

ation with ball position angle.They create the skidding maps for ball bearings operating

under combined axial and radial loads using Hirano’s skidding criterion [59]. They later ex-

pand their model to evaluate thermal effects on skidding [85]. Their slip speed calculation

is based on the raceway control hypothesis (with outer race as controlling raceway), and

their model does not include any dynamic effects. Since the skidding maps produced by

Liao and Lin [84] for bearings operating under combined axial and radial loads are based

on the empirical criterion proposed by Hirano [59] which is derived for bearings operating

under pure axial loads, their use can often be limited.

The methods described above are useful to predict onset of skidding in bearings, but

they do not tell us anything about how much skidding is allowable before serious wear

will occur. Under stable operating conditions considerable slip may occur without signif-

icant surface damage. Under some unfavourable operating conditions, however, lubricant

film might collapse due to skidding resulting in surface damage [48]. Very few criteria are

available to predict onset of damage caused by skidding. More recently, an experimental

study is performed by Bujoreanu et al. [17] to estimate scuffing limits in angular-contact

ball-bearings. Scuffing is a complex wear phenomenon which involves sudden collapse of

lubricant film and results in metal-to-metal contact. The variables used in the experimen-

tal procedure to study scuffing damage are sliding speed and normal load. They perform

two tests: one with twin discs and another with an angular-contact ball-bearing. The test

data indicates that scuffing damage is related to the amount of heat generated inside a
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fluid film due to traction forces. Based on these tests, they derive an empirical equation

describing the onset of scuffing, which is given by

µσ∆u0.8 = 1.5× 108, (2.2)

where µ is the friction coefficient, σ is the contact stress, and ∆u is the slip speed. This

critical value (1.5 × 108 W/m2) of frictional heat is enough to initiate scuffing damage.

The empirical criterion described by equation 2.2 is derived for a particular test bearing

(7206), and more experimental investigation must be performed on bearings with different

geometry and lubricants to generalize this result.

2.3 Elastohydrodynamic Lubrication Theory

At the end of the 19th century, Beauchamp Tower (a railway engineer) noticed oil leak

out of a hole located beneath the load in a journal bearing. When he tried to plug the

hole with a wooden bung, pressure slowly pushed the bung out. Tower then carefully

measured the oil pressure over the surface of the bearing by drilling more holes and found

that the pressure was asymmetrical and that a fluid film of finite thickness was formed

in the loaded region of the bearing which separated the sliding surfaces by a hydraulic

force [121,122]. Tower’s work provides the first experimental confirmation of hydrodynamic

lubrication.

Based on Tower’s experiments, Osborne Reynolds [108] formulates the first analytical

theory of hydrodynamic lubrication. According to the theory, a viscous liquid can physi-

cally separate two sliding surfaces by hydrodynamic pressure resulting in low friction and

theoretically zero wear. The occurrence of hydrodynamic lubrication requires [116]:

• the contacting surfaces to move relative to each other with a speed sufficient to

create a lubricant film;

• the contacting surfaces to be inclined at some angle relative to each other or to have

parallel-stepped profiles, otherwise a pressure field will not form in the lubricating

film to support the applied load.

Elastohydrodynamic lubrication is a form of hydrodynamic lubrication where elastic

deformation of contacting solids and change in viscosity with pressure become important.

Hydrodynamic lubrication theory explains the lubrication mechanisms in conformal con-

tacts such as those found in hydrostatic bearings, but it does not explain the lubrication

mechanism in non-conformal contacts such as those found in rolling bearings, gears etc.
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The film thickness values predicted by hydrodynamic theory for non-conformal contacts

are so small that it is not possible to physically separate the contacting surfaces, which

is in contradiction with the experimental observations. This contradiction is the result of

change in lubrication regime from hydrodynamic to elastohydrodynamic.

Lubricant behaviour in an EHD contact is effected by the elastic deformation of con-

tacting solids and change in lubricant viscosity due to pressure. Based on these two factors

Johnson [69] identifies four lubrication regimes in EHD contacts.

1. Isoviscous rigid. In this regime, elastic deformations of the contacting solids are

small compared to the lubricant-film thickness and lubricant viscosity does not

change with pressure. This is comparable to hydrodynamic lubrication regime.

2. Piezoviscous rigid. In this regime, elastic deformations of the contacting solids are

small and can be neglected, but the contact pressure is sufficiently high to increase

the lubricant viscosity significantly.

3. Isoviscous elastic. In this regime, elastic deformations of the contacting solids have

considerable influence on film thickness, but the contact pressure is too small to

change the lubricant viscosity significantly.

4. Piezoviscous elastic. In this regime, both the elastic deformations of contacting

solids and the rise in lubricant viscosity influence the lubricant-film thickness (fig-

ure 2.6). This regime is also known as full EHD regime. Gears and rolling-element

bearings mostly operate in this regime.

Contact pressure in a static non-conformal contact can be defined by Hertzian the-

ory [57]. If the contact surfaces are moving relative to each other and the lubricant film

is in full EHD (piezoviscous elastic) regime then the pressure distribution slightly de-

viates from the Hertzian theory, especially at the entry and exit regions of the contact

(figure 2.6). The contact region at entry in an EHD contact is slightly larger than the

Hertzian contact because of the combined effect of rolling and hydrodynamic-film forma-

tion. Thickness of the lubricant film roughly stays constant over an appreciable fraction

of the contact region. At exit, a constriction is formed and the film thickness reduces.

This results in a spike in the contact pressure just before the constriction as shown in

figure 2.6. The lubricant viscosity increases with pressure as it enters the contact and

then decreases to the ambient viscosity level at exit. The constriction is formed to com-

pensate for the decline in lubricant viscosity at exit and to maintain the continuity of

flow [67,116]. Grubin [40] provides an approximate analytical treatment of the mechanism of
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Figure 2.6: Pressure distribution and film-thickness variation in an EHD contact

film formation and pressure distribution in an EHD contact, and Greenwood [38] extends

Grubin’s analysis to cover the constriction formation at exit zone.

Hamrock and Dowson [50] derive the formulae for the central and the minimum film

thickness (as shown in figure 2.6) in an EHD contact. The formulae for a point contact

are

h = 2.69
(η0uent

E ′R′

)0.67

(E ′cηP )
0.53

(
F

E ′R′2

)−0.067

(1− 0.61exp(−0.73κ))R′ (2.3a)

and

hmin = 3.63
(η0uent

E ′R′

)0.68

(E ′cηP )
0.49

(
F

E ′R′2

)−0.073

(1− exp(−0.68κ))R′, (2.3b)

where η0 is the lubricant viscosity at atmospheric pressure, uent is the fluid-entrainment

speed, E ′ is the effective Young’s modulus, R′ is the effective radius of curvature in the

rolling direction, cηP is the pressure-viscosity coefficient, F is the contact force and κ is

the ellipticity parameter.

Crook [28,29,31] performs some experimental studies on the effect of bearing operating

parameters on film thickness and lubricant viscosity. Film thickness is found to be sensi-

tive to rise in surface temperature. Few degrees of temperature rise could reduce the film

thickness by as much as 50 % [28]. Crook also shows that there is no considerable reduction

in film thickness with the increase in relative sliding between contacting surfaces despite

the accompanying increase in frictional heating [29].
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Figure 2.7: Typical traction curve in EHD contact showing three regions: linear
(for shear stress values below Eyring stress, τ0), nonlinear and thermal.

In order to calculate traction force in EHD contacts some simplified assumptions are

commonly made. The first simplification is to assume a constant film thickness throughout

the contact zone, and the second simplification is to approximate the pressure distribution

in the contact zone by Hertz pressure distribution. For a Newtonian fluid, shear stress is

proportional to the shear-strain rate, i.e.

τ = ηγ̇ = η
∆u

h
, (2.4)

where τ is the shear stress, γ̇ is the shear-strain rate and ∆u/h is the velocity gradient

across the film thickness. If the contact area is A and applied load is F then traction

coefficient can be obtain from equation 2.4 as

µ =
τA

F
=
ηA

F

∆u

h
. (2.5)

This simple relationship gives a linear relationship between traction coefficient and slip

speed. Figure 2.7 shows a typical traction curve for EHD contact. For low slip speeds,

traction behaviour is linear as predicted by equation 2.5. Traction curve starts to devi-

ate from the linear behaviour at higher slip speeds, reaches a maximum value and then

gradually decline. This decline in the traction coefficient is caused by the reduction in

viscosity due to shear heating of lubricant. Based on this traction behaviour, traction

curve can be divided into linear, nonlinear and thermal regions.

The extent of the linear regime in a traction curve depends on the contact pressure. At
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high contact pressures, lubricant traction shows a deviation from the Newtonian theory

and behaves nonlinearly. Evans and Johnson [35] find four regimes and their appropriate

constitutive equations describing lubricant traction behaviour in EHD contacts. These

regimes are: Newtonian, Eyring, Viscoelastic and Elastic-plastic (in increasing order of

pressure). At low pressures, lubricant behaviour is Newtonian and can be described by

equation 2.4. At high pressures when shear stress exceeds the Eyring stress (τ0), lubricant

starts to behave nonlinearly and its behaviour can be modelled by the Eyring equation,

γ̇ =
τ0

η
sinh

(
τ

τ0

)
. (2.6)

Further increase in pressure results in viscoelastic [70] and then elastic-plastic regimes. To

construct boundaries between these regimes, variation of viscosity and Eyring stress (τ0)

with temperature and pressure must be known. Some of these rheological properties for

few lubricants can be found in the paper by Evans and Johnson [36].

Many empirical and analytical models are available in the literature to describe pres-

sure and temperature dependency of lubricant viscosity but their accuracy is often limited

to certain operating regimes. A commonly used empirical expression describing this de-

pendency is well known Barus equation [10] given by

η = η0exp{cηPσ − cηT (T − TR)}, (2.7)

where η0 is the reference viscosity at reference temperature TR and T is the temperature.

This equation accurately predicts viscosity for a certain range of temperature and pressure,

but for a slightly wider range the equation can be corrected by introducing additional

terms in powers of (T − TR) and p to fit the measured data. The problem with this

approach is that at further wider range of temperature and pressure the correction terms

may dominate and introduce behaviour that is not intended in the correction process [9].

Further information regarding pressure-temperature-viscosity models can be found in the

book by Bair [9].

In the EHD traction calculations described above, it is assumed that the contacting

surfaces are smooth and a lubricant film always separates the contacting surfaces. In

practice, however, all surfaces are rough and are covered with asperities. Depending on

their size, surface asperities could influence the mechanism of fluid-film formation in a

contact. A film parameter (Λ) is generally used to establish a lubrication regime in a

contact zone and it is defined as

Λ =
h

(λ2
A + λ2

B)1/2
, (2.8)
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Figure 2.8: Variation of traction coefficient with film parameter, showing different
regimes of lubrication.

where h is the minimum film thickness, λA and λB are the RMS surface roughness of two

contacting bodies.

When the lubricant film-thickness is sufficient to prevent contact between surface as-

perities of contacting solids, lubrication regime is hydrodynamic (Λ > 10) as shown in

figure 2.8. EHD lubrication is a form of hydrodynamic lubrication where elastic defor-

mation of contacting solid surfaces becomes significant. Film thickness is smaller but is

enough to prevent asperity contact (3 ≤ Λ < 10). If Λ is less than 1 then surface contact

takes place resulting in high friction coefficient, and the regime of contact is known as

boundary lubrication. The friction behaviour in this regime is similar to dry contact. If Λ

is between 1 and 4 then asperity contact might take place along with the lubricant-film for-

mation. The contact force is supported by both asperities and lubricant film (figure 2.9).

This lubrication regime is known as partial or mixed EHD lubrication.

Johnson, Greenwood and Poon [68] develop a theory to describe the mechanism of

asperity contact in mixed EHD lubrication regime. They find that if the major part of

the applied load is carried by EHD film then the separation between two rough surfaces is

about the same as the film thickness between two smooth surfaces under the same load.

They also find that average asperity pressure depends primarily on the ratio of theoretical

film thickness and combined roughness of two surfaces (Λ).
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Figure 2.9: Contact pressure shared between asperity contacts and EHD film in a
mixed-EHD lubrication regime.

2.4 Vibration Behaviour of Healthy Planetary-Drives

In this section we present different sources of vibration in a planetary-drive and review

various mathematical models available in the literature to simulate the vibration response

of healthy planetary-drives.

2.4.1 Sources of Vibration

Primary source of vibration in any involute-gear drive is the variation of the contact force

between a gear pair during the meshing process. The variation in the contact force can

be caused by: profile modification of a gear tooth, elastic deflection of a gear tooth and

change in number of teeth in contact during meshing. This type of excitation during

meshing process of gears originated the idea of “transmission error”. The first significant

work on prediction and measurement of dynamic transmission error was carried out at

the Department of Engineering, University of Cambridge in the late 1950s by Gregory,

Harris and Munro [39,52].

Transmission error (∆e) is defined as the difference between actual and theoretical

rotations of a driven gear. The theoretical rotation assumes an ideal gear with rigid

teeth and no profile modification operating in a perfect mesh. Mathematically, it can be

described as

∆e = θB −
zA
zB
θA, (2.9)

where θA and θB are the angular rotations of gears A and B, zA and zB are the number of

teeth on gears A and B, and gear A is driving gear B. This deviation of actual rotation from

its corresponding theoretical value gives rise to a periodic excitation forces with excitation
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frequency equal to meshing or tooth-passing frequency. Friction forces acting between

contacting teeth also result in a directional change in the resultant contact force but this

effect is small (less than ±3◦ ) and can be neglected in most industrial applications [114].

Another possible source of vibration in a gear drive is the presence of manufacturing

errors inside gears. Manufacturing error could be either radial run-out/eccentricity of

one of the gears or profile error. All these errors alter the dynamic behaviour of the

system and modulate the actual vibration signature. Chaari et al. [21] develop a discrete

dynamic-model of a planetary drive to predict the influence of manufacturing errors on

the force excitation caused by transmission error. They find that the presence of gear

eccentricity or profile error results in amplitude modulation of the original mesh-force

signal and generates modulation sidebands, separated by gear-rotation frequency, around

meshing frequency and its harmonics. This is because of the change in transmission-error

caused by the manufacturing errors. Inalpolat and Kahraman [66] also study the effects of

manufacturing errors on the vibration characteristics of healthy planetary-drives. They

find that a run-out error causes the contact point of the two meshing gears to change

with the gear rotation in a meshing cycle. This results in amplitude as well as frequency

modulation of the contact force.

In a planetary drive, vibration due to transmission-error excitation is greatly effected

by planet-gear phasing. If multiple gear-meshes are running in parallel, each mesh will

have its own transmission error and the overall vibration response is determined by the

relative phasing between these individual transmission error components. For example, in

a planetary drive containing three planets, if the number of teeth on sun gear is divisible

by three then three meshes will contact at their pitch points simultaneously and the

three transmission error excitations will be in-phase. This will produce a strong torsional

excitation to the sun but no net radial forcing. Whereas if there is a relative phase

difference of 120◦ between the three meshes then there will be no net torsional excitation

but a radial excitation at the sun. The direction of this radial excitation force changes with

meshing frequency [114]. Parker [97] utilizes planet mesh phasing to suppress the vibration of

a planetary drive at certain harmonics of mesh frequency based on physical forces acting at

sun-planet and ring-planet meshes. He deduces simple rules of harmonic suppression. The

suppression phenomenon is also demonstrated using a dynamic finite-element/contact-

mechanics simulation.

In most planetary-drive applications, like wind turbines, ring gear remains stationary

and power is transmitted either from sun to planet carrier or the other way around. In

such an arrangement, a transducer mounted on ring gear housing experiences a periodic

variation in vibration amplitudes as planets pass through this fixed transducer location.
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This results in amplitude modulation of vibration signal and creates modulation sidebands

around meshing frequency and its harmonics. The separation between these sidebands is

given by zpωc, where zp is the number of planets and ωc is the carrier-rotation frequency.

Variation in the vibration amplitudes, as seen by the stationary transducer, is due to

varying vibration transmission path between vibration source (planet-ring mesh) and

measurement point (fixed transducer) as carrier rotates. McFadden and Smith [91] propose

a simple analysis technique to predict the vibration response of a planetary drive at a fixed

point on a ring gear by considering the variation in vibration transmission path caused by

carrier rotation. Their study is the first to explain the underlying reasons for asymmetric

distribution of modulation sidebands about meshing frequency and its harmonics. Their

model is able to predict the frequencies associated with dominant sidebands but is unable

to predict their relative amplitudes.

Inalpolat and Kahraman [65] perform a theoretical and experimental investigation on

modulation sidebands of a planetary set due to carrier rotation. The analytical model

developed in their study is capable of predicting amplitudes as well as frequencies of these

modulation sidebands. They show that based on the vibration behaviour a planetary drive

can be classified into one of five distinct groups: (i) equally spaced and in-phase planets,

(ii) equally spaced and sequentially phased planets, (iii) unequally spaced and in-phase

planets, (iv) unequally spaced and sequentially phased planets, and (v) unequally spaced

and arbitrarily phased planets. General sideband behaviour unique to each of these cases

is characterized using simulations.

The studies mentioned above provide a good insight into the modulation mechanisms

in healthy planetary-drives, but they do not include a flexible ring-gear to model the

vibration transmission path. In all these models, the vibration transmission path between

a ring-planet mesh and a measurement-point fixed on the ring gear is approximated by a

Hann function, which limits their applicability.

2.4.2 Modelling Vibration in Healthy Planetary-Drives

Modelling of vibration characteristics of healthy planetary-drives attracted significant

attention of various researchers in the past. Majority of the proposed models are based

on lumped-parameter approach in which gear wheels are treated as rigid bodies and gear

mesh flexibility is represented as a linear or a non-linear spring inserted between these rigid

gears. Based on number of degrees of freedom, lumped-parameter models can be split into

three categories: pure torsional models [76], planar models [21,75,86] and three-dimensional

models [34].

Most of the lumped-parameter models use a time-invariant mesh-stiffness neglect-
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ing the change in mesh stiffness caused by varying number of teeth in contact [8,15,32,58].

Kahraman [75] extends these models by employing a non-linear time-varying stiffness for-

mulation which allows consideration of both backlash and transmission-error excitation

to investigate the dynamic load sharing characteristics of a planetary drive. Lin and

Parker [86] perform an analytical investigation of natural frequencies and vibration modes

of planetary drive. They adopt a linear mesh-stiffness model and solve the corresponding

eigenvalue problem to obtain vibration modes. Their findings suggest that due to the

cyclic symmetry of a planetary drive, its vibration modes can be classified into three cat-

egories: rotational modes (contain pure rotation of all components), translational modes

(contain pure translation of components) and planet modes (no motion of carrier, ring

and sun). Another group of planetary models use more sophisticated contact mechan-

ics algorithms based on finite-element analysis [77,98]. These models eliminate the need of

user defined gear-mesh parameters (as required by lumped-parameter models) as gear-

meshes are modelled as individual nonlinear contact problems. In addition, the influence

of tooth-base flexibility and rim deflections is also taken into account. However, the solver

time required by these finite element based models is significantly higher than lumped-

parameter models.

A common assumption made in lumped-parameter models is that the ring gear is

treated as rigid body. In practice, however, flexibility of ring gear plays an important role

in vibration measurement specially if transducer is located at ring gear housing, which

is common in wind-turbine gearboxes. Very limited research has been done to include

ring-gear deformation in analytical models. Wu and Parker [129] address this problem by

developing a planar elastic-discrete model, where ring gear is modelled as a continuous

elastic body while all other gears are represented as rigid bodies. Modal properties are

derived for the combined system using eigenvalue perturbation and candidate mode ap-

proaches.

Recently, Eritenel and Parker [34] study the modal properties of a planetary drive con-

taining helical gears. They extend the existing planar lumped-parameter models in three

dimensions and each gear is represented by six degrees of freedom. The model includes

the tilting effect of gears but lacks ring gear flexibility. Their study shows that for helical

gears, pure-rotational and pure-translational modes are replaced by rotational-axial and

translational-tilting modes due to additional degrees of freedom.
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2.5 Detecting Faults in Bearings Using Vibration Mea-

surements

Vibration based techniques are commonly used to detect bearing faults in wind turbines.

In order to detect bearing faults effectively and to develop more sophisticated vibration-

based algorithms for fault detection, a thorough understanding of vibration signatures of

bearings with faults is required. In this section we discuss various methods available in

the literature to detect faults and to simulate their vibration signatures in both fixed-axis

and planet bearings.

2.5.1 Faults in Fixed-Axis Bearings

A fixed-axis bearing is a bearing whose axis of rotation remains stationary with respect to

a measurement point located on the bearing housing. A lot of work has been done on the

detection of localized faults (spalls or pits) in fixed-axis bearings. McFadden and Smith [88]

and Tandon and Choudhury [119] provide a review of some of the methods developed for

vibration monitoring of rolling-element bearings.

In a bearing containing a localized fault, each time a rolling element passes though the

fault it generates an impulse. These impulses are periodic if the bearing speed remains

constant, and the frequency at which these impulses occur is known as the characteristic

fault frequency (ωd). The characteristic fault frequency for a bearing fault is a function

of fault location, bearing geometry and operating speed. For a bearing with stationary

outer-race and rolling-element radius r, pitch radius R, number of rolling elements z,

contact angle β and inner-race speed ωi, characteristic fault frequency can be defined

as [46]

ωd =





zωi
2

(
1− r

R
cosβ

)
for outer-race fault

zωi
2

(
1 + r

R
cosβ

)
for inner-race fault

Rωi
r

(
1−

(
r
R

)2
cos2β

)
for rolling-element fault.

(2.10)

The impulses occurring at characteristic fault frequency excite the system resonance

frequencies and the frequency spectrum contains peaks separated by characteristic fault

frequency. System resonance frequencies act as an envelope to these peaks as shown in

figure 2.10. Depending on the location of the fault and measurement point, some modu-

lation sidebands can also be present around the fault frequency and its higher harmonics.

McFadden and Smith [89,90] provide a good insight into the formation of these sidebands.

They propose that the sources of these sidebands are the amplitude modulations of vi-

bration signal occurring inside the bearing. The first modulation is caused by the contact
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Figure 2.10: Vibration signature of a bearing with fixed outer-race in the presence
of a localized outer-race fault.

load variation on a rolling element as it passes through a load zone. The second mod-

ulation is due to varying vibration transmission path between a fault and a transducer

fixed on outer-race housing. This modulation is similar to the one caused by carrier ro-

tation in planetary drives (section 2.4.1). If outer race of a bearing is stationary then

these modulations are only present if a fault is located either on inner race or on a rolling

element.

Tandon and Choudhary [118] also develop an analytical model to investigate the effect of

localized faults on bearing vibration behaviour. They model the inner and outer raceways

as uncoupled continuous elastic rings with in-plane vibration modes and they use a mode

summation approach to obtain the bearing vibration response. They model the force

excitation due to a localized fault as an impulse-train with periodic impulses occurring

at characteristic fault frequency. The width of these impulse pulses is obtained from the

time taken by a rolling-element to cross a fault. They discuss that pulse height changes

with severity and age of a fault, but no analytical or empirical relationship is provided to

simulate this dependency.

Sassi et al. [110] calculate the excitation force generated by a fault by splitting it into

static and dynamic components. Static component is obtained from the contact load

acting between a rolling element and a raceway while the dynamic component is obtained
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by solving contact mechanics between fault and other contacting body. They apply energy

conservation approach to calculate the shock velocity at the time of impact and this shock

velocity is then used to determine dynamic excitation force. Instead of using a mode

summation approach Sassi et al. [110] calculate the vibration response at a fixed transducer

location by considering only the first vibration mode of outer race. Based on the first

mode shape, they establish a geometric relationship between impact and measurement

points to obtain the dynamic response.

In all the above mentioned studies, it is assumed that the impulse due to a localized

bearing-fault is proportional to the contact force acting on a rolling element at the time

of impact. None of the papers provide any theoretical or experimental justification to this

assumption.

If a bearing is operating at low speeds or the fault size is small then it is difficult

to detect the characteristic fault frequencies and associated sidebands especially at low

frequencies because the noise from other components like gears mask the fault vibration-

signal [106,111,113]. Chaturvedi and Thomas [23] use adaptive noise-cancellation to enhance

the signal-to-noise ration for bearing faults by reducing the unwanted noise coming from

other components. Antoni and Randall [5,6] show that it is possible to separate bearing

fault signals from gear signals in a gearbox using unsupervised noise-cancellation.

High-frequency resonance technique is also commonly used to identify bearing faults

by extracting characteristics fault frequencies. According to this technique, measured

signal is first band-pass filtered around a high-frequency resonance to remove unwanted

gear noise and this filtered signal is then demodulated by using envelope analysis. The

envelope signal contains characteristic fault frequencies.

2.5.2 Faults in Planet Bearings

Detection of localized faults in planet bearings is difficult than fixed-axis bearings because

of the complicated and time-varying vibration transmission path between the fault and

a measurement point on a ring gear. No published work has been found which simulates

this time-varying transmission path and determines the vibration signature of a planetary

drive containing a localized planet-bearing fault.

Some literature is available on gear-tooth faults in planetary drives. Presence of a gear-

tooth fault alters the gear-mesh stiffness. Finite-element analysis is commonly used for

gear-mesh stiffness evaluation [7,100] but high computation times required to solve refined

meshes limit its use. Some analytical methods [78,130] are also developed to obtain mesh

stiffness of a healthy gear and they prove to be a good substitute for finite-element based

methods. Choy et al. [24] shows, using numerical simulations and experimental results,
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that gear tooth damage due to wear and pitting can be simulated by amplitude and

phase changes in the gear-mesh stiffness. Chaari et al. [18] derive an analytical expression

for tooth and gear-mesh stiffness taking into account tooth bending, local Hertzian contact

and fillet-foundation deflections. He modifies this expression to investigate the effect of

tooth breakage, spalling and root cracks [20] on mesh-stiffness curve. Chaari et al. [19]

also studies the dynamic response of a planetary drive subjected to tooth pitting and

cracking defects. A joint time-frequency method of Wigner-Ville is used to characterize

the signature of each of these faults. They find that whenever a faulty tooth passes

through a contact mesh, an increase in sideband activity around meshing frequency and its

harmonics can be observed in the joint time-frequency distribution. They do not discuss

the sources behind this sideband activity and frequencies associated with sidebands.

2.6 Conclusions

Gearbox failures in wind turbines continue to be a major source of downtime and repair

costs. Average life of a wind-turbine gearbox is about 5 years, which is significantly less

than the 20 years design life of a wind turbine. Following conclusions can be drawn from

the literature review.

• Most of the problems in wind-turbine gearboxes initiate in bearings. Bearings sup-

porting the high-speed shaft and planet gears exhibit a high rate of premature failure

and are two of the most critical components in a wind-turbine gearbox.

• High-speed bearings operate under low loads and high speeds, which make them

susceptible to skidding. A commonly observed wear mode in these bearings is

smearing, and skidding is one of the main causes of smearing and scuffing wear.

• Much work has been done to understand the skidding behaviour of angular-contact

ball-bearings, but most of the work is based on quasi-static analysis and is limited

to axially-loaded bearings. Almost all the models require time-consuming numerical

simulations and hence are not suited for use as design tools. Some empirical and

semi-empirical skidding criteria are also derived to predict the occurrence of skidding

in ball bearings, but these criteria are not in agreement with each other and are

limited to axially-loaded bearings.

• The skidding models available in the literature could be used to predict the onset of

skidding in axially-loaded bearings. These models, however, do not tell us anything

about how much skidding is allowable before serious wear will take place.
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• Vibration behaviour of healthy planetary drives is well understood and many models

exist in the literature to simulate the vibration behaviour of healthy planetary drives.

Vibration behaviour of a planetary drive containing bearing or gear faults, however,

is poorly understood. Very few models exist to simulate the vibration response of a

faulty planetary drive and all of these models focus on gear tooth faults.

• Many methods have been developed to detect localized faults in fixed-axis bearings

and to simulate their vibration signature. Detecting localized faults in planet bear-

ings is more difficult than fixed-axis bearings because of their complicated vibration

transmission path. No published work has been found in the literature which simu-

lates this complicated transmission path and determines the vibration signature of

a planetary drive containing localized planet-bearing faults.

• An assumption commonly made in the bearing-fault-detection literature is that the

impulse due to a localized bearing-fault is proportional to the contact force acting on

a rolling element during impact. None of the published work provides any scientific

justification to this assumption.



Chapter 3

Skidding in High-Speed Bearings

High-speed bearings in a wind-turbine gearbox continue to exhibit a high rate of

premature failure. As high-speed bearings operate under low loads and high speeds,

these bearings are prone to skidding. Yet, most of the existing methods for ana-

lyzing skidding in ball bearings are quasi-static in nature and are limited to axially

loaded bearings. In this chapter we propose a dynamic model, considering elasto-

hydrodynamic (EHD) lubrication theory and gyroscopic effects, to understand the

skidding behaviour of angular-contact ball-bearings under axial and radial loads,

and time-varying speeds. We also derive novel analytical equations to predict the

onset of skidding under these operating conditions. This work will help bearing

engineers to predict the occurrence of skidding at the design stage for axial as well

as radial loading conditions and make suitable design changes to improve bearing

reliability.

3.1 Introduction

Bearings operating under high speeds and low loads are prone to skidding, i.e., gross sliding

of rolling elements on raceways. Skidding occurs when the tractive forces between rolling

elements and raceways are not enough to overcome drag and inertial forces. Skidding is

known to cause excessive frictional heat generation and high surface shear stress. This

can lead to premature bearing failure, long before classical fatigue failure. For a given

speed and bearing geometry, a minimum load must be applied on the bearing to prevent

it from skidding.

Various skidding models are available in the literature to calculate this minimum load,

but most of these models are quasi-static and are limited to axially-loaded bearings. A

brief review of these models is provided in chapter 2. The review suggests that almost

all the skidding prediction methods in literature are based on time-consuming numerical

31
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models. Some empirical criteria are also available to predict the minimum load required to

avoid skidding, but these criteria are also limited to axially-loaded bearings. Wind-turbine

bearings operate under combined axial and radial loads. This calls for development of

simple methods to predict the occurrence of skidding at the design stage in bearings

operating under these conditions.

Skidding models for ball bearings available in the literature provide a good under-

standing of the skidding behaviour of bearings operating under constant axial loads and

steady speeds. However, limited amount of work has been done on skidding under com-

bined axial and radial loads, and skidding behaviour under time-varying speeds has not

been studied so far. In this chapter, we explore the skidding characteristics of angular-

contact ball-bearings under both axial and radial loads as well as time-varying speeds.

There are five main contributions of this chapter.

1. A mathematical model to analyze the skidding behaviour of angular-contact ball

bearings (section 3.2). The model includes gyroscopic effects. The traction forces

between rolling elements and raceways are calculated using full EHD lubrication

theory. We also consider the variation of slip speed and traction forces along both

the major and minor axes of the contact ellipse.

2. A simple equation to calculate the minimum load required to prevent skidding in

bearings operating under constant axial loads and constant speeds (section 3.3.2).

The benefits of the proposed equation are evaluated against the skidding criteria of

Hirano [59] and Kliman [79].

3. Description of rolling-element motion and underlying skidding mechanism in a bear-

ing operating under combined axial and radial loads (section 3.4). We also demon-

strate that the skidding mechanism under combined loading conditions is different

from that under axial loading conditions, and any skidding criterion developed for

thrust bearings does not work for bearings operating under combined loads.

4. Derivation of a simple analytical method to predict the extent of skidding region

inside the load zone of a bearing operating under combined axial and radial loads

(section 3.4.2). The proposed method also gives us the minimum load required to

create a rolling-contact region (where no skidding takes place) inside the load zone.

5. For bearings operating under time-varying speeds, we show how amplitude and

frequency of speed fluctuation influence the skidding behaviour. We also derive an

analytical equation to predict onset of skidding in bearings operating under time-

varying speeds (section 3.5.1).
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Figure 3.1: (a) Forces acting on a rolling element; (b) Geometrical compatibility
between ball and raceways

3.2 Numerical Model Description

We perform the skidding analysis in two steps. In the first step we use a quasi-static model

to calculate load distribution on the individual rolling elements. In the second step, we

use a dynamic model along with an EHD lubrication model to analyze the motion of

rolling elements inside a bearing. EHD model utilizes the load distribution, calculated in

the first step, to determine traction forces and moments acting between rolling elements

and raceways. The analysis steps are described in detail in the following paragraphs.

3.2.1 Quasi-Static Analysis of Internal Load Distribution

An external load applied to a bearing raceway is distributed among the rolling elements.

If an axial load is applied to a bearing then all the rolling elements share equal load. From

figure 3.1a, we can write the force balance equations for a single rolling element as

Ficosβi + Fc = Focosβo (3.1a)

and

Fisinβi = Fosinβo =
Fa
z
, (3.1b)

where Fi and Fo are the contact forces acting between a rolling element and inner and

outer raceways respectively, βi and βo are inner and outer contact angles, Fc is the cen-

trifugal force, Fa is the axial force acting on the bearing, and z is the number of rolling

elements.

Geometrical compatibility between a rolling element and raceway grooves (figure 3.1b)
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Figure 3.2: Geometry and contact dimensions of two elastic solids in contact

gives

(Ro − r)cosβo + (Ri − r)cosβi = cosβ(Ro +Ri − 2r), (3.2)

where r is the rolling-element radius, β is the theoretical contact angle, Ri and Ro are the

inner and outer raceway curvatures. During the derivation of equation 3.2, we neglect the

effect of elastic deformation between rolling elements and raceways. We solve equations 3.1

and 3.2 numerically to get the contact angles (βi and βo) and the contact forces (Fi and

Fo) for bearings operating under pure axial loads.

In case of a bearing operating under combined axial and radial loads the magnitude

of the force carried by an individual rolling element depends upon the internal geometry

of a bearing, the number of rolling elements in contact and the instantaneous location of

the rolling element inside the load zone.

In this study, we use Hertz elastic theory [57] to determine the contact force between

rolling elements and raceways. According to Hertz theory, the contact force (F ) between

two elastic solids can be expressed in terms of the maximum deformation (δ) at the centre

of a contact ellipse as

F = Kδ3/2. (3.3)

Here K is the stiffness parameter given by

K =
πκE ′

3ξ

√
3εR

ξ
. (3.4)

In equation 3.4, κ is the ellipticity parameter, ξ and ε are the elliptical integral of first

and second kind,R is the effective radius of curvature of contacting bodies, and E ′ is the
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effective Young’s modulus defined as

E ′ =
2

1−ν2
a

Ea
+

1−ν2
b

Eb

, (3.5)

where ν is the poisson’s ratio, E is the Young’s modulus, and subscripts a and b represent

the two contacting bodies. If the contacting bodies are of same material, i.e., νa = νb = ν

and Ea = Eb = E then from equation 3.5 effective Young’s modulus becomes

E ′ =
E

1− ν2
. (3.6)

Effective radius of curvatureR for an elastic contact is defined in terms of the effective

radii of curvatures in x and y directions (Rx and Ry), such that

1

R
=

1

Rx

+
1

Ry

. (3.7)

Effective radii of curvatures Rx and Ry are defined as

1

Rx

=
1

rax
+

1

rbx
(3.8a)

and
1

Ry

=
1

ray
+

1

rby
, (3.8b)

where rax, ray, rbx and rby are the radii of curvatures of the contacting bodies in the x and

y directions as shown in figure 3.2. For the case of a ball bearing these radii of curvatures

can be calculated as: (i) rax = ray = r, rbx = ri and rby = −Ri (for the contact between a

ball and inner race); (ii) rax = ray = r, rbx = −ro and rby = −Ro (for the contact between

a ball and outer race). Here solid a is the ball, solid b is the contacting raceway, and ri

and ro are the radii of inner race and outer race.

Brewe and Hamrock [16] derive simplified expressions for κ, ξ and ε using linear regres-

sion, which are given by

κ = 1.0339

(
Ry

Rx

)0.6360

, (3.9a)

ε = 1.0003 +
0.5968

Ry/Rx

, (3.9b)

and

ξ = 1.5277 + 0.6023ln

(
Ry

Rx

)
. (3.9c)
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Figure 3.3: Quasi-static model to determine the internal load distribution under
combined axial and radial loads

Now, we have all the ingredients to calculate the combined effective stiffness parameter

for a rolling element as [50]

Keff =
1

{(
1

Kinn

)2/3

+
(

1
Kout

)2/3
}3/2

, (3.10)

where Kinn and Kout are the stiffness parameters for inner- and outer-race contacts defined

by equation 3.4. In order to derive equation 3.10 we assume that the contact angles

between a rolling element and inner and outer raceways are same, i.e., βi = βo = β.

This assumption is valid for the bearings operating at low or medium speeds. Since wind

turbine bearings operate at the maximum speed of 1500-1800 rpm, it is reasonable to

make this assumption. For the bearings operating at very high speeds, difference between

contact angles can be substantial because of large centrifugal force acting on a rolling

element and the quasi-static formulation described here might not be adequate.

The next step is to calculate the contact deformation of the rolling elements. Assuming

that the raceways are rigid and there are no clearances between rolling elements and

raceways, the deformation along the contact line of a rolling element located at an angle

θi (figure 3.3) can be calculated as

δi = (CθiCβ, SθiCβ, Sβ)



δx

δy

δz


 , (3.11)

where Cα = cos(α), Sα = sin(α), and (δx, δy, δz)
T is the displacement vector of the inner

race.
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Contact forces between the rolling element located at θi and raceways are

Fi = Fo = Fe = Keff〈δi〉3/2, (3.12)

where 〈〉 is the Macaulay’s bracket defined as

〈δi〉 =

{
δi for δi ≥ 0

0 for δi < 0.
(3.13)

A positive value of δi represents the deformation of the contacting surfaces, which gives

non-zero contact force; while a negative value of δi represents the separation between the

contacting surfaces, which gives zero contact force.

Now we can calculate the reaction forces (Fx, Fy and Fz) at the inner race by adding

the individual contact forces acting on the rolling elements. Therefore,



Fx

Fy

Fz


 = −

z∑

i=1

Keff〈δi〉3/2 (CθiCβ, SθiCβ, Sβ)T . (3.14)

Axial and radial forces acting on the inner race are Fa = −Fz and Fr =
√
F 2
x + F 2

y ,

respectively.

Internal load distribution on the rolling elements is determined by using an iterative

approach. At each iteration, equations 3.11 to 3.14 are solved numerically to get the axial

and the radial forces (Fa and Fr). These forces are then compared to the applied forces

on the inner race. Iterations terminate when the calculated axial and radial forces are

equal to the applied ones. The method outlined above does not account for changes in the

bearing stiffness caused by the movement of the rolling elements inside a load zone. In his

detailed study While [126] finds that the fluctuations in the stiffness due to these factors are

less than 0.5% of the total value. The influence of friction forces between rolling elements

and raceways on the internal load distribution is also ignored in the current analysis as

these friction forces are significantly small compared to the contact forces.

3.2.2 Dynamic Analysis to Analyze Rolling-Element Motion

The dynamic model consists of two reference frames (figure 3.4). The first reference frame

(xyz) is fixed at the centre of the bearing, and the second reference frame (x′y′z′) is a

moving frame with its centre attached to a rolling element. Each rolling element has

four degrees of freedom: three rotational degrees of freedom about its centre in moving
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Figure 3.4: (a) Two reference frames used in the dynamic model formulation; (b)
components of the angular velocity of a rolling element in the rotating reference
frame.

reference frame (ωx′ , ωy′ and ωz′), and one rotational degree of freedom about bearing

centre (ωc). The equations governing the motion of a rolling element are derived using

Euler’s equations and are given by



Mx′

My′

Mz′


 = diag

[
2

5
mr2

]


ω̇x′

ω̇y′

ω̇z′


+




0 −ω′z ω
′
y

ω
′
z 0 −ω′x

−ω′y ω
′
x 0


 diag

[
2

5
mr2

]


ωx′

ωy′

ωz′


 , (3.15)

whereMx′i
′

˜
+My′j

′

˜
+Mz′k

′

˜
is the friction-moment vector acting on a ball, ωx′i

′

˜
+ωy′j

′

˜
+ωz′k

′

˜
(= ω
˜b

) is the ball angular-velocity in x′y′z′ frame, ω
′
xi˜

+ ω
′
yj˜

+ ω
′
zk˜

is the angular velocity

of the moving reference frame x′y′z′ with respect to the fixed reference frame xyz and

ω̇ = ∂ω
∂t

. For the system shown in figure 3.4, reference frame x′y′z′ is constrained to rotate

about the z axis with the rolling-element’s orbital speed ωc. Therefore, ω
′
x = ω

′
y = 0 and

ω
′
z = ωc. Putting these values into equation 3.15 gives

Mx′ = I(ω̇x′ − ωcωy′) (3.16a)

My′ = I(ω̇y′ + ωcωx′) (3.16b)

Mz′ = Iω̇z′ , (3.16c)

where I is the moment of inertia of a rolling element (= 2
5
mr2) and m is the mass of a

rolling element.

Now, we determine the equation governing the motion of a rolling element about the

bearing axis (z-axis in the fixed reference frame xyz). To derive this equation, the inter-
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Figure 3.5: Cage model used in the current analysis

action between the rolling elements and the cage must be taken into account. Figure 3.5

shows how the cage interaction is modelled in the current analysis. The cage has one

rotational degree of freedom about the bearing-axis and we ignore the clearance between

the rolling elements and the cage pillars. We also ignore the radial movement of the

cage. The contact between the cage pillars and the rolling elements is modelled by a

spring-damper system. We can write the equation of motion for the cage as

Icageω̇cage =
z∑

i=1

F (i)
cagerp, (3.17)

where Icage is the moment of inertia of the cage, ωcage is the rotational speed of the cage

and rp is the pitch radius. F
(i)
cage is the force between a cage pillar and ith rolling element

given by

F (i)
cage = kcageδ

(i)
cage + ccageδ̇

(i)
cage, (3.18)

where kcage is the cage stiffness, ccage is the cage damping, δ
(i)
cage = rp{θc−θcage−2π(i−1)/z}

is the relative displacement of ith rolling element with respect to cage, δ̇
(i)
cage = rp(ωc−ωcage)

is the relative speed of ith rolling element with respect to cage, θc = θ0
c +

∫ t
0
ωcdt where

θ0
c is the initial position angle of the ith rolling element, and θcage =

∫ t
0
ωcagedt.

In addition to the cage force, rolling elements must also overcome a viscous drag force

imposed by the lubricant within the bearing cavity. This viscous force (Fdrag) is

Fdrag =
π

2
CDρ(ωcrp)

2r2, (3.19)

where CD is the drag coefficient, and ρ is the lubricant density.

By considering the cage and the drag forces, we can now formulate the remaining

differential equation governing the orbital motion of a rolling element as

Icω̇c = −(f
˜
i · i˜
′ri + f

˜
o · i˜

′ro)− F (i)
cagerp − Fdragrp, (3.20)
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Figure 3.6: Coordinate system (x′′y′′z′′) used to formulate EHD lubrication model
showing the contact-patch ellipses for inner-race and outer-race contacts.

where Ic is the moment of inertia of a rolling element about bearing axis (= I + mr2
p),

f is the friction force, and subscripts i and o represent the inner-race and the outer-race

contacts respectively. Equations 3.16 and 3.20 define the complete motion of a rolling

element inside a bearing. We solve these equations for each rolling element, along with

the cage equation 3.17. In order to solve these equations, we need to know the traction

forces acting between rolling elements and raceways.

3.2.3 EHD Lubrication Model to Determine Traction Forces

In this section we use an EHD lubrication model to calculate the friction forces (f
˜
i, f
˜
o) and

moments (Mx′ ,My′ ,Mz′) required to solve equations 3.16 and 3.20. For the calculation,

we introduce a new moving coordinate system x′′y′′z′′ with x′′ and y′′ axes lying in the

plane of the contact-patch and z′′ axis parallel to the contact line (figure 3.6). Note that

the coordinate system x′′y′′z′′ is used for both the inner- and outer-race contacts, and care

must be taken to use the correct contact angle (βi for inner race and βo for outer race).

Let us consider an elliptical contact patch between a rolling element and inner or outer

raceway (figure 3.7). If we take a point P (x′′, y′′) on this contact patch, then the shear

stress (τ) in the Newtonian fluid film trapped between the two contacting solids can be

described as

τ(x′′, y′′) = η(x′′, y′′)
∆u(x′′, y′′)

h
, (3.21)

where η is the lubricant viscosity, h is the film thickness, and ∆u is the slip speed between
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the two contacting surfaces.

Shear stress is the result of the lubricant film shearing, which also generates frictional

heat (given by the product of the shear stress and strain rate). The rise in the lubricant

temperature due to frictional heat changes its effective viscosity. The dependency of

lubricant viscosity on pressure and temperature can be described by the Barus equation [10]

η(x′′, y′′) = η0exp [cηPσ(x′′, y′′)− cηT {T (x′′, y′′)− TR}] , (3.22)

where η0 is the lubricant viscosity at atmospheric pressure and reference temperature TR,

cηP and cηT are viscosity-pressure and viscosity-temperature coefficients respectively, T is

the lubricant temperature, and σ is the contact pressure.

According to the Hertzian theory, the pressure distribution over an elliptical contact

area has an ellipsoidal profile. However, the actual pressure distribution in an EHD

contact is slightly different from the Hertzian pressure because of the relative motion of

the contacting bodies and the hydrodynamic effects. Large differences in the pressure

profile occur at entry and exit of the contact zone. A constriction is formed near the exit

of the contact zone (figure 2.6), which results in a large pressure peak on the upstream side

of this constriction. In the analysis described here, we ignore the changes in the pressure

profile caused by the relative motion and hydrodynamic effects, and use the Hertzian

theory to calculate it. Hertzian pressure distribution over an elliptical contact area is

σ = σmax

√
1−

(
x′′

b

)2

−
(
y′′

a

)2

, (3.23)

where a and b are the dimensions of the elliptical contact patch given by

a =

(
6κ2εFR

πE ′

)1/3

(3.24a)

and

b =

(
6εFR

πκE ′

)1/3

. (3.24b)

Maximum contact pressure σmax is given by

σmax =
3F

2πab
. (3.25)

Crook [30,31] investigates the effect of temperature rise due to film shearing on the

lubricant traction properties. The investigation was based on a Newtonian fluid model

according to which the shear stress in a lubricant film is proportional to the shear-strain
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Figure 3.7: Elliptical contact patch and lubricant film inside the contact zone

rate. Using the Newtonian fluid assumption and equation 3.22, Crook derives a closed-

form expression for the lubricant viscosity, which is given by

η(x
′′, y′′) = η0exp{cηPσ(x′′, y′′)} ln

(√
ψ + 1 +

√
ψ
)

√
ψ(ψ + 1)

, (3.26)

where ψ = η0exp{cηPσ(x′′, y′′)}cηT∆u2/(8Kc) andKc is the lubricant thermal conductivity

(see Crook [30] for the derivation).

In the traction equation 3.21, we assume that the film thickness (h) between the

contacting surfaces is constant throughout the contact patch, and is calculated using the

central film-thickness formula provided by Hamrock and Dowson [50]

h = 2.69Û0.67Ĝ0.53Ŵ−0.067 (1− 0.61exp(−0.73κ))Rx′′ , (3.27)

where Û (= η0uent

E′Rx′′
), Ĝ (= E ′cηP ), and Ŵ (= F

E′R2
x′′

) are the dimensionless parameters

for speed, material and load respectively, uent = riroωi/(ri + ro) and ωi is the inner-race

speed.

In order to determine the traction forces acting on the contact patches, we must first

calculate sliding and spin speeds at the inner and the outer contact interfaces. The sliding

velocities at the centres of the inner and the outer contact-patches due to translational

speed-differential are

∆u
˜
l
i = {r (ωy′sinβi + ωz′cosβi) + ri (ωi − ωc)} i′

˜
− rωx′sinβij′

˜
− rωx′cosβik

′

˜
(3.28a)

and

∆u
˜
l
o = {r (ωy′sinβo + ωz′cosβo) + roωc} i′

˜
+ rωx′sinβoj

′

˜
+ rωx′cosβok

′

˜
. (3.28b)
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The spin velocities caused by the rotational speed-differential are

ω
˜
s
i = (ωy′cosβi − ωz′sinβi) k

˜
′′ (3.29a)

and

ω
˜
s
o = (ωy′cosβo − ωz′sinβo) k

˜
′′. (3.29b)

Let us now determine the expression for the slip velocity at point P (figure 3.7). Spin

velocity at the contact interface results in slip at point P(x′′, y′′) along both x′′ and y′′

directions. These slip speeds are −ωsy′′ along x′′ axis and ωsx′′ along y” axis. Combining

these slip speeds along with th sliding velocities of equations 3.28 gives the resultant slip

velocity at point P as

∆u
˜i/o

(x′′, y′′) = ∆u
˜
l
i/o − ωsi/oy′′i˜

′′ + ωsi/ox
′′j
˜
′′. (3.30)

By this point we have calculated all the parameters required to solve equation 3.21:

viscosity in equation 3.26; film thickness in equation 3.27; and slip speed in equation 3.30.

For a contact patch shown in figure 3.7, the resultant traction force (f
˜
i/o = fx

′′

i/oi˜
′′ +

f y
′′

i/oj˜
′′+f z

′′

i/ok˜
′′) and the traction moment (M

˜i/o = M s
i/ok˜

′′) can be calculated by integrating

equation 3.21. Therefore,

f
˜
i/o = − 1

hi/o

a∫

−a

b∫

−b

ηi/o(x
′′, y′′)∆u

˜
i/o(x

′′, y′′)dx′′dy′′ (3.31a)

and

M
˜

i/o = − 1

hi/o

a∫

−a

b∫

−b

ηi/o(x
′′, y′′)(x′′i

˜
′′ + y′′j

˜
′′)∆u

˜
i/o(x

′′, y′′)dx′′dy′′. (3.31b)

Finally, we can calculate the friction moment terms of equation 3.16 from the traction

forces and moments defined in equations 3.31 as

Mx′ = r
(
f y
′′

o − f y
′′

o

)
, (3.32a)

My′ = r
(
fx
′′

o sinβo − fx
′′

i sinβi

)
+M s

i cosβi +M s
o cosβo, (3.32b)

Mz′ = r
(
fx
′′

o cosβo − fx
′′

i cosβi

)
−M s

i sinβi −M s
o sinβo. (3.32c)

Substitution of equations 3.31 and 3.32 into equations 3.16 and 3.20 gives us the four
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Table 3.1: Bearing properties used by Pasdari and Gentle [99] in their skidding tests

Parameter Value
Number of rolling elements (z) 11
Contact angle (β) 25◦

Ball radius (r) 6.745 mm
Pitch radius (rp) 28.3 mm
Ball mass (m) 10 grams
Raceway curvature radius (Ri/o) 7.05 mm
Material Steel

first-order nonlinear differential equations, which we solve numerically along with the cage

equation 3.17 using a Runge-Kutta solver.

Although the dynamic model formulation described in this section is developed for

an EHD lubrication regime, it is also valid for any other lubrication regime, e.g. mixed

lubrication. We just have to change the traction model and all the equations of motion

remain unchanged.

3.3 Skidding Under Constant Axial Loads and Con-

stant Speeds

The first case we consider is skidding under constant axial loads and constant speeds.

Before we discuss the underlying skidding mechanism for this case, let us first validate the

numerical model described in section 3.2. Figure 3.8 shows the variation in the cage/inner-

race speed ratio (ωcage/ωi) with the applied axial load. It can be observed that at low

values of the applied load, the actual speed ratio is less than its corresponding theoretical

value; and the difference increases as we reduce the applied load. This difference between

the actual and the theoretical speed ratios means that the cage is rotating slower than

what is required for pure-rolling motion, which results in skidding. The experimental

data is taken from Pasdari and Gentle [99]. The geometrical properties of the bearing used

by Pasdari and Gentle are listed in table 3.1, and the lubricant used by them during

skidding tests was a multi-grade motor oil. They do not provide the exact composition of

the lubricant. Therefore, we carry out the analysis for three multi-grade motor oils (SAE

0W-20, SAE 10W-30 and SAE 20W-50). Simulation results are mostly in agreement with

the experimental data.

In figure 3.8, as we decrease the applied load to a very low value the simulation
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Figure 3.8: Comparison of simulation results with the experimental data published
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Table 3.2: Geometrical properties of a typical wind-turbine high-speed bearing

Parameter Value
Number of rolling elements (z) 16
Contact angle (β) 40◦

Ball radius (r) 12.5 mm
Pitch radius (rp) 77.5 mm
Ball mass (m) 64 grams
Raceway curvature radius (Ri/o) 13.125 mm
Material Steel

Table 3.3: Lubricant parameters

Parameter Value
Dynamic viscosity (η0) 0.05 Pa.s
Reference temperature (TR) 30◦C
Viscosity-Pressure coefficient (cηP ) 1.2× 10−8 Pa−1

Viscosity-Temperature coefficient (cηT ) 0.04◦C−1

Thermal conductivity (Kc) 0.125 J/(kgK)

Density (ρ) 890 kg/m3

results start to deviate from the experimental data. There can be many reasons behind

this deviation. One possible reason can be the nonlinear behaviour of lubricant film.

The maximum shear stress over the contact patch varies from 3 to 9 MPa for the given

range of applied loads. These values of shear stress are slightly above the Eyring stress.

Therefore, lubricant might behave nonlinearly; and the linear EHD model used in the

current analysis might not be adequate. Another possible reason can be the effect of

cage-clearance on the cage and the rolling-element motion. This is particularly important

at low loads as cage becomes unstable [41]. This will also explain scatter in the measured

data at low loads. But our main interest here is to determine the minimum load required

to avoid skidding, and the numerical simulations are able to determine this value quite

accurately.

3.3.1 Mechanism of Skidding Under Constant Axial Loads and

Constant Speeds

All the results presented in this chapter hereafter are for an example with the bearing and

the lubricant parameters listed in tables 3.2 and 3.3. Skidding mechanism under constant
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axial loads and constant speeds can be divided into two types.

1. Drag-Sliding. This occurs when the applied load is not enough to generate traction

forces required to overcome the viscous drag acting on a rolling element. Figure 3.9a

shows the variation in the cage/inner-race speed ratio with the applied load. At low

loads, the traction forces at the contact interfaces are not enough to overcome the

drag force, hence the cage speed decreases. Since the drag force is proportional to

the square of the cage speed (equation 3.19), a decrease in the cage speed results in

the drag force reduction. This reduced drag force is balanced by the traction forces.

Decrease in the cage speed from the theoretical speed required for pure-rolling mo-

tion results in gross sliding at the contact interfaces (figure 3.9b). As we increase

the applied load, the cage speed approaches its theoretical value and the sliding

speed decreases. The sliding speed in figure 3.9b approaches zero asymptotically

and never actually becomes zero. This is for the reason that in order to gener-

ate traction forces, some amount of relative slip is required between the contacting

bodies.

2. Gyroscopic-Spinning. In an angular contact ball bearing, a rolling element spins

about an axis (rotation axis in figure 3.10) passing through its centre at an angle β

from the bearing axis. This spinning rolling-element is also forced to rotate about the

bearing axis. As the rolling element rotates around the bearing axis, the direction

of its angular momentum changes continuously. This change in angular momentum

generates a gyroscopic torque which is balanced by the traction forces acting at

the contact interfaces. At low loads, traction forces are not enough to provide

the required gyroscopic torque and rotation axis of the rolling element changes its

orientation and becomes almost parallel to the bearing axis, thereby reducing the

required gyroscopic torque (figure 3.11). Rotational speed of the rolling element (ωb)
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Figure 3.11: Variation in the ball orientation angles with the applied load in
a bearing operating under constant axial loads and constant speed of 1500 rpm.
Orientation of the rotation axis of a rolling element at low and at high loads (P1

and P2) are also shown.

also increases to eliminate the translational speed differential between the rolling

element and the raceways (figure 3.9d). However, the low-load orientation (P1 in

figure 3.11) of the rotation axis causes the rolling element to spin on the raceways,

which results in skidding (figure 3.9c). As we increase the applied load, the traction

forces increase as well, and the rotation axis of the rolling element approaches its

theoretical pure-rolling orientation (P2 in figure 3.11), thereby reducing the spin

speed and skidding.

From the above discussion we can conclude that an axial load applied on a thrust bearing

must be able to overcome the drag force as well as it must be able to provide the required

gyroscopic torque to avoid skidding.

3.3.2 Derivation of Skidding Criterion for Constant Axial Loads

and Constant Speeds

In the previous section we observe that for any given rotational speed a minimum load is

required to prevent skidding. In this section, we derive a simple expression to calculate

this minimum load without having to run the full numerical model of section 3.2. The
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derivation is based on the two assumptions.

1. Contact forces between a rolling element and inner and outer raceways are same,

i.e., Fi = Fo (= Fe); where Fe = Fa/(zsinβ).

2. Contact angles at the inner and the outer contact interfaces are same, i.e., βi =

βo (= β).

If the friction coefficient between a rolling element and raceways is µe then the maximum

friction force at the contact interfaces would be µeFe, and the maximum friction moment

acting on the rolling element to provide the gyroscopic torque will be 2rµeFe. In order

to avoid gyroscopic-spinning, this friction moment must be able to provide the required

gyroscopic torque. Therefore,

2rµeFe ≥ |Iω
˜c
× ω
˜b
|

≥ |Iωcωbsinβ|. (3.33)

Substitution of ωc = ωth
c =

(
1− cosβ

rp/r

)
ωi
2

, ωb = −ωth
b = −

(
rp
r
− cos2β

rp/r

)
ωi
2

, Fe = Fa/(zsinβ)

and I = 2
5
mr2 into equation 3.33 gives

Fa ≥
zmrpω

2
i

20µe

(
1− cosβ

rp/r

)2(
1 +

cosβ

rp/r

)
sin2β. (3.34)

ωth
c and ωth

b mentioned above are the theoretical values of cage and ball speeds.

The friction forces at the contact interfaces must also be able to balance the drag force

in order to avoid drag-sliding. Hence,

2µeFe ≥ Fdrag. (3.35)

Since Fe = Fa/(zsinβ), and substituting Fdrag from equation 3.19 into 3.35 yields

Fa ≥
πCDρ(ωth

c rp)
2r2

4µe

zsinβ. (3.36)

To calculate the minimum load from equations 3.34 and 3.36, we require the value

of the friction coefficient µe. Figure 3.12 shows the variation of the friction coefficient

with slip speed calculated using the EHD lubrication model (described in section 3.2.3).

Initially the friction coefficient increases with slip; but as we increase the slip speed beyond

a certain value (∆upeak), the friction coefficient starts to decrease due to the reduction

in viscosity caused by shear heating. Peak value of the friction coefficient (µpeak) will
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give us the maximum available friction force. If this friction force is not able to satisfy

the drag-sliding and the gyroscopic-spinning conditions, the rolling elements will skid.

So, one option is to use this peak value (µpeak) as µe; but the slip speed corresponding

to the peak value of the traction curve (∆upeak in figure 3.12) could be larger than the

maximum permissible slip, which will not fulfill our aim of avoiding skidding. To overcome

this problem, we define a maximum permissible slip speed ∆umax and use the friction

coefficient at this slip speed as µe (figure 3.12). Therefore, following from equation 3.31a,

µe =
|f
˜

(∆umax)|
Fe

=
∆umax

hFe

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′. (3.37)

Here η(x′′, y′′), defined by equation 3.26, is a function of Fe.

To derive equation 3.37 from 3.31a, we make some simplifications: first, we assume

that the slip speed over the contact patch is constant, ∆u(x′′, y′′) = ∆umax for all x′′ and

y′′; second, we assume that the film thickness and viscosity at outer contact is same as

inner contact, ho = hi(= h) and ηo = ηi(= η). For the results presented in this section we

use 1% of rolling speed as the maximum permissible slip, ∆umax = 0.01rωb. Substituting

equation 3.37 into 3.34 and 3.36 give the following two conditions.

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′ ≥ πhCDρ(ωth
c rp)

2r2

4∆umax

(condition to avoid drag-sliding) (3.38a)

and
a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′ ≥ G0h

∆umax
(condition to avoid gyroscopic-spinning). (3.38b)



52 Skidding in High-Speed Bearings

Here G0 =
mrpω2

i

20

(
1− cosβ

rp/r

)2 (
1 + cosβ

rp/r

)
sinβ. In equations 3.38, η(x′′, y′′), a, b and h are

functions of the applied load Fa. We solve equations 3.38 numerically to get the values of

the minimum applied loads. Equation 3.38a represents the criterion to avoid drag-sliding,

and equation 3.38b represents the criterion to avoid gyroscopic-spinning.

Figures 3.13a and 3.13b show the contour plots of the sliding (∆uli) and the spin (ωsi )

speeds at the inner-race contact. Darker regions in the plots represent sliding/spinning

while the white regions represent no-sliding/no-spinning. It is clear from the plots that

skidding occurs at low loads and high speeds. Minimum loads required to avoid drag-

sliding and gyroscopic-spinning, obtained from equations 3.38, are also plotted on top

of the numerical results (thick black lines). Clearly, the skidding criteria defined by

equations 3.38 are successfully able to identify the regions with skidding. Figure 3.13c

shows a skidding map with different regimes of skidding. In order to avoid the skidding

damage, a bearing must operate in the no-skidding zone of the map.

Using equations 3.38, we can quickly generate the skidding map (like the one shown

in figure 3.13c) for any bearing without having to run the time-consuming full numerical

model. According to the map shown in figure 3.13c, load required to prevent drag-sliding

is always smaller than the load required to prevent gyroscopic-spinning. But, this might

not always be the case. Depending on the bearing geometry, it is possible to have a case

in which load required to prevent drag-sliding is more than the load required to prevent

gyroscopic-spinning (see appendix A).

Now, let us compare the proposed skidding criterion (equations 3.38) with the following

conventional criteria found in the literature.

1. Hirano’s [59] criterion to avoid skidding in ball bearings under axial load,

Fa ≥
zFc
0.1

. (3.39)

2. Kliman’s [79] criterion to avoid skidding in ball bearings under axial load,

Fa ≥ zFctanβ. (3.40)

Figures 3.13a and 3.13b show the minimum load predicted by the three skidding criteria

(Hirano, Kliman and the one proposed here) along with the numerical simulations results.

Skidding zones predicted by the new proposed criteria are better than the Hirano’s and

Kliman’s criteria for both the drag-sliding and the gyroscopic-spinning regimes. Another

advantage of the proposed criteria over Hirano and Kliman is its dependency over the

lubricant traction properties. Figure 3.14 shows the skidding behaviour of the exam-
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Figure 3.13: (a) Contour plot showing variation in sliding speed (m/s) at inner-race
contact (∆uAl ) with applied axial load and inner-race speed, along with the Kliman’s
criterion (equation 3.40), Hirano’s criterion (equation 3.39) and new proposed drag-
sliding criterion (equation 3.38a) (b) Contour plot showing variation in spin speed
(rad/s) at inner-race contact (ωAs ) with applied axial load and inner-race speed along
with proposed gyroscopic-slip criterion (equation 3.38b) (c) Skidding map for axially
loaded bearing showing different regimes of skidding
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Figure 3.14: Slip speed variation with axial load for two lubricants (L1 and L2)
with different viscosity-pressure coefficients; remaining properties of both lubricants
are same (table 3.3). Skidding criteria predicted by Hirano and Kliman along with
the new proposed method are shown.

ple bearing with two lubricants having different viscosity-pressure coefficients. Since the

criteria provided by Hirano and Kliman do not take into account lubricant traction be-

haviour, they predict the same minimum load for both cases; while the skidding criterion

proposed here predicts different minimum load for each case and the predicted loads are

close to the minimum loads required to avoid skidding for the slip-curves calculated using

the numerical simulations.

3.4 Skidding Under Combined Axial and Radial Loads

In the presence of both axial and radial loads, a load zone is formed inside a bearing and

the contact force is not uniformly distributed among the rolling elements. The rolling

elements lying inside this load zone are loaded while those outside are unloaded. Due to

the formation of this load zone, motion of a rolling element and its skidding behaviour

are different from what we observed in the previous section where load was uniformly

distributed on the rolling elements.
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3.4.1 Mechanism of Skidding Under Combined Loads

To explain the skidding mechanism under combined loading conditions, we take an exam-

ple where the bearing of table 3.2 is operating under an axial load of 4.3 kN and a radial

load of 4 kN. The maximum contact force on a rolling element is 1300 N and the size of

the load zone is 180◦; rotational speed of the inner race is 1500 rpm.

Figure 3.15 shows the motion of a rolling element during one complete rotation. Ar-

row 1 (figure 3.15a) represents the actual angular momentum of a rolling element or its

instantaneous rotation-axis and arrow 2 is the “pure-rolling” vector which represents the

motion of a rolling element without any skidding. If arrow 1 is aligned with arrow 2 then

skidding does not take place. Motion of the rolling element can be divided into following

five regions.

1. Sliding-contact region at entry (A to B). When a rolling element enters the load

zone, its rotation-axis (arrow 1) is not aligned with the pure-rolling vector (arrow 2)

which results in gross slip between the rolling element and the raceways. This gross

slip is primarily caused by the translational speed differential between the contacting

bodies (rolling element and raceways). Therefore, we call this region sliding-contact

at entry (point A to B in figure 3.15). Figure 3.16a shows the variation of the

maximum slip speed at the inner contact patch (∆ui) with the orbital position of

a rolling element. A high value of slip speed can be observed in the sliding-contact

region at entry. By looking at the sliding velocity distribution over the contact

patch between the rolling element and the inner race (figure 3.16b), it is clear that

the sliding velocity is nearly constant in both the direction and the magnitude

throughout the contact patch - which shows the existence of the translational speed

differential between the contacting surfaces. As the rolling element moves further

into the load zone, friction torque acting on it starts to increase and its rotation axis

begins to align itself with the bearing axis. At point B (end of the sliding-contact

region) the rotation axis becomes parallel to the bearing axis. The rotational speed

of the rolling element (ωb) also starts to increase from its theoretical value (ωth
b ) and

at point B it becomes ω′b (≈ ωth
b /cosβ) (see figure 3.17) which is the speed required

to eliminate the translational speed differential between the rolling element and the

raceways. Translational-sliding does not take place beyond this point.

2. Spin-contact region (B to C). At point B, the rotation axis of the rolling element

is parallel to the bearing axis, which produces a spin component of the rotational

speed along the contact line (z′′ axis in figure 3.6). The magnitude of this spin

speed is ω′bsinβ (at point B). The rolling element spins between points B and C
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Figure 3.16: (a) Variation in the maximum slip speed at the inner-race contact
with the orbital position of a rolling element; (b),(c),(d) Slip speed distributions on
the inner contact patches at three orbital positions P1, P2 and P3; Fa = 4.3 kN, Fr
= 4kN, ωi = 1500 rpm
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on the inner and the outer contact patches, which results in gross slip. Therefore,

we call this region spin-contact region as slip is caused by relative spinning of the

contacting surfaces rather than the translational speed differential. Figure 3.16c

shows the distribution of the slip velocity over the inner contact patch. A circular

pattern of the slip lines clearly shows the existence of the relative spinning between

the contacting surfaces and absence of any translational speed differential. As the

rolling element moves from point B to C, the rotation-axis starts to rotate towards

the pure-rolling vector (arrow 2) in the radial plane (y′z′) and the slip speed starts

to decrease (figure 3.16a). At point C, the rotation-axis aligns itself with the pure-

rolling vector, and neither translational sliding nor spinning takes place beyond this

point. The magnitude of the maximum slip speed at the contact patch in this region

is less than that at the sliding-contact region at entry but significantly more than

the rolling-contact region.

3. Rolling-contact region (C to D). In this region, no gross slip takes place between

the rolling elements and the raceways. Although some slippage is needed between

the contacting surfaces to generate the required traction forces, but the magnitude

of such slip speed is much less than what we observe in the previous two skidding

regions (figure 3.16a). The rotation-axis is aligned with the pure-rolling vector

throughout this region.

4. Sliding-contact region at exit (D to E). At point D, the contact force acting on

the rolling element is just enough to provide frictional torque required for rolling

without skidding. As the rolling element moves beyond this point towards E (load-

zone exit), the contact force decreases and the frictional torque is no longer able

to provide the gyroscopic torque required for pure-rolling motion. This results in

gross slip. Since this slip occurs when the rolling element is about to leave the

load zone, we call this region sliding-contact region at exit. Figure 3.16d shows the

distribution of slip velocity over the inner contact patch. The distribution is similar

to what we observed during the sliding-contact at entry, and shows the existence of

translational speed differential.

5. Unloaded region (E to A). In this region, there is no contact force acting on the rolling

element. Therefore, in the absence of any frictional torque, angular momentum of

the rolling element remains constant throughout this region (figure 3.15b). Since

arrow 2 is not aligned with arrow 1, high gross slip occurs at the contact interfaces

(figure 3.16a). However, damage caused by this slippage in the absence of any

contact force is negligible compared to the skidding damage inside the load zone.
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Figure 3.17: Variation in the rotational speed of a rolling element with orbital
position of a rolling element under combined loading condition; Fa = 4.3 kN, Fr =
4kN, ωi = 1500 rpm

We observe that the skidding mechanism under combined loading condition is different

from the skidding under pure axial loads. For the case of a bearing operating under axial

loads, if the load is less than a minimum required value then the rolling elements skid

all through their orbital motion uniformly. On the other hand, skidding pattern changes

with the location of a rolling element inside the bearing operating under the combined

loading conditions. Sliding-contact and spin-contact regions are the two critical zones

where substantial damage to the rolling elements and raceways can take place. Therefore,

it is important for a bearing designer to know their size for a given set of loads and bearing

geometry.

3.4.2 A Simple Analytical Method to Determine the Extent of

the Skidding Region Inside the Load Zone

In the previous section we have investigated bearing skidding under combined axial and

radial loads. The maximum skidding occurs within the two regions formed inside the

load zone: (i) sliding-contact region at entry, and (ii) spin-contact region. We calculate

the extents of these regions using the full numerical model of section 3.2, which is time
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Figure 3.18: Angular momentum of a rolling element at the boundaries of different
skidding regions inside load zone

consuming. In this section we derive a simple analytical method to calculate the length∗

of sliding-contact and spin-contact regions for a given bearing geometry and applied load

and speed. The approach is based on Newton’s second law of motion. We know the

angular momentum of a rolling element at the boundaries of different skidding regions

inside a load zone (figures 3.18 and 3.19), but we do not know quantitatively how this

angular momentum changes inside these skidding regions. Therefore, according to New-

ton’s second law of motion, we calculate the change in the angular momentum caused by

a skidding region and we equate it to the impulse due to friction moment acting on a

rolling element in that skidding region. This gives us the extent of the skidding region.

3.4.2.1 Extent of the Sliding-Contact Region at Entry

Figure 3.18 shows the sliding-contact and the spin-contact regions represented by the

angles θ1 and θ2 respectively. Let us first consider the sliding-contact region. In the

previous section we have observed when a rolling element passes through an unloaded

region, its angular momentum remains unchanged because of the absence of any contact

force. Therefore, the angular momentum of a rolling element when it enters the load zone

∗‘length’ suggests a distance in metres, but the calculated ‘extent’ is in radians. We will use the terms
‘extent’ and ‘length’ interchangeably.
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regions. Directions of angular-momentum vectors are consistent with figure 3.18.

at point A (H
˜ θs

) is approximately equal to the angular momentum at the point of exit

from the load zone, point E (H
˜ θe

). This gives

H
˜ θs

= H
˜ θe

, (3.41)

where θs and θe are the angles corresponding to the start and the end of the load zone.

If we ignore the change in angular momentum caused by the sliding-contact region at

exit (as it is small compared to the sliding-contact region at entry) then the angular mo-

mentum at point E can be approximated by pure-rolling angular-momentum†. In the mov-

ing reference frame x′y′z′ (figure 3.4), pure-rolling angular-momentum is −Iωth
b (sinβj

˜
′ +

cosβk
˜
′). Using this expression and by transforming equation 3.41 from the moving refer-

ence frame x′y′z′ to the fixed reference frame xyz, we get

H
˜ θs

= H
˜ θe

= −Iωth
b (sinβj

˜
′ + cosβk

˜
′)

= −Iωth
b (sinβcosθei˜

+ sinβsinθej
˜

+ cosβk
˜

). (3.42)

At point B (transition point between sliding-contact region at entry and spin-contact

region), rotation-axis of the rolling element becomes parallel to the bearing axis and

†By pure-rolling angular-momentum, we mean the theoretical value of the angular momentum required
for pure-rolling motion
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rotational speed of the rolling element increases from ωth
b to ω′b (= ωth

b /cosβ) in order to

eliminate the translational gross sliding (see section 3.4.1 for the detailed explanation).

Thus, the angular momentum at point B can be calculated as

H
˜ θ1

= −Iω′bk˜
. (3.43)

The change in angular momentum between points A and B is

∆H
˜ AB

= H
˜ θ1
−H
˜ θs

= −Iω′bk˜
+ Iωth

b (sinβcosθei˜
+ sinβsinθej

˜
+ cosβk

˜
)

= −Iωth
b (−sinβcosθei˜

− sinβsinθej
˜

+ tanβsinβk
˜

). (3.44)

This change in angular momentum must be provided by the moment due to friction

forces acting on the rolling element. In order to determine the frictional moment acting

on the rolling element between points A and B, we must know the direction as well as the

magnitude of the friction forces acting at the contact interfaces. We make the following

simplifications/assumptions to calculate the direction and the magnitude of these friction

forces.

• We assume that the variation in the contact force between rolling elements and

raceways inside a load zone is parabolic, i.e.,

Fe(θ) =

{
4Fmax
e

θL
(θ − θs)

(
1− θ−θs

θL

)
for θs ≤ θ ≤ θe

0 for θ < θs or θ > θe,
(3.45)

where θL = θe − θs and Fmax
e is the maximum contact force acting on a rolling

element inside a load zone.

• When a rolling element enters a load zone, its rotation-axis is not aligned with

the pure-rolling vector. Therefore, the translational velocity of the inner contact-

point (located on the rolling element) along the rolling direction‡ is less than the

translational velocity of the corresponding contact point located on the inner race.

This results in sliding along the −x′′ axis. Similarly, the translational speed of

the outer contact-point (located on the rolling element) along the rolling direction

is greater than the corresponding contact point located on the outer race, which

results in sliding along the x′′ axis. Hence, friction forces will act in the x′′ axis§ at

‡Rolling direction is parallel to the minor axis x′′ of the contact ellipse (figure 3.7)
§Direction of the friction force is opposite to the slip velocity
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the inner-race contact and in the−x′′ axis at the outer-race contact. Mathematically

these friction forces can be written as

f

˜
i = fii

˜
′′ = −fii

˜
′ (3.46a)

and

f

˜
o = −foi

˜
′′ = foi

˜
′, (3.46b)

where fi and fo are the magnitudes of the friction forces acting at the inner-race and

the outer-race contacts. Equation 3.46 gives us the directions of the friction forces.

The direction of the friction force changes continuously as a rolling element passes

through the sliding-contact region. At any location inside the sliding-contact region,

the friction force will have components along both the minor and the major axes of

the contact ellipse. It is difficult to calculate the precise direction at a given location

inside the sliding-contact region without knowing the instantaneous slip velocities.

Therefore, we assume that the friction force will act in the same direction (defined

by equation 3.46) throughout the sliding-contact region. The directions defined by

equation 3.46 are along the rolling direction (minor axis of a contact ellipse), and

the friction forces acting along the major axis of a contact ellipse are ignored.

• In order to determine the magnitude of these friction forces, we must first calculate

the coefficient of friction acting between rolling elements and raceways in the sliding-

contact region. As observed in section 3.3, value of the friction coefficient between

rolling elements and raceways depends upon the contact force (Fe) and the sliding

speed (∆u). Therefore, as the contact force and sliding speed vary inside a load zone,

friction coefficient also varies. We know the contact load variation (equation 3.45)

but we do not know how the sliding speed varies inside the load zone. Therefore,

to simplify the analysis we assume that the friction coefficient will remain constant

throughout the sliding-contact region. In order to determine its value we use the

average contact force (Favg = 2Fmax
e /3)¶ and sliding speed at point A (∆uA). Thus,

µAB =
|f
˜

(∆uA)|
Favg

=
∆uA
hFavg

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′. (3.47)

Using equation 3.47 and assuming that the inner- and outer-race contact forces are

¶Average contact force: Favg = 1
θL

∫ θe
θs
Fe(θ)dθ = 2

3F
max
e
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same, we can calculate the magnitude of friction forces as

fi = fo = µABFe(θ). (3.48)

Our next step is to calculate the sliding speed at point A (∆uA in equation 3.47). The

rotational velocity of a rolling element at point E is

ω
˜θe

= −ωth
b

(
cosβk

˜
′ + sinβj

˜
′
)

= −ωth
b

(
sinβcosθei˜

+ sinβsinθej
˜

+ cosβk
˜
)
. (3.49)

This velocity remains unchanged between points E and A, and by transforming equa-

tion 3.49 from fixed to moving reference frame we can calculate the rotational velocity at

point A as

ω
˜θs

= −ωth
b

{
sinβcosθe

(
sinθsi˜

′ + cosθsj
˜
′
)

+ sinβsinθe

(
−cosθsi˜

′ + sinθsj
˜
′
)

+ cosβk
˜
′
}
.

(3.50)

Substituting equation 3.50 into the sliding speed equation 3.28a gives the three compo-

nents of the sliding speed at the inner-race contact patch

∆ux
′

A = −rωth
b

{
sin2β (cosθecosθs + sinθesinθs) + cos2β

}
+ ri (ωi − ωc) (3.51a)

∆uy
′

A = rωth
b sin2β (cosθesinθs − sinθecosθs) (3.51b)

∆uz
′

A = rωth
b cosβsinβ (cosθesinθs − sinθecosθs) . (3.51c)

From equations 3.51 we can calculate the sliding speed at point A as

∆uA =

√
(
∆ux

′
A

)2
+
(

∆uy
′

A

)2

+
(
∆uz

′
A

)2
. (3.52)

By substituting the value of ∆uA from equation 3.52 into equation 3.47 we can calculate

the friction coefficient in the sliding-contact region (µAB), which gives us the magnitude

of the friction forces acting at the contact interfaces.

At this point, we have all the ingredients required to calculate the friction moment

acting on the rolling element as it passes through the sliding-contact region at entry.

Using equations 3.46, we obtain the expression for the friction moment as

M
˜AB = p

˜
i × f
˜
i + p
˜
o × f

˜
o, (3.53)

where p
˜
i and p

˜
o are the position vectors of the inner- and outer-race contact points given
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by

p

˜
i = r(sinβk

˜
′ − cosβj

˜
′) (3.54a)

and

p

˜
o = r(−sinβk

˜
′ + cosβj

˜
′). (3.54b)

Substitution of equations 3.54 into equation 3.53 and using equation 3.48 yields

M
˜AB(θ) = −2rµABFe(θ)(sinβj

˜
′ + cosβk

˜
′)

= −2rµABFe(θ)(sinβcosθi
˜

+ sinβsinθj
˜

+ cosβk
˜

). (3.55)

The impulse due to this friction torque is

=
˜AB

=
1

ωth
c

θ1∫

θs

M
˜AB(θ)dθ, (3.56)

using θ = ωth
c t and provided ωth

c stays constant. We assume that the primary component

of the friction forces (equation 3.46) is acting along the rolling direction (minor axis of

the contact ellipse), and neglect the friction forces acting along the major axis. Friction

forces along the major axis will generate a friction moment acting along the x′ axis

(moving reference frame), and this friction moment will influence the impulse in x and y

directions (fixed reference frame). But, the impulse calculation in the z direction will not

be influenced by the friction moment acting along the x′ axis, because k
˜
·i
˜
′ = 0. Therefore,

substituting equation 3.55 into 3.56 and taking the z-component of the impulse gives

=
˜AB

· k
˜

=
1

ωth
c

θ1∫

θs

−2rµABFe(θ)cosβdθ

= −2rµABcosβ

ωth
c

θ1∫

θs

Fe(θ)dθ. (3.57)

We integrate equation 3.57 by using the parabolic load approximation defined in equa-

tion 3.45, which yields

=
˜AB

· k
˜

= −8rµABF
max
e cosβ

3ωth
c θ

2
L

(
−ϑ3 +

3

2
θLϑ

2

)
, (3.58)
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where ϑ (= θ1 − θs) is the size of the sliding-contact region at entry.

This impulse produced by the friction moment must provide the required change in

angular momentum between points A and B. This condition gives

|=
˜AB

· k
˜
| ≥ |∆H

˜ AB
· k
˜
|. (3.59)

Inserting equations 3.58 and 3.44 into equation 3.59 gives the following inequality.

∣∣∣∣−ϑ3 +
3

2
θLϑ

2

∣∣∣∣ ≥
3Iωth

b ω
th
c tan2βθ2

L

8rµABFmax
e

. (3.60)

Solution of equation 3.60 gives us the length of the sliding-contact region at entry (ϑ).

3.4.2.2 Extent of the Spin-Contact Region

Spin-contact region is the region between points B and C in figure 3.18. Point C is

the transition point between the spin-contact and the rolling-contact regions. Angular

momentum at C (H
˜ θ2

) can be calculated from the pure-rolling angular-momentum, i.e.,

H
˜ θ2

= −Iωth
b (sinβj

˜
′ + cosβk

˜
′)

= −Iωth
b (sinβcosθ2i˜

+ sinβsinθ2j
˜

+ cosβk
˜

). (3.61)

We have already calculated the angular momentum at point B (equation 3.43). Thus, the

change in angular momentum between points B and C is

∆H
˜ BC

= H
˜ θ2
−H
˜ θ1

= −Iωth
b (sinβcosθ2i˜

+ sinβsinθ2j
˜
− tanβsinβk

˜
). (3.62)

Like the sliding-contact region, we assume that the friction coefficient between rolling

elements and raceways remains constant throughout the spin-contact region. In order to

determine the value of this friction coefficient, we use the average contact force (Favg) and

the average slip speed acting on the contact patch at point B. From section 3.4.1, we know

that at point B the rolling element is spinning on the contact patch with a speed of ω′bsinβ

(= ωth
b tanβ). Due to this spinning, slip speed at any point P(x′′, y′′) on the contact patch

(figure 3.7) is
√

(x′′)2 + (y′′)2 times the spin speed. The slip speed is maximum at the

two edges lying on the major axis of the contact ellipse, and the value of this maximum

slip speed is aωth
b tanβ. Slip speed at the centre of the contact ellipse is zero. Hence, the
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average slip speed over the contact patch at point B is

∆uB =
1

2
aωth

b tanβ. (3.63)

Using the slip speed described by equation 3.63 and the average contact force (Favg) acting

on the rolling elements, we calculate the friction coefficient for the spin-contact region as

µBC =
|f
˜

(∆uB)|
Favg

=
∆uB
hFavg

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′. (3.64)

We now calculate the spin moment acting on the rolling element during the spin-

contact region. If the contact pressure‖ at a point P(x′′, y′′) on the contact-ellipse is

σ(x′′, y′′, θ), the friction force over a differential element (dx′′dy′′) is µBCσ(x′′, y′′, θ)dx′′dy′′;

and the spin-moment generated by this differential friction force is

µBCσ(x′′, y′′, θ)
√

(x′′)2 + (y′′)2dx′′dy′′.

By integrating this differential spin-moment over the entire contact ellipse, we obtain the

total spin-moment acting on the rolling element as

M
˜BC(θ) = 2

a∫

−a

b∫

−b

µBCσ(x, y, θ)
√
x2 + y2dxdy k

˜
′′

= 2

a∫

−a

b∫

−b

µBC
3Fe(θ)

2πab

√
1−

(x
b

)2

−
(y
a

)2√
x2 + y2dxdy k

˜
′′

=
3µBCΦ(a, b)

πab
Fe(θ)(cosβcosθi

˜
+ cosβsinθj

˜
− sinβk

˜
), (3.65)

where Φ(a, b) =
a∫
−a

b∫
−b

√
1−

(
x
b

)2 −
(
y
a

)2√
x2 + y2dxdy. A factor of two in the above

equation comes from the spin moment contributions by both the inner-race and the outer-

race contacts. The contact patch dimensions (a and b) vary with the contact force, but in

equation 3.65 these are treated as constants and their values are calculated at the average

contact force (Favg) acting on a rolling element. The z-component of the impulse due to

‖Under combined loading conditions, contact pressure varies with θ, because of the variation in the
contact force inside the load zone
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this spin-moment is

=
˜BC

· k
˜

=
1

ωth
c

θ2∫

θ1

M
˜BC · k˜

dθ

=
3µBCΦ(a, b)sinβ

πabωth
c

θ2∫

θ1

Fe(θ)dθ

=
4µBCF

max
e Φ(a, b)sinβ

πabωth
c θ

2
L

(
3

2
θLΘ2 −Θ3 + ϑ3 − 3

2
θLϑ

2

)
, (3.66)

where Θ (= θ2 − θs) is the total size of skidding region (sliding-contact region + spin-

contact region) and ϑ is obtained from equation 3.60.

The impulse due to the spin moment must provide the required change in angular

momentum. Thus, substitution of equations 3.62 and 3.66 into the condition |=
˜BC

· k
˜
| ≥

|∆h
˜BC
· k
˜
| yields the following inequality.

∣∣∣∣
3

2
θLΘ2 −Θ3 + ϑ3 − 3

2
θLϑ

2

∣∣∣∣ ≥
πabIωth

b ω
th
c θ

2
Ltanβ

4µBCFmax
e Φ(a, b)

. (3.67)

Solution of equation 3.67 gives us the combined length (Θ) of the sliding-contact and the

spin-contact regions.

3.4.2.3 Influence of the Applied Load on the Extent of the Skidding Region

In the previous two sections, we derive two analytical equations (equations 3.60 and 3.67)

to calculate the lengths of the skidding regions inside the load zone. In this section we

compare these analytical equations with the full numerical model, and we also analyze

the influence of the applied load on the lengths of these skidding regions.

Figure 3.20 shows the variation in the lengths of the sliding-contact region at entry

(ϑ) and the combined sliding- and spin-contact regions (Θ) with the maximum contact

force acting on a rolling element (Fmax
e ). Lengths of the skidding regions in the figure

are normalized by the length of load zone, i.e., Θ̂ = Θ/θL and ϑ̂ = ϑ/θL. The values

of Θ and ϑ are determined using both the full numerical analysis of section 3.2 and the

simple analytical method described in sections 3.4.2.1 and 3.4.2.2. For each load-case∗∗

shown in figure 3.20, numerical analysis takes around 30 minutes to compute the lengths

of the skidding regions. On the other hand, analytical method takes just a few seconds

to calculate these lengths for all the load-cases. We can make the following observations

∗∗Each data point (circle or cross) in figure 3.20 represents a load-case
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race contact is also shown for the two cases: P1 - applied load is less than F̃e and
rolling-contact region is not present inside the load zone, P2 - applied load is greater
than F̃e and rolling-contact region is present
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Figure 3.21: Variation in the cage speed with applied load under combined axial
and radial loads

from figure 3.20.

• The lengths of the sliding-contact and the spin-contact regions predicted by the

analytical equations are in close agreement with the numerical simulations. This

validates the proposed analytical method.

• The lengths of both the sliding- and the spin-contact regions decrease as we increase

the applied load, and they approach zero value asymptotically. This means that it

is possible to reduce the lengths of these skidding regions by increasing the applied

load. Though, it is not possible to completely eliminate skidding, no matter how

high the applied load is.

• There is a critical load (F̃e) below which Θ = θL (or Θ̂ = 1), i.e., the total length

of the skidding region is equal to the length of the load zone. Therefore, rolling-

contact region does not exist in bearings operating below F̃e (e.g. P1 in figure 3.20),

and skidding takes place throughout the load zone. Figure 3.21 shows the variation

of the cage speed with the maximum contact force acting on a rolling element.

Clearly, if the maximum contact force is below F̃e, the cage speed is lower than

its corresponding theoretical value. This is because in the absence of a rolling-

contact region, all the rolling elements skid inside the load zone; and none of them

is able to drive the cage at the required speed. In the presence of a rolling-contact
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region, all the rolling elements which are within this region do pure-rolling motion.

Consequently these rolling elements are able to drive the cage at the theoretical

pure-rolling speed. For a bearing designer, it is crucial to know the value of this

critical load F̃e for a given bearing. Using equations 3.60 and 3.67 we can easily

calculate this critical load. Since ϑ is always less than θL, ϑ3 < 3
2
θLϑ

2. Therefore,

equation 3.60 becomes

3

2
θLϑ

2 − ϑ3 =††
3Iωth

b ω
th
c tan2βθ2

L

8rµABFmax
e

. (3.68)

Similarly, Θ ≤ θL which means Θ3 < 3
2
θLΘ2, and Θ > ϑ (combined length of the

sliding-contact and the spin-contact regions is always greater than the length of the

spin-contact region). Hence equation 3.67 becomes

3

2
θLΘ2 −Θ3 −

(
3

2
θLϑ

2 − ϑ3

)
=
πabIωth

b ω
th
c θ

2
Ltanβ

4µBCFmax
e Φ(a, b)

. (3.69)

Substituting equation 3.68 into 3.69 and solving for Fmax
e yields

Fmax
e =

Iωth
b ω

th
c θ

2
Ltanβ

3
2
θLΘ2 −Θ3

(
πab

4µBCΦ(a, b)
+

3tanβ

8rµAB

)
. (3.70)

If a bearing is operating at the critical load (F̃e), the length of the combined sliding-

and spin-contact region is equal to the length of the load zone. To determine the

expression for the critical load we substitute Θ = θL into equation 3.70, which gives

F̃e =
2Iωth

b ω
th
c tanβ

θL

(
πab

4µBCΦ(a, b)
+

3tanβ

8rµAB

)
. (3.71)

Equation 3.71 gives us the value of the critical load required for the formation of a

rolling-contact region inside the load zone. The contact-ellipse dimensions a and b,

and friction coefficients µAB and µBC in equation 3.71 are functions of the applied

load. Therefore, equation 3.71 must be solved iteratively.

• Deviation in the cage-speed from its pure-rolling value is often used as an indicator

of skidding, which is true for the bearings operating under axial loads. However, for

the bearings operating under combined axial and radial loads, deviation in the cage

speed does not provide us the complete information about the skidding behaviour.

That is even if there is no deviation in the cage speed (for loads greater than F̃e),

††Inequality (≥) in equation 3.60 is replaced by equality (=) as we are interested in the minimum
length of the skidding region required to provide the desired change in angular momentum
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skidding can take place in the sliding- and spin-contact regions.

• Equation 3.60, used to calculate the length of the sliding-contact region, is not valid

if Fmax
e < F̃e or Θ > θL. This is because under this condition a rolling-contact

region does not get created inside the load zone and angular momentum at point E

cannot be approximated by the pure-rolling value. Hence, the derivation described

in section 3.4.2.1 breaks down.

• The value of the critical load (F̃e) predicted by the analytical method is slightly

different from the one predicted by the numerical analysis (figure 3.20). As we

approach the critical load from a higher load value, the normalized length of the

combined skidding region predicted by the analytical method increases smoothly;

but the normalized length predicted by the numerical model suddenly jumps to

1. This is because while deriving the analytical solution, we ignore the formation

of a sliding-contact region at exit. As we move towards the critical load from a

higher load, the length of the rolling-contact region decreases. At a certain load,

the rolling-contact region completely disappears and the rolling element transits

from the spin-contact region directly into the sliding-contact region at exit, and the

length of the skidding region becomes equal to the length of the load zone. Hence,

at this load, the value of the normalized length of the skidding region predicted by

the numerical model jumps to 1. On the other hand, the analytical method does

not take into account the formation of a sliding-contact region at exit. In this case,

the rolling-contact region extends up to the end of the load zone. As we decrease

the load further, the length of the rolling-contact region decreases smoothly until

it reaches zero. This explains the smooth increase in the normalized length and a

small error in the prediction of the critical load.

The analytical method proposed here tells us the extent of the skidding region as well

as the minimum load required to establish a rolling-contact region inside a load zone.

The assumptions made during the derivation limit the scope of the method, but they

also allow us to obtain some interesting new analytical results. One limitation of the

analytical solution is that it does not tell us anything about the variation in the slip

speeds inside the skidding region, which is important to calculate the amount of damage

caused by skidding. We should note here that although the analytical method is derived

for a Newtonian fluid under an EHD lubrication regime, the method is applicable to a

non-Newtonian fluid or a mixed lubrication regime. We have to change only the way the

friction coefficients in the skidding regions are calculated.
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3.5 Skidding Under Constant Axial Loads and Time-

Varying Speeds

So far we have considered skidding under constant speed conditions; but in some cases, for

example wind turbines, bearing speed might vary with time. Therefore, in this section, we

will analyze the skidding behaviour of bearings operating under constant axial loads and

time-varying speeds to understand the effect of speed variation on skidding behaviour.

For simplicity, we assume that the speed variation is sinusoidal, i.e.,

ωi = ω0 + ∆ωsin(Ωt), (3.72)

where ω0 is the mean speed, ∆ω is the amplitude of speed fluctuation, and Ω is the

frequency of speed-fluctuation.

3.5.1 Skidding Mechanism Under Time-Varying Speeds

In order to quantify the effect of speed-fluctuation amplitude ∆ω and frequency Ω on

the skidding behaviour, we solve the numerical model of section 3.2 along with the inner-

race speed profile described by equation 3.72 to calculate the slip speeds at the contact

interfaces for various values of ∆ω and Ω. Figure 3.22a shows a skidding map for the

example bearing obtained from the numerical simulations under a mean speed (ω0) of

1500 rpm and a constant axial load of 3.5 kN. The Z-axis of the map represents the

“PV-factor”, which is defined as the product of the contact force and sliding speed. If a

bearing is operating under a time-varying speed, then the PV-factor will also vary with

time. Therefore, we calculate a time-averaged value of the PV-factor over n cycles of

speed-fluctuation. Mathematically, it is calculated as

PV-factor =
1

nTc

nTc∫

0

Fe(s)|∆u˜
(s)|ds (3.73)

where Tc is the time-period of speed fluctuation (= 2π/Ω). For the skidding map of

figure 3.22a, PV-factor is averaged over five cycles i.e., n = 5.

Higher values of the PV-factor represent the possibility of skidding damage. Therefore,

based on PV-factor values, the skidding map of figure 3.22a can be divided into two

regions: “Skidding zone” with high PV-factor and “No-skidding zone” with almost zero

PV-factor. We can make the following observations from the skidding map of figure 3.22a.

1. Skidding behaviour of a bearing under time-varying speeds depends on the ampli-
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tude and frequency of speed fluctuation.

2. For a given fluctuation amplitude (∆ω), PV-factor suddenly increases as we increase

the fluctuation frequency beyond a critical value. For example, in the skidding

map of figure 3.22a high values of PV-factor can be observed when the fluctuation

frequency is increased above 40 Hz for the fluctuation amplitude of 500 rpm. Let

us call this critical frequency the “skidding onset frequency”. If the fluctuation

frequency is above this value then the bearing will start to skid. Similarly, we can

also define the “skidding onset amplitude” for a given fluctuation frequency.

3. Skidding onset frequency decreases as we increase the speed-fluctuation amplitude

and likewise skidding onset amplitude decreases as we increase the fluctuation fre-

quency. In other words, skidding occurs at high values of the speed-fluctuation

frequency and amplitude.

4. To avoid skidding, speed-fluctuation frequency and amplitude must be less than

their corresponding skidding onset values as defined above.

In order to understand the mechanism of skidding under time-varying speeds in detail,

let us first take a pointA (∆ω = 500 rpm, Ω = 20 Hz) which lies inside the no-skidding zone

of the skidding map of figure 3.22a. Figure 3.22b shows the cage speed variation with time

for the bearing operating at point A. The actual cage speed calculated using the numerical

model follows the applied theoretical speed profile (calculated using equation 3.72), and

hence no skidding takes place. Let us take another point B (∆ω = 500 rpm, Ω = 50 Hz)

which lies inside the skidding zone. In this case, the cage is struggling to catch up with

the applied speed variation (figure 3.22c) because the applied fluctuation frequency is

much higher than the skidding-onset frequency for the fluctuation amplitude of 500 rpm.

Therefore, the traction forces are not able to provide enough acceleration to the rolling

elements to maintain the input speed profile. This results in skidding.

The skidding mechanism under constant axial load and sinusoidal speed variation,

explained here, is different from the skidding mechanism under constant load and constant

speed. Under time-varying speeds, skidding is primarily caused by the variation in the

orbital speed of a rolling element; whereas under constant speed, skidding is caused by

the viscous drag and gyroscopic effects. Now, if we apply the skidding criterion derived

for constant axial load and constant speed (section 3.3.2) to the example considered here

then according to the skidding map of figure 3.13c, the bearing should not skid at the

mean speed of 1500 rpm and axial load of 3.5 kN. However, figure 3.22a clearly shows

that the bearing will skid if ∆ω or Ω are larger than certain values. This proves that
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the skidding criterion derived for stationary operating conditions is not applicable for the

time-varying speeds.

3.5.2 Derivation of Skidding Criterion for Constant Axial Loads

and Time-Varying Speeds

In the previous section, we observe that the occurrence of skidding under constant ax-

ial loads and time-varying speeds depends on the frequency and amplitude of speed-

fluctuation. Skidding takes place if the values of fluctuation frequency and amplitude are

greater than the skidding-onset frequency and amplitude. In this section we will derive a

simple analytical expression to determine the skidding-onset frequency and amplitude for

a given bearing geometry and operating conditions. From the applied inner-race speed

profile (equation 3.72), we can obtain the rolling-element orbital speed and its first deriva-

tive as

ωc =
ωi
2

(
1− cosβ

rp/r

)
= G1{ω0 + ∆ω sin(Ωt)} (3.74a)

and

ω̇c = G1 ∆ω Ω cos(2πΩt), (3.74b)

where G1 = 1
2

(
1− cosβ

rp/r

)
. Equations 3.74 explain why rolling elements skid at high speed-

fluctuation frequencies and amplitudes. Since the orbital acceleration (ω̇c) is proportional

to ∆ω and Ω, large values of these parameters result in large orbital acceleration. This

acceleration must be provided by the friction forces acting between the rolling elements

and the raceways. If the friction forces are not enough to provide the required orbital

acceleration, rolling elements will skid.

Orbital motion of a rolling element inside a bearing is governed by equation 3.20.

Bearing is operating under an axial load, therefore, all the rolling elements will have the

same loading conditions and the cage forces can be ignored. Substitution of Fcage = 0 and

ω̇c from equation 3.74 into equation 3.20 yields

− (fx
′

i ri + fx
′

o ro) = IcG1∆ωΩcos(2πΩt) + Fdragrp. (3.75)

If the maximum friction coefficient between rolling elements and raceways is µe then the

maximum value of the friction force between a rolling element and inner or outer raceway

would be µe times the contact-force; therefore, |fx′i | ≤ µeFi and |fx′o | ≤ µeFo. We also

assume that the contact forces between a rolling element and inner- and outer-race are
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same i.e. Fi = Fo = Fe. Using these conditions we can rewrite equation 3.75 as

µeFe(ri + ro) ≥ |IcG1Ω∆ωcos(2πΩt) + Fdragrp|. (3.76)

We use the peak value of the traction curve (µpeak in figure 3.12) as the maximum friction

coefficient, i.e.,

µe =
|f
˜

(∆upeak)|
Fe

=
∆upeak

hFe

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′, (3.77)

where film thickness h and lubricant viscosity η(x′′, y′′) are calculated at the mean oper-

ating speed ω0.

We can further simplify equation 3.76 by substituting the maximum value of {cos(2πΩt)}
as 1, Fdrag = π

2
CDρ(G1ω0rp)

2r2 (from equation 3.19) and Fe = Fa/(zsinβ), which leads to

Ω∆ω ≤ 2µeFa(ri + ro)

zIcsinβ
(

1− cosβ
rp/r

) − CD
2Ic

πρr3
pr

2ω2
0

(
1− cos

rp/r

)
. (3.78)

Equation 3.78 gives us the skidding-onset values of speed-fluctuation amplitude and fre-

quency for a given bearing geometry and operating conditions, using which we can cal-

culate the boundary between the skidding and no-skidding regions of the skidding map

shown in figure 3.22a without running the full numerical model. Skidding boundary calcu-

lated by equation 3.78 are plotted on top of the skidding map generated using numerical

simulations (figure 3.22a). The proposed equation is successfully able to identify the

skidding region in the map.

3.6 Conclusions

We present a dynamic model, which uses EHD lubrication theory and includes gyroscopic

effects, to study the roll-slip behaviour of angular-contact ball-bearings. We also discuss

the skidding characteristics of these bearings under various operating conditions. Based

on these discussions, we can draw the following conclusions.

• For the case of a bearing operating under constant axial load and constant speed,

a minimum load is required to prevent skidding. The value of this minimum load

depends on the bearing geometry, rotational speed and lubricant properties. We

propose a simple equation to calculate this load without having to run the time

consuming numerical model.
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• We study the ball motion inside a bearing operating under combined axial and

radial loads in detail, and show that the skidding mechanism under these conditions

is different from the skidding mechanism under axially loaded bearings due to the

formation of a load zone. Maximum skidding occurs when a rolling element enters

the load zone. We also identify different regions of skidding inside the load zone.

• We show that it is possible to predict the extents of different skidding regions formed

inside the load zone of a bearing operating under combined axial and radial loads

using a simple analytical method. We derive equations governing the extents of the

sliding-contact and the spin-contact regions. The proposed analytical solution does

not require much computational power and therefore, it can be used as a design

tool.

• For the case of a bearing operating under combined axial and radial loads, a min-

imum load is required for the formation of a rolling-contact region (skidding does

not take place inside this region). If the applied load is below this minimum load

then rolling elements skid through out the load zone, causing the maximum damage

to the bearing. We derive an equation to predict this minimum load for a given

bearing geometry and operating speeds.

• We analyze the skidding behaviour under constant axial loads and sinusoidal speed

fluctuations. For a given fluctuation amplitude, rolling elements start to skid when

the fluctuation frequency is increased above a critical value (skidding-onset fre-

quency). We derive an analytical equation to predict this skidding-onset frequency.

• We also establish that any skidding criteria derived for axial loading conditions

cannot be applied to a bearing operating under combined loading conditions or time-

varying speeds. This is because the underlying skidding mechanism is completely

different in the three cases.



Chapter 4

Fault Detection in Planet Bearings

Planet bearings of wind-turbine gearboxes exhibit a high failure rate and are con-

sidered as one of the most critical components. In order to detect localized faults

in planet bearings using vibration measurements, a detailed knowledge of their vi-

bration signature is required. In this chapter, we develop a dynamic model of

a wind-turbine planetary-drivetrain. The model includes a flexible ring-gear and

a planet bearing with localized faults. We determine the vibration signatures of

planet-bearing faults located on inner race, outer race and rolling elements. We

also calculate the impulse due to a bearing fault, explore its dependence on load

and speed, and investigate how it influences the vibration signatures of faults. The

findings from this chapter will improve the existing detection techniques for planet-

bearing faults in wind-turbine gearboxes.

4.1 Introduction

Planet bearings are considered as one of the most critical components with very high

failure rate [94]. Vibration based techniques are mostly used to detect bearing faults in

wind-turbine gearboxes. In order to detect planet-bearing faults using vibration measure-

ments, a thorough understanding of their vibration signature is required. For example,

we must know how the presence of a planet-bearing fault alters the vibration behaviour

of a planetary drivetrain.

In chapter 2, we review various models available in the literature to simulate vibration

behaviour of bearing containing localized faults. The review suggests that most of these

models are limited to fixed-axis bearings, i.e., bearings whose rotation axes are stationary

with respect to vibration sensors mounted on gearbox housing. The rotation axis of a

planet bearing changes with time due to carrier rotation. Thus, the vibration signature

of a planet bearing is different from a fixed-axis bearing because of the complicated

79
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and time-varying vibration transmission-path. No published work has been found in

the literature which simulates this complicated transmission path and determines the

vibration signature of a planetary drive containing localized planet-bearing faults.

In order to determine the vibration characteristics of planet bearings, dynamics of a

planetary drivetrain containing these bearings must also be considered. Researchers have

developed numerous models of varying complexity to simulate the vibration response of

a healthy planetary drive. We discuss some of these model in chapter 2. Most of these

models do not include a flexible ring-gear and the vibration transmission path between a

ring-planet mesh and a measurement-point fixed on the ring gear is approximated by a

Hann function. Very few analytical models take into account ring-gear deformation. One

such model is proposed by Wu and Parker [129].

Literature review also suggests that an assumption commonly made in the bearing-

fault-detection literature is that the impulse due to a localized bearing-fault is proportional

to the contact force acting on a rolling element during impact, and none of the published

work provide any scientific justification to this assumption.

Bearing-fault and planetary models available in the literature provide a good under-

standing of the vibration behaviour of defective fixed-axis bearings and healthy planetary-

drivetrains. However, vibration response of a planetary drivetrain containing a non-fixed-

axis planet bearing with localized faults (spalls or pits) has not been studied so far. In

this chapter, we determine the vibration signatures of planet-bearings faults using an

analytical model. The main contributions of this chapter are:

1. an analytical planetary-drivetrain model which includes a deformable ring-gear and

localized planet-bearing faults (section 4.2);

2. a closed-form expression for the frequency response of ring gear, in the presence

of different planet-bearing faults, in terms of modal properties of the system (sec-

tion 4.3);

3. the vibration signatures of planet bearings containing localized inner-race, outer-

race and rolling-element faults (section 4.4), validated using experimental results

(section 4.6);

4. identification of different sources of modulation sidebands providing an explanation

for their formation (section 4.4.4);

5. an investigation of the influence of ring-gear flexibility on the vibration signatures

of planet-bearing faults (section 4.5);
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Figure 4.1: Analytical model of a planetary drivetrain with a flexible ring-gear
and a defective planet-bearing

6. calculation of the impulse due to a localized bearing fault and quantification of the

effect of rolling-element speed and load on the impulse value (section 4.7).

4.2 Analytical Model Description

The analytical model (figure 4.1) is developed for spur gears and only considers the in-

plane dynamics of drivetrain components. Sun gear, planet gears and carrier are modelled

as rigid bodies (similar to Lin and Parker [86]) with coordinates q(•) = (x(•), y(•), θ(•))
T ,

where x(•) and y(•) are the translational degrees-of-freedom in x and y directions, θ(•) is

the rotational degree-of-freedom (DOF) about z axis. Subscript (•) is s for sun gear; pi

for ith planet gear; and c for carrier. Variables written in bold letters represent matrices

in this chapter. In addition to gears, planet bearing containing a localized fault (also

referred as “defective bearing”) is also included in the model. The planet gear containing

this bearing serves as the outer race and the inner race is modelled as a rigid body

with coordinates qb = (xb, yb, θb)
T . Inner and outer raceways of the defective bearing are

connected together with linear springs representing bearing stiffness kbp. Contact between

two meshing gears is represented by a linear time-invariant spring which acts along the

line-of-action of a gear-pair. Ring gear is modelled as a continuous elastic ring. wr and wθ

are the radial and tangential DOFs of the ring gear. Equations of motion described in the
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following sections are derived in the XY Z coordinate system which is rotating with the

carrier. The Coriolis and centripetal terms due to the rotation of the coordinate system

are small and can be neglected while deriving the equations of motion for the individual

components. The justification for choosing a rotating coordinate-system is provided later

(section 4.2.5) when we write the equation of motion for the combined system.

4.2.1 Equation of Motion for a Flexible Ring Gear

Equations governing the dynamics of a continuous elastic ring in the radial and the tan-

gential directions are [63]

Eh3`

12R3
r

(w′′′r − w′′θ )−
Eh`

Rr

(w′r + w′′θ ) + ρARrẅθ +Kθ`Rrwθ = fθ(θ, t) (4.1a)

and
Eh3`

12R3
r

(w′′′′r − w′′′θ ) +
Eh`

Rr

(w′θ + wr) + ρARrẅr +Kr`Rrwr = fr(θ, t), (4.1b)

where ˙(•) = ∂(•)/∂t, (•)′ = ∂(•)/∂θ, Kr and Kθ are the distributed support stiffness in

the radial and tangential directions, Rr is the pitch radius of the ring gear, h is the ring

gear thickness, ` is the ring gear width, A is the cross-section area (= `h), E is the young’s

modulus, and fr(θ, t) and fθ(θ, t) are the external forces acting on the ring in radial and

tangential directions. See appendix B for the derivation of equations 4.1.

Equation 4.1 can be simplified by representing the ring gear DOFs in terms of the

vibration modes of an elastic ring using Fourier series expansion as

wr(θ, t) =
Φ∑

n=0

an(t)cos(nθ) + bn(t)sin(nθ) (4.2a)

and

wθ(θ, t) =
Φ∑

n=0

cnan(t)sin(nθ)− cnbn(t)cos(nθ), (4.2b)

where an and bn are the modal participation factors for the nth mode, n is the ring-mode

index, Φ is the highest ring mode considered, and cn = −1/n for n > 0 and cn = −1 for

n = 0. For the results presented in this chapter Φ is equal to 6; however, the methodology

developed here puts no upper limit on its value. Equation 4.2 is based on the assumption

that the ring gear is inextensional (see appendix B for a discussion on extensional and
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inextentional modes). Substitution of equation 4.2 into 4.1 yields

Mnän +Mnω
′2
n an =

∫ 2π

0

{frcos(nθ) + cnfθsin(nθ)} dθ (4.3a)

and

Mnb̈n +Mnω
′2
n bn =

∫ 2π

0

{frsin(nθ)− cnfθcos(nθ)} dθ, (4.3b)

where

ω
′2
n = ω2

n +
Krn

2 +Kθ

ρh(n2 + 1)
for n ≥ 1,

ω
′2
n =

1

2




Kr +Kθ

ρh
+

E

ρR2
r

+

√(
Kr +Kθ

ρh
+

E

ρR2
r

)2

− 4Kθ

ρ2h2

(
Eh

R2
r

−Kr

)
 for n = 0,

ω2
n =

n2(n2 − 1)2Eh2

12ρR4
r(n

2 + 1)
is the nth natural frequency of a free ring, and

Mn = ρARrπ(1 + c2
n) is the modal mass.

Now, consider the ring-planet mesh shown in figure 4.2. Deformation in the contact

spring between ring and planet gears can be calculated as

∆rp(t) = xpi(t)sinφ− ypi(t)cosφ− rpθpi(t)

−wr(θi, t)
√

1−
(
rr
Rr

)2

+ wθ(θi, t)
rr
Rr

, (4.5)
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where φ is the pressure angle, rp is the planet base radius, rr is the ring base radius,

θi = αi + φ− cos−1 (rr/Rr), and αi is the position angle of the ith planet in the rotating

coordinate system. Forces acting in the radial (F
(r)
ri ) and tangential (F

(θ)
ri ) directions on

the ring gear due to the ith planet can be calculated in terms of the ring-planet mesh force

Frp (= krp∆rp), where krp is the ring-planet mesh stiffness. Therefore,

(
F (r)
ri
, F (θ)

ri

)T
= Frp



√

1−
(
rr
Rr

)2

,− rr
Rr



T

= krp∆rp



√

1−
(
rr
Rr

)2

,− rr
Rr



T

, (4.6)

where (•)T is the transpose of the matrix (•). fr and fθ in equation 4.3 can now be

expressed in terms of the point loads F
(r)
ri and F

(θ)
ri as

fr =
z∑

i=1

F (r)
ri
δ(θ − θi) (4.7a)

and

fθ =
z∑

i=1

F (θ)
ri
δ(θ − θi), (4.7b)

where δ(•) is the delta function and z is the number of planets.

Substituting equations 4.7 into 4.3 and expressing wr and wθ in terms of an and bn,

using equation 4.2, leads to the following equation of motion for the ring gear

(
Mr 0

0 Mr

)(
ä

b̈

)
+

(
ωr 0

0 ωr

)(
a

b

)

+krp

{
Krp

21qp + Krp
22

(
a

b

)}
= 0. (4.8)

In equation 4.8 the sub-matrices are defined as follows

Mr = diag(M0,M1, · · · ,MΦ), (4.9a)

a = (a0, a1, · · · , aΦ)T , (4.9b)

b = (b0, b1, · · · , bΦ)T , (4.9c)
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ωr = diag(M0ω
′2
0 ,M1ω

′2
1 , · · · ,MΦω

′2
Φ ), (4.9d)

qp = (qp1 ,qp2 , · · · ,qpz)
T , (4.9e)

qpi
= (xpi , ypi , θpi)

T . (4.9f)

In addition,

Krp
21 = ((Krp

21)1, (K
rp
21)2, · · · , (Krp

21)z) , (4.10a)

(Krp
21)i = (Ai0, A

i
1, · · · , AiΦ, Bi

0, B
i
1, · · · , Bi

Φ)T (sinφ, cosφ, rp), (4.10b)

Krp
22 =

z∑

i=1




Āi
11 Āi

12

Āi
21 Āi

22


 . (4.10c)

Also,

Āi
� =




A
(0,0)
� A

(0,1)
� · · · A

(0,Φ)
�

A
(1,0)
� A

(1,1)
� · · · A

(1,Φ)
�

...
...

. . .
...

A
(Φ,0)
� A

(Φ,1)
� · · · A

(Φ,Φ)
�




for � = 11, 12, 21, 22, (4.11a)

A
(j,k)
11 = AikA

i
j, A

(j,k)
12 = Bi

kA
i
j, A

(j,k)
21 = AikB

i
j, A

(j,k)
22 = Bi

kB
i
j, (4.11b)

with

Ai(•) =



√

1−
(
rr
Rr

)2

cos(•)θi −
rr
Rr

cjsin(•)θi


 (4.12a)

and

Bi
(•) =



√

1−
(
rr
Rr

)2

sin(•)θi +
rr
Rr

cjcos(•)θi


 . (4.12b)

Symbol (•) = 0, 1, · · · ,Φ in equations 4.12. Equation 4.8 defines the motion of the

ring gear in terms of modal participation factors an and bn, which can be substituted into

equation 4.2 to obtain the ring-gear response in the rotating coordinate system.
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4.2.2 Equation of Motion for Planet Gears

Forces acting on the ith planet due to planet-ring mesh force Frp can be expressed in the

rotating coordinate system as

Frpi
= krp∆rp (−sinφ, cosφ, rp)

T . (4.13)

By considering the d’Alembert forces due to accelerations, we can write a force balance

equation for the ith planet gear of mass mp and moment of inertia Ip (about z axis). Thus,

Mpi
q̈pi

= Frpi
+ Fpi

+ Fspi

= krp∆rp (−sinφ, cosφ, rp)
T + Fpi

+ Fspi
, (4.14)

where matrix Mpi
= diag(mpi ,mpi , Ipi), mpi = mp for i 6= Γ and mpi = mp−mb for i = Γ,

Ipi = Ip for i 6= Γ and Ipi = Ip − Ib for i = Γ, Γ is the index of the planet containing a

defective bearing, mb is the bearing inner-race mass, Ib is the bearing moment of inertia,

Fspi
= − (Ksp

22)i qpi
− (Ksp

21)i qs is the sun-planet mesh force and

Fpi
=

{
Fcpi

= −(Kcp
22)iqpi

− (Kcp
21)iqc if i 6= Γ

Fbpi
= −Kbp

22qpi
−Kbp

21qb if i = Γ
. (4.15)

Matrices Kbp
22 = Kbp

11 and Kbp
21 =

(
Kbp

12

)T
. Fcpi

and Fbpi
are the carrier-planet and

bearing-planet forces respectively.

Equation 4.15 describes the connection between the ith planet, carrier and defective

bearing inner-race. If ith planet contains a defective bearing, i.e. i = Γ, then the planet

is connected to the inner race of the defective bearing; but if the planet does not contain

a defective bearing, i.e. i 6= Γ, then it is directly connected to the carrier. Substitution

of equation 4.5 into 4.14 leads to

Mpq̈pi
+ krp

{
Krp

11qpi
+ (Krp

12)i

(
a

b

)}
= Fpi

+ Fspi
, (4.16)

where (Krp
12)i = (Krp

21)
T
i and

Krp
11 =




sin2φ −sinφcosφ −rpsinφ
cos2φ rpcosφ

symm. r2
p


 .
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4.2.3 Equation of Motion for the Inner Race of Defective Bearing

Forces acting on the inner race of a defective bearing are due to the planet gear and

carrier. If Fbpi
is the force due to the planet gear and Fbc is the force due to the carrier,

then force equilibrium on the defective bearing inner-race is

Mbq̈b = Fbpi
+ Fbc, (4.17)

where Mb = diag(mb,mb, Ib). The forces acting on the defective bearing inner-race are

Fbpi
=



−krbp(xb − xpi)
−ktbp(yb − ypi)

0


 (4.18a)

and

Fbc =




−krbc(xb − xccosαi − ycsinαi)
−ktbc(yb + xcsinαi − yccosαi − rcθc)

−kθbcθb


 , (4.18b)

where krbp and ktbp are the radial and tangential stiffness between planet gear and defective

bearing, and krbc, k
t
bc and kθbc are the radial, tangential and torsional stiffness between

carrier and defective bearing.

Substitution of equations 4.18 into 4.17 yields

Mbq̈b +
(
Kbp

11 + Kcb
22

)
qb + Kbp

12qpi
+ Kcb

21qc = 0, (4.19)

where Kbp
11 = diag(krbp, k

t
bp, 0), Kbp

12 = −Kbp
11 , Kcb

22 = diag(krbc, k
t
bc, k

θ
bc), and

Kcb
21 =



−krbccosαi −krbcsinαi 0

ktbcsinαi −ktbccosαi −ktbcrc
0 0 0


 .

4.2.4 Equations of Motion for Carrier and Sun Gear

Equations of motion for carrier and sun gear are similar to the ones derived by Lin and

Parker [86], since in both formulations these components are treated as rigid bodies. The

only difference in the carrier equation is due to the inclusion of the defective-bearing

inner-race in the present analysis. So, if i = Γ then the carrier is connected to a defective-

bearing inner-race and if i 6= Γ then the carrier is connected to the ith planet. Hence,
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equation for the carrier is

Mcq̈c +

{
KB + Kcb

11 +

i 6=Γ∑

i=1:z

(Kcp
11)i

}
qc + Kcb

12qb

+

i 6=Γ∑

i=1:z

{(Kcp
12)i qpi

} = 0 (4.20)

and equation for the sun gear is

Msq̈s +

{
KB +

z∑

i=1

(Ksp
11)i

}
qs +

z∑

i=1

{(Ksp
12)i qpi

} = 0, (4.21)

where Mc = diag(mc,mc, Ic), Ms = diag(ms,ms, Is), KB = diag(kxb , k
y
b , 0) is the stiffness

matrix of bearings supporting sun and carrier, and kxb and kyb are the support stiffness in

x and y directions. Mesh stiffness matrices are defined in the appendix C.

4.2.5 Equation of Motion for the Combined System

The equation of motion of the combined system in the fixed coordinate system (XfYfZf

in figure 4.1) can be written as

Msys¨̄q + K̄sysq̄ = F̄, (4.22)

where Msys is the system mass matrix, K̄sys is the system stiffness matrix in the fixed

coordinate system, F̄ is the external force matrix and q̄ is the matrix containing the

components’ coordinates in the fixed coordinate system. Since all the system components

are axi-symmetric (about Z axis), mass matrices in the fixed and the rotating coordinate

systems are same. System stiffness matrix, K̄sys, will vary with time due to a continuous

change in the planet position caused by the carrier rotation. To avoid this time-varying

stiffness in equation 4.22, we can take advantage of the cyclic symmetry of the structure

and formulate the equation of motion in the coordinate system XY Z (figure 4.1) which

is rotating with the carrier. Now, the system coordinate matrix (q) in the rotating

coordinate system becomes

q = Tq̄ or q̄ = TTq, (4.23)
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where T is the transformation matrix (defined in appendix C). Substitution of equa-

tion 4.23 into 4.22 and multiplying the equation by T yields

Msysq̈ + ωcCLq̇ +
(
Ksys − ω2

cKc

)
q = F, (4.24)

where F = (Fs,Fr,Fp1 , · · · ,FpZ
,Fb,Fc)

T = TF̄, Ksys = TK̄sysT
T , CL is a skew-

symmetric Coriolis matrix, and Kc is the centripetal matrix. Carrier speed ωc for a

typical wind-turbine planetary-drive is small (typically 10-15 rpm). At such low speeds,

the effects of Coriolis and centripetal terms are small and are neglected in the current

analysis (see appendix D for an explanation). Hence, equation 4.24 becomes

Msysq̈ + Ksysq = F, (4.25)

where q = (qs,qr,qp1 , · · · ,qpZ
,qb,qc)

T and qr = (a,b)T . Substituting q = ueιωt (where

ι2 = −1) and F = 0 into equation 4.25 gives

− ω2Msysu + Ksysu = 0. (4.26)

See appendix C for the formulation of Msys and Ksys. Equation 4.26 is the eigenvalue

problem and its solution gives us the system natural frequencies Ω1,Ω2, · · · ,ΩN and mode-

shapes u(1),u(2), · · · ,u(N) associated with each natural frequency. The corresponding

modal matrix is U = (u(1),u(2), · · · ,u(N)) with u(r) = (u
(r)
s ,u

(r)
r ,u

(r)
p1 , · · · ,u(r)

pZ ,u
(r)
b ,u

(r)
c )T

for r = 1 to N and u
(r)
r = (u

(r)
a0 , · · · , u(r)

aΦ , u
(r)
b0
, · · · , u(r)

bΦ
)T . N is the number of modes.

4.3 Derivation of Frequency-Response Function

Substitution of q = Uη and F = UQ into equation 4.25 and pre-multiplication with UT

gives an uncoupled equation in terms of generalized coordinates η.

η̈(t) + Ωη = Q, (4.27)

where Ω = diag(Ω2
1, · · · ,Ω2

N) and Q is the generalized force matrix. From equation 4.27

a generalized equation for rth coordinate, with modal damping factor ξr, can be written

as

η̈r + 2ξrΩrη̇r + Ω2
rηr = Qr. (4.28)

Now consider a defect located at an angle γ in the rotating coordinate system on inner

race, outer race or rolling element of a planet bearing with position angle θ∗ (figure 4.4(a)).
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Table 4.1: Model parameters for a typical 2MW wind-turbine planetary drivetrain
(number of planets, z = 3). Symbols r, R, m and I take the subscript s for sun, pi
for ith planet, r for ring and c for carrier.

Parameter Sun Planet Ring Carrier
Base radius (r), mm 144.2 265.6 675.3 436.6
Pitch radius (R), mm 153.6 283 743.3 -
Face-width (`), mm 325
Density (ρ), kg/m3 7800
Mass (m), kg 188 638 958 374
Inertia (I), kg.m2 2.2 25.5 617.4 35.6
Parameter Planet bearing
Number of rollers (Zb) 16
Roller radius (rb), mm 27
Pitch radius (Rb), mm 156.5
Inner-race mass (mb), kg (includ-
ing planet pin)

410

Inertia (Ib), kg.m2 10.6
Material Steel
Ring gear thickness (h), mm 75
Mesh stiffness, N/m ksp = krp = 5× 108

Ring support stiffness, N/m3 Kr = 108/`,Kθ = 5× 108/`
Carrier coupling stiffness, N/m kr,tcb = 2× 108, kr,tcp = 108

Planet bearing stiffness, N/m kr,tbp = 3× 108

Support stiffness, N/m kx,yb = 108
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Figure 4.3: An example of the frequency-response function of a planet-bearing
fault with (A,B,C,D,E) five dominant mode-shapes for θ = π
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Ring gear deforms in all the five dominant modes.
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Due to the dynamic interaction between the defect and the rolling elements, a force F∆

is applied to the ith planet gear (i = Γ) as well as the defective-bearing inner-race in

opposite directions. Therefore,

Fpi
= F∆(cosγ, sinγ, 0)T (4.29a)

and

Fb = −Fpi
. (4.29b)

Using Q = UTF, a generalized force for the rth coordinate can be calculated as

Qr =
(
u(r)
pi

)T
Fpi

+
(
u

(r)
b

)T
Fb

= (u
(r)
pbx

cosγ + u
(r)
pby

sinγ)F∆, (4.30)

where u
(r)
pi = (u

(r)
pix , u

(r)
piy , u

(r)
piθ

)T , u
(r)
b = (u

(r)
bx
, u

(r)
by
, u

(r)
bθ

)T and u
(r)
pb(•)

= u
(r)
pi(•) − u(r)

b(•)
. Substitu-

tion of equation 4.30 into 4.28 gives

η̈r + 2ξrΩrη̇r + Ω2
rηr = (u

(r)
pbx

cosγ + u
(r)
pby

sinγ)F∆. (4.31)

Putting ηr(t) = ηr(ω)eιωt and F∆(t) = F∆(ω)eιωt into equation 4.31 leads to

ηr(ω) =

(
u

(r)
pbx

cosγ + u
(r)
pby

sinγ

Ω2
r − ω2 + 2ιξrωΩr

)
F∆(ω). (4.32)

Now, using q = Uη and the transformation matrix defined by equation 4.23, we can

calculate the modal participation factors for the ring gear in the fixed coordinate system

XfYfZf . Hence,

ān(ω) = Cnθ∗
N∑

r=1

u(r)
an ηr(ω)− Snθ∗

N∑

r=1

u
(r)
bn
ηr(ω) (4.33a)

and

b̄n(ω) = Snθ∗
N∑

r=1

u(r)
an ηr(ω) + Cnθ∗

N∑

r=1

u
(r)
bn
ηr(ω), (4.33b)

where C(•) = cos(•) and S(•) = sin(•). From equations 4.33 and 4.2, ring-gear response in

the radial and tangential directions are obtained and corresponding frequency-response
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functions (FRFs) are also calculated. FRF for the ring-gear radial-response is

H(γ, θ∗, θ, ω) =
W̄r(θ, ω)

F∆(ω)
=

∑Φ
n=0{ān(ω)Cnθ + b̄n(ω)Snθ}

F∆(ω)

=
N∑

r=1

u
(r)
pbx

cosγ + u
(r)
pby

sinγ

Ω2
r − ω2 + 2ιξrωΩr

Φ∑

n=0

[{CnθCnθ∗

+SnθSnθ∗}u(r)
an + {SnθCnθ∗ − CnθSnθ∗}u(r)

bn

]
. (4.34)

FRF given by equation 4.34 is a function of the position angles of the fault (γ), the

carrier (θ∗), and the measurement point (θ). Figure 4.3 shows an example of the FRF

calculated for θ = π
2
, θ∗ = π

3
and γ = −π

4
. The damping ξr = 0.05 for all coordinates

r, this value of 5% is commonly used in structural vibration problems. The exact value

of the damping does not really influence the outcome of the method developed here.

Model parameters are listed in table 4.1. Ring gear deforms in all the dominant modes

(A, B, C, D, E) and it does not behave as a rigid body. Therefore, flexibility of the

ring is important for the accurate response prediction. If both urpbx and urpby are zero in

equation 4.34, FRF will be zero. This is because the presence of a fault will apply an

impulsive force to the inner and the outer raceways, which will cause the defective-bearing

inner-race and the planet gear to move apart. Hence, all the modes in which there is no

relative motion between a defective bearing and the planet gear containing this defective

bearing will not be present in the response spectrum. This is also confirmed by figure 4.3

in which all the dominant modes have relative displacement between the planet gear and

the defective-bearing inner-race.

4.4 Vibration Signatures of Planet-Bearing Faults

In the previous section we have observed that the FRF of a planet-bearing fault is the

function of fault-position angle and carrier-rotation angle. As a fault rotates around the

bearing centre and the bearing rotates with the carrier, these angles change and as a result,

FRF changes. This complicates the response calculation as for each impact between a

rolling element and a fault, we have a different FRF. In the following paragraph, we

discuss our approach of response calculation for the system with time-varying FRF.

The impact force produced when rolling elements strike a localized fault is modelled

as an impulse train shown in figure 4.4. The frequency of the impulse train ωd is the

characteristic fault frequency and its value depends on the bearing geometry and operating
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Figure 4.5: (a) Impulse train with impulse proportional to rolling-element load,
(b) Impulse train with impulse proportional to rolling-element speed

speed. This impulse train can be represented by

F∆(t) =
∞∑

p=0

=pδ(t− tp), (4.35)

where =p is the impulse due to pth impact and tp (= 2πp/ωd) is the time at which pth

impact occurs. If the impulse-response function for the pth impact is hp(t), radial response

of the ring gear at angle θ due to pth impact can be calculated using convolution theorem

as

w̄pr(θ, t) =

∫ t

0

=pδ(s− tp)hp(t− s)ds = hp(t− tp)=p. (4.36)

The combined response for all the impacts can be written as

w̄r(θ, t) =
∞∑

p=0

w̄pr(θ, t) =
∞∑

p=0

hp(t− tp)=p. (4.37)

Fourier transform of equation 4.37 gives us the response in frequency domain. Thus,

W̄r(θ, ω) =

∫ +∞

−∞
w̄r(θ, t)e

−ιωtdt =
∞∑

p=0

=p
∫ ∞

−∞
hp(t− tp)e−ιωtdt =

∞∑

p=0

Hp(ω)e−ιωtp=p

=
∞∑

p=0

H(γp, θ
∗

=ωctp, θ, ω)e−ιωtp=p, (4.38)

where γp is the position angle of the fault relative to carrier at the time tp.

The next step is to determine the impulse =p due to the pth impact. According to

McFadden and Smith [90], impacts generated when a rolling element passes through a
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localized fault are proportional to the contact force acting on the rolling element (fig-

ure 4.5a). In the current analysis, however, we use an impulse train (figure 4.5b) based on

the assumption that the impulse due to a bearing fault is: (i) proportional to the speed

of the rolling element and independent of contact force inside the load zone, and (ii) zero

outside the load zone. We provide a theoretical and an experimental justification to this

assumption later in section 4.7. Impulse due to the pth impact can be described as

=p = =train(γp), (4.39)

where =train is the impulse-train function. Planetary bearings are radially loaded, which

results in load-zone formation as shown in the figure 4.4. If γs and γe represent the start

and end of loaded zone, the impulse-train function can be expressed in terms of γ using

Fourier series. Thus

=train(γ) = =0

∞∑

m=−∞

εme
ιmγ, (4.40)

where =0 is the impulse inside the load zone and εm = −Cmγs+Cmγe−ι(−Smγs+Smγe )

2πιm
. For the

results presented in this chapter we have used γs = 0 and γe = −π, i.e., size of the load

zone is assumed to be 180◦. This assumption is made just for simplicity, and the analytical

model developed in chapter is valid for the load zone of any size. The size of the load

zone does not influence the frequencies associated with the vibration signatures of planet-

bearing faults described later, it only influences the amplitudes at those frequencies. For

γs = 0 and γe = −π, εm becomes

εm =





0 for m even

−1/ιπm for m odd

1/2 for m = 0.

(4.41)

Substitution of equations 4.39 and 4.40 into equation 4.38 yields

W̄r(θ, ω) =
∞∑

p=0

∞∑

m=−∞

H(γp, θ
∗

=ωctp, θ, ω)e−ιωtp=0εme
ιmγp . (4.42)

Equation 4.42 gives us the frequency response of a ring gear at angle θ in the presence of

a localized planet-bearing fault. Other parameters used for the results presented in this

chapter are =0 = 1 Ns, ξr = 0.05 and ωc = 10 rpm.
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Figure 4.6: Analytical vibration signature of a planet-bearing inner-race fault lo-
cated at an angle γ0 = −π/4, (a) frequency response, (b) clusters of peaks separated
by ωd, (c) sidebands within a cluster separated by carrier frequency ωc.
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4.4.1 Fault Located on an Inner Race

A localized fault located on inner race of a planet bearing does not move relative to carrier

and bearing load-zone. Therefore, position angle of the fault relative to carrier for pth

impact (γp) remains constant for all the impacts, i.e.,

γp = γ0 for all p. (4.43)

Here γ0 is the fault-location angle. Substitution of equation 4.43 into 4.42 yields

W̄r(θ, ω) =
∞∑

p=0

∞∑

m=−∞

H(γ0, θ
∗

=ωctp, θ, ω)e−ιωtp=0εme
ιmγ0 . (4.44)

Equation 4.44 gives us the vibration signature of a planet-bearing inner-race fault.

Characteristic fault-frequency (ωd), in equation 4.44, for an inner-race fault is defined as

ωd =
zb
2

(ωp − ωc)
(

1 +
rb
Rb

)
. (4.45)

Here, zb is the number of rolling elements in a planet bearing, rb is the radius of a rolling

element, and Rb is the planet-bearing pitch radius.

Let us take an example of a wind turbine planetary drivetrain with parameters defined

in table 4.1. One of the planet bearings has a localized inner-race fault. Figure 4.6 shows

the vibration response at a measurement point fixed on the ring gear (θ = π/2) calculated

using equation 4.44. The response contains clusters of peaks separated by characteristic

fault-frequency ωd. This is because the Fourier transform of a time-domain impulse-train

is an impulse train in frequency domain. The period of time-domain impulse-train due to

bearing inner-race fault is 2π/ωd, which results in the frequency separation of ωd between

two consecutive clusters in figure 4.6. Each cluster contains several sidebands separated

by the carrier rotation frequency ωc. These sidebands are caused by the amplitude and

frequency modulation of the signal due to carrier rotation. Measurement point is fixed on

the ring gear, but the fault is rotating with the carrier with a speed ωd. This continuous

relative motion between the measurement point and the fault results in time-varying vi-

bration transmission-path, which generates modulation sidebands separated by the speed

of the fault relative to the measurement point (ωc). This is analogous to Doppler effect.
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Figure 4.7: Analytical vibration signature of a planet-bearing outer-race fault,
(a) frequency response, (b) clusters of peaks separated by ωd, (c) sidebands within
a cluster separated by the planet frequency relative to carrier ωpc and the carrier
frequency ωc.
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4.4.2 Fault Located on an Outer Race

Outer race of a planet bearing is fixed to a planet gear. Sometimes planet gear itself acts

as the outer race. A fault located on an outer race of a planet bearing rotates with the

planet gear with a speed ωpc (= ωp − ωc) relative to carrier. Therefore, position angle of

the fault relative to carrier for pth impact becomes

γp = ωpctp = 2πp
ωpc
ωd
. (4.46)

Characteristic fault-frequency for an outer-race fault is defined as

ωd =
zb
2

(ωp − ωc)
(

1− rb
Rb

)
. (4.47)

Substitution of equations 4.46 and 4.47 into equation 4.42 gives us the vibration signature

of a planet-bearing outer-race fault.

Figure 4.7 shows the vibration response calculated at a measurement point fixed on

the ring gear (θ = π/2). Again, like the previous case, response contains clusters (of

peaks) separated by the characteristic fault-frequency ωd, and within each cluster we have

several sidebands. But, unlike the inner-race defect signature, we now have two families

of sidebands: first with peaks separated by ωc, and second with peaks separated by ωpc.

The first family of sidebands is caused by the variation in vibration transmission-path.

The second family of sidebands is caused by two additional sources.

First source is the amplitude modulation caused by the variation in impulse magnitude

as the fault passes through the load zone. According to the impulse train of figure 4.5b,

impulse inside the load zone is non zero and impulse outside the load zone is zero. Due to

this variation in impulse magnitude, the vibration signal gets modulated by the impulse-

train defined by equation 4.40 and we get modulation sidebands separated by ωpc.

Second source is the amplitude modulation caused by the variation in impulse direc-

tion. Vibration is transmitted from the defective planet-bearing to the ring gear through

the mesh spring between the planet and the ring gears. An outer-race fault rotates relative

to this mesh spring with a frequency ωpc. Impulse due a fault acts along the position angle

of the fault. When the impulse is parallel to the mesh spring, maximum force transmission

takes place; and when the impulse is perpendicular to the mesh spring, minimum force

transmission takes place. This variation in the force transmission results in modulation

sidebands separated by the frequency ωpc.
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4.4.3 Fault Located on a Rolling Element

A localized fault located on a rolling element generates two impulses during one rotation

of the rolling element - one when it strikes the inner race and other when it strikes the

outer race. In this analysis, we assume that the two impulses are identical in magnitude.

Similar to the outer-race fault, a fault located on a rolling element rotates relative to the

carrier. The position angle of a rolling element fault relative to the carrier is

γp = Ωtp = 2πp
Ω

ωd
, (4.48)

where Ω is the speed of the planet-bearing cage relative to the carrier. Characteristic

fault-frequency for a rolling-element fault is

ωd = (ωp − ωc)
(
Rb

rb
− rb
Rb

)
. (4.49)

Substitution of equations 4.48 and 4.49 into equation 4.42 gives us the vibration signature

of a localized fault located on a rolling element of a planet bearing.

Figure 4.8 shows the vibration response calculated at the ring gear. The response is

similar to the outer-race fault with two families of sidebands caused by three modulation

sources. The only difference is that in the case of a rolling-element fault, sidebands due to

variation in impulse magnitude and direction are separated by Ω not ωpc. This is because

a rolling-element fault moves relative to the load zone and the ring-planet mesh-spring

with frequency Ω.

4.4.4 Sources of Modulation Sidebands

In the previous three sections (4.4.1, 4.4.2 and 4.4.3), we have observed that the vi-

bration signatures of planet-bearing inner-race, outer-race and rolling-element faults are

complicated because of the presence of various modulation sidebands. In the following

paragraphs we summarize the sources of these modulation sidebands.

• Variation in impulse magnitude. This is caused by the rotation of a fault relative

to a load zone. Load zone of a planet bearing is fixed relative to the carrier, and

a fault rotates with a speed ωpc (if located on the outer race) or Ω (if located on a

rolling element) relative to the carrier. This results in a relative rotation between

the fault and the load zone. Impulse magnitude is non zero when the fault is inside

the load zone, and impulse magnitude is zero when the fault is outside the load zone

(figure 4.5b). This change in impulse magnitude modulates the defect signal and
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Figure 4.8: Analytical vibration signature of a planet-bearing rolling-element fault,
(a) frequency response, (b) clusters of peaks separated by ωd, (c) sidebands within
a cluster separated by the frequency of the planet-bearing cage relative to carrier Ω
and the carrier frequency ωc.
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generates sidebands separated by the integer multiples of ωpc (for outer-race fault)

and Ω (for rolling-element fault). In the frequency-response spectrum we get peaks

at pωd +mωpc (for outer-race fault) and pωd +mΩ (for rolling-element fault), where

integer p ≥ 0 and m is any integer including zero.

• Variation in impulse direction. When a rolling element strikes a fault, the direction

of the impulse vector is along the position angle of the fault. In a planet bearing,

fault rotates with a speed ωpc (if located on outer race) or Ω (if located on a rolling

element) relative to carrier. Ring-planet mesh-spring is always aligned with the line-

of-action of the gear pair, which is fixed relative to the carrier. Ring-gear response

is maximum when the impulse vector is parallel to the ring-planet mesh, ring-gear

response is minimum when the impulse vector is perpendicular to the ring-planet

mesh. Therefore, as the fault rotates relative to the ring-planet mesh, ring-gear

response varies sinusoidally with frequency ωpc (for outer-race fault) and Ω (for

rolling-element fault); and we get a pair of sidebands at pωd ± ωpc (for outer-race

fault) and pωd ± Ω (for rolling-element fault).

• Variation in vibration transmission-path. This is caused by the rotation of carrier.

Defective bearing rotates with the carrier relative to a measurement point (fixed

on the ring gear) with a speed ωc. This relative rotation changes the vibration

transmission-path between a planet-bearing fault and a measurement point. This

variation in the vibration transmission path results in amplitude-modulation side-

bands separated by carrier frequency ωc and we get peaks at pωd ± nωc, where

integer n ≥ 0. Relative motion between the fault and the measurement point also

results in frequency modulation of the signal and we get sidebands separated by

the relative speed ωc, but these sidebands are less pronounced compared to the

amplitude-modulated sidebands because the impulse duration is small.

For the case of an inner-race fault, the fault does not move relative to the load zone or

the ring-planet mesh and the only source of modulation is due the variation in vibration

transmission-path caused by the carrier rotation. For the case of an outer-race fault,

all the three sources of modulation are present. By combining all the three sources of

modulation described above, we can define the sideband behaviour within each cluster of

figure 4.7 by pωd + (m ± 1)ωpc ± nωc. Similarly, all the three sources of modulation are

present in the case of a rolling-element fault and the sideband behaviour can be described

by pωd + (m± 1)Ω± nωc.
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Figure 4.9: (a) An elastic ring excited by an impulse train moving with a constant
speed ωc. (b) Impulse train with frequency ωd exciting the elastic ring.

4.5 Influence of Ring-Gear Flexibility on the Sideband

Behaviour

In section 4.4.4 we have identified various sources of modulation sidebands present in the

vibration signature of planet-bearing faults. In this section we examine how the flexibility

of the ring gear influences the sideband behaviour of planet-bearing faults.

Let us first take a simple example where an elastic ring is excited by an impulse train

(figure 4.9). Including modal damping in equation 4.3 we get the equation of motion of

the ring in terms of modal participation factors as

än + 2ξnωnȧn + ω2
nan =

1

Mn

∫ 2π

0

{frcos(nθ) + cnfθsin(nθ)} dθ (4.50a)

and

b̈n + 2ξnωnḃn + ω2
nbn =

1

Mn

∫ 2π

0

{frsin(nθ)− cnfθcos(nθ)} dθ. (4.50b)

Substituting an(t) = an(ω)eιωt, bn(t) = bn(ω)eιωt, fr = F (ω)eιωtδ(θ− θ∗), and fθ = 0 into

equation 4.50 gives

an(ω) =
cos(nθ∗)

Mn(ω2
n − ω2 + 2ιξnωnω)

F (ω) (4.51a)

and

bn(ω) =
sin(nθ∗)

Mn(ω2
n − ω2 + 2ιξnωnω)

F (ω). (4.51b)
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Here, θ∗ is the force application angle. Using equations 4.51 and 4.2 we obtain the FRF

between the excitation point and the measurement point located at an angle θ on the

ring,

H(ω) =
Wr(ω)

F (ω)
=
∞∑

n=0

cos(nθ∗)cos(nθ) + sin(nθ∗)sin(nθ)

Mn(ω2
n − ω2 + 2ιξnωnω)

. (4.52)

Ring is subjected to an impulse train, which can be described as

fr(t) =
∞∑

p=0

=pδ(t− tp). (4.53)

Using convolution theorem, ring-gear response in the radial direction can be calculated as

wr(t) =
∞∑

p=0

hp(t− tp)=p. (4.54)

Following from equation 4.38, Fourier transform of the above equation gives

Wr(ω) =
∞∑

p=0

H(ω, θ∗=ωctp)e
−ιωtp=p, (4.55)

where tp = 2πp/ωd. Using equation 4.52, cos(x) = (eιx + e−ιx)/2, sin(x) = (eιx− e−ιx)/2ι,
and assuming unit impulse for all p i.e. =p = 1 for all p, equation 4.55 can be simplified

as

Wr(ω) =
∞∑

p=0

∞∑

n=0

(cos(nθ)− ιsin(nθ))e−ι(ω−nωc)tp + (cos(nθ) + ιsin(nθ))e−ι(ω+nωc)tp

2Mn(ω2
n − ω2 + 2ιξnωnω)

.

(4.56)

From equation 4.56 ring-gear response at θ = 0 can be calculated as

Wr(ω) =
∞∑

p=0

∞∑

n=0

e−2πιp(ω−nωc)/ωd + e−2πιp(ω+nωc)/ωd

2Mn(ω2
n − ω2 + 2ιξnωnω)

. (4.57)

Equation 4.57 describes the vibration response of an elastic ring (figure 4.9) excited by

an impulse train. From equation 4.57, it is clear that the response contains clusters (of

peaks) separated by ωd and within each cluster there are sidebands separated by ωc.

In order to determine the function governing the amplitudes of central peaks (pωd)

within each cluster, we put n = 0 in equation 4.57 which gives

W pωd
r (ω) =

∞∑

p=0

Wpωd(ω)e−2πιpω/ωd , (4.58)
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Figure 4.10: Frequency response of an elastic ring excited by a moving impulse-
train. Clusters of sidebands along with their envelope functions show that the am-
plitude of nth sideband is governed by the nth ring mode

where Wpωd(ω) is the function governing the amplitudes of peaks at pωd given by

Wpωd(ω) =
1

2M0(ω2
0 − ω2 + 2ιξ0ω0ω)

. (4.59)

Similarly, we can derive expressions for the functions governing amplitudes of first (pωd±
ωc) and second (pωd ± 2ωc) sidebands as

Wpωd±ωc(ω) =
1

2M1(ω2
1 − ω2 + 2ιξ1ω1ω)

(4.60a)

and

Wpωd±2ωc(ω) =
1

2M2(ω2
2 − ω2 + 2ιξ2ω2ω)

. (4.60b)

Functions described in equations 4.59 and 4.60 are shown in figure 4.10 along with the

corresponding sidebands. The simple example described here clearly suggests that the

amplitudes of peaks corresponding to the nth sideband (pωd ± nωc) are governed by the

nth ring-gear mode. This is because of the rotation of vibration modes relative to the

measurement point fixed on the ring. Rotation of the first vibration mode (breathing
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Figure 4.11: Variation in the sideband behaviour of a planet-bearing inner-race
fault with frequency. nth sideband dominates near the nth ring-gear mode. Examples
are shown for A (n = 1), B (n = 2) and C (n = 3) with respective mode shapes.

mode) with respect to a fixed point on the ring does not lead to any modulation and

hence there are no sidebands. Along the same lines, rotation of the second vibration

mode results in one modulation cycle per rotation and we get sidebands corresponding to

n = 1. Rotation of the third vibration mode results in two modulation cycles per rotation

and we get sidebands corresponding to n = 2, and so on.

Sideband behaviour of a planet-bearing fault is more complicated than this simple

example as the vibration modes of an elastic ring-gear are coupled with the epicyclic-

drivetrain modes. Figure 4.11 shows the ring-gear response of the planetary drive of

table 4.1 in the presence of a planet-bearing inner-race fault. We have increased the

thickness of the ring to 2.5 times the value mentioned in the table to create more frequency

separation in the vibration modes of the ring. As with the simple example above, the
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(a) Ring-gear thickness: 75 mm
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(b) Ring-gear thickness: 2.5× 75 mm
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(c) Ring-gear thickness: 5× 75 mm

Figure 4.12: Influence of ring-gear thickness on the sideband pattern. Higher-
order sidebands disappear as we increase the ring-gear thickness: (a) three dominant
sidebands for a thickness of 75 mm; (b) two dominant sidebands for a thickness of
2.5× 75 mm; and (c) only one dominant sideband for a thickness of 5× 75 mm.
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amplitudes of sidebands are governed by the corresponding ring-gear modes. For example,

modes near 180 Hz are governed by the second (n = 1) ring-gear mode and the clusters

in this region are dominated by n = 1 sidebands (pωd±ωc). Similarly, mode near 270 Hz

is governed by the third (n = 2) ring-gear mode and as a result the clusters in this region

are dominated by n = 2 sidebands (pωd ± 2ωc).

As we increase the ring-gear thickness, the frequencies of ring-gear modes increase.

This results in small contributions at low frequency range from the higher-order ring

modes and the amplitudes of higher-order sidebands decrease. Figure 4.12 shows the

sideband behaviour for three ring-gear thickness values. As we increase the thickness,

amplitudes of higher order sidebands decrease.

Based on the above discussions we can draw the following conclusions.

• Ring-gear modes govern the relative amplitudes of the sidebands in a fault signature.

• Sideband behaviour changes as we move across the frequency range because of the

shift in dominant ring-gear mode.

• Number of dominant sidebands at low frequency range in a fault signature depends

on the thickness of the ring gear. As we increase the thickness, higher-order side-

bands disappear.

4.6 Experimental Validation of Fault Signatures

In this section, we validate the theoretically predicted fault signatures against the experi-

ments performed in collaboration with Whitely [127]. The experimental test-rig is designed

by Whiteley [127]. We briefly describe the test-rig and discuss three test results for inner-

race and outer-race faults. See Whitely [127] for a detailed description of test-rig design

and more experimental results.

We preform the experiments on an epicyclic test-rig (figure 4.13) consisting of a vari-

able speed motor (5.5 kW rated power), a reduction gearbox (1:30 speed ratio), a planetary

gearbox (about one-fifth of a typical wind turbine planetary gear stage and parameters

listed in table 4.2), and a disc-brake system to provide reaction torque. A localized defect

(3 mm wide) is introduced to one of the ball bearings supporting a planet gear using spark

erosion technique.

Tests are conducted at the carrier speeds of 72 and 96 rpm and carrier torque of

350 Nm. For the given bearing geometry (table 4.2b) and carrier speeds, characteristic

fault frequency ωd for ball bearing is 15.4 Hz (for ωc = 72 rpm) and 20.6 Hz (for ωc = 96

rpm) for the inner-race defect, and 9.5 Hz (for ωc = 72 rpm) and 12.7 Hz (for ωc = 96 rpm)
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Table 4.2: Parameters of the planetary gearbox used in the test rig

(a) Epicyclic gears

Parameter Sun Planet Ring Carrier
Number of teeth 19 32 83 -
Base radius, mm 26.68 45.11 117 76.5
Pitch radius, mm 28.5 48 124.5 -
Face-width, mm 30
Density, kg/m3 7800
Number of planets 3

(b) Planet bearing

Ball bearing Roller bearing
Number of balls 8 11
Rolling-element radius, mm 3 5.5
Pitch radius, mm 12.65 12.5

(a) (b) (c)

Motor Reduction 
gearbox

Epicyclic 
gearbox

Disc brake

Accelerometer

Figure 4.13: (a) Planetary test rig; (b) Epicyclic drivetrain used in the test rig;
(c) Planet bearing with a localized outer-race fault (a through rectangular hole)
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(b) Faulty bearing
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(c) Faulty bearing

Figure 4.14: (a) Measured vibration response of a healthy planet ball-bearing.
(b) Measured vibration signature of a planet bearing inner-race defect, for a carrier
speed of 72 rpm, containing clusters of peaks separated by ωd. (c) Sidebands within
a cluster.
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Figure 4.15: Measured vibration signature of a planet-bearing (cylindrical roller)
inner-race fault for a carrier speed of 72 rpm (a) Clusters of peaks separated by ωd
(b) Sidebands within a cluster
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Figure 4.16: Measured vibration signature of a planet bearing outer-race defect
for a carrier speed of 96 rpm (a) Clusters of peaks separated by ωd (b) Sidebands
within a cluster
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for the outer-race defect. For roller bearing, ωd is 21 Hz (for ωc = 72 rpm) and 28 Hz (for ωc

= 96 rpm) for inner-race fault. The response is measured by an accelerometer mounted

on the ring gear. The accelerometer signal is high-pass filtered with cut-off frequency

30 kHz and then envelope analysis was carried out on the filtered response. The envelope

signal is then converted into frequency domain using MATLAB’s FFT algorithm.

Figure 4.14b shows the measured frequency response for an inner-race fault. As pre-

dicted by the theoretical model, the measured response contains clusters (of peaks) sep-

arated by ωd and sidebands separated by ωc within each cluster (figure 4.14c). These

clusters of sidebands are not present in the case of a healthy gearbox, i.e., gearbox with-

out a planet bearing defect as shown in figure 4.14a. In addition to the sidebands separated

by ωc, we also get some sidebands which are spaced by the cage frequency of the planet

bearing relative to the carrier (Ω), which we do not get from the analytical simulations.

In the analytical model, we assume that each impact between rolling-elements and inner-

race fault is identical because inner-race fault does not move relative to the load zone.

If there is a slight variation in the rolling-element diameters (due to manufacturing tol-

erance) then these impacts will no longer be same for all the rolling elements, and will

vary periodically with the frequency Ω. This is because the same rolling element hits

the inner-race fault after the time-interval of 2π/Ω. A periodic variation in the impulses

results in the amplitude modulation of the signal, and we get sidebands at ωd ± Ω.

Figure 4.15 shows the measured vibration signature of a more precise cylindrical-

roller bearing with an inner-race fault. The manufacturing tolerance on rolling-element

diameters is much less than the ball bearing of previous case. In this case, we only get the

sidebands separated by the carrier frequency ωc as predicted by the theoretical model.

We also carried out experiments for outer-race faults. Figure 4.16 shows the measured

frequency response containing a peak at the fault frequency ωd and modulation sidebands.

Again, as predicted by the theoretical model, the measured response contains primary

sidebands separated by ωpc and each primary sideband along with the central peak (at

ωd) has secondary sidebands separated by carrier frequency ωc. The sources of these

modulation sidebands are already discussed in section 4.4.4.

The experimental results presented in this section show that all the sources of modu-

lation sidebands discussed in section 4.4.4, which we identified using an analytical model,

are real and can be used to detect various faults in planet bearings.
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Figure 4.17: Different stages of a rolling element passing through a narrow local-
ized fault with a constant horizontal speed: (a) before entering the fault; (b) after
entering the fault; and (c) at the time of impact.

4.7 Impulse Generated by a Localized Bearing-Fault

In section 4.4 we make an assumption that the impulses generated when a rolling element

passes through a localized fault are proportional to the speed with which the rolling

element is traveling and independent of the contact force acting on the rolling element

during the impact. In this section we provide a justification to this assumption. McFadden

and Smith [90] propose an analytical model to calculate the vibration response of a fixed-

axis bearing containing localized faults. In that model, authors make an assumption that

the impulse generated when a rolling element passes through a fault is proportional to the

contact force acting on the rolling element. They do not mention any speed dependence of

this impulse. This assumption is widely used in papers related to bearing-fault diagnostics

(e.g. [90,104,118,131]) during the last 30 years, but none of these papers provide any scientific

justification to this assumption. Therefore, in this section we check the validity of this

assumption and explore the relationship between the impulse generated by a defect and

rolling-element contact-force and speed.

4.7.1 Theoretical Impulse Calculation

Let us consider a rolling element of mass m and radius r travelling with a speed V and

a force F is acting on it (figure 4.17(a)). It passes through a rectangular fault of width

d and depth h. The width of the fault is sufficiently small so that the rolling element

never touches its bottom surface, i.e., d < 2
√

2rh. The speed of the rolling element is

below a critical value of
√
Fr/m (see appendix E for derivation) which ensures that the

rolling element does not loose contact with the left edge of the fault before the impact.

After the rolling element enters the fault, the speed of its centre of mass at an angle

θ becomes rθ̇ (figure 4.17(b)). If we assume that the rolling element is moving with a
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constant horizontal speed V then

rθ̇cosθ = V =⇒ θ̇ =
V

rcosθ
. (4.61)

The angle at the time of impact between the rolling element and the right edge of the

fault is given by

cosθ =

√
1− 1

4

d2

r2
. (4.62)

If the fault is small compared to the radius of the rolling element then d2/r2 << 1;

therefore, cosθ ≈ 1 and angular velocity of the rolling element just before the impact

ω ≈ V/r (from equation 4.61). Let us now determine the angular velocity just after the

impact. Using conservation of angular momentum about point O′ (figure 4.17(c)), we get

mr2ω
(
cos2θ − sin2θ

)
+ Iω =

(
I +mr2

)
ω′, (4.63)

where ω′ is the angular velocity of the rolling element just after the impact and I = 2
5
mr2

is the moment of inertia of the rolling element. Substituting θ from equation 4.62 into

4.63 and solving for ω′ yields

ω′ = ω

(
1− 5

14

d2

r2

)
. (4.64)

For narrow faults ω′ ≈ ω. We can now obtain the impulse in the vertical direction (=v)
which is equal to the change in linear momentum of the rolling element just before and

after the impact. Therefore,

=v = mrω′sinθ − (−mrωsinθ) = mrsinθ (ω′ + ω) . (4.65)

Putting ω′ ≈ ω, ω ≈ V/r and sinθ = d/(2r) into equation 4.65 gives

=v = mV
d

r
. (4.66)

Similarly impulse in the horizontal direction is obtained which comes out to be zero.

Equation 4.66 clearly shows that the impulse generated, when a rolling element passes

through a narrow fault, is proportional to the speed of the rolling element and independent

of the applied load, as long as the speed is below
√
Fr/m. In appendix E, we show that if

the speed of the rolling element is above
√
Fr/m then the impulse depends on the applied

load. However, for a planet bearing of a typical wind turbine gearbox, linear speed of a

rolling element is much less than this critical value.

A problem similar to this can also be found in the railway-vibration literature, where
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Figure 8. Effect of static axle load on peak impact sound pressure level for travel in the step-down direction; 
axle load ratio M/M’ = 2.4; standard wheel. 

time duration that may be caused by non-linear Hertzian contact stiffness. Identification of 
the major parameters determining pulse duration requires further detailed studies. 

Dependence on axle load. To explore the effect of static axle load on the peak impact sound 
pressure level generated by a train passing over a non-level rail joint, we conducted runs with 
and without added load. The added load consisted of a 61.8 lb (28 kg) lead brick attached to 
the center of the bogie frame. Figure 7 shows the results obtained for passages in the step-up 
direction, with an axle load ratio of M2/M1 = 2.4; the results indicate that for this direction 
of travel the peak impact sound pressure level generated does not depend on axle load, because 
the wheel is dynamically decoupled from the bogie and the impact force is essentially the 
inertia force created by forcing the wheel to move on a path dictated by the rail-joint geometry. 
Both the independence of the peak impact sound pressure level on axle load and the 20 dB/ 
decade slope of the sound pressure level us. train speed curve in Figure 7 are in accordance 
with the analytical results presented in Tables 1 and 2 and in reference [27]. For travel in the 
step-down direction, the wheel is in contact with the rail below critical speed, and the static 
axle load does not influence the impact noise. Above the critical speed where the wheel 
separates from the rail, the increased axle load, which produces a higher downward accelera- 
tion of the wheel, increases the impact speed and the corresponding peak impact sound 
pressure level. The experimental data presented in Figure 8 for an axle load ratio of 2.4 
confirm this characteristic dependence. According to reference [27], the increase in peak 
impact sound pressure level above critical train speed should be given by dSPL = lOlog [(I+ 
M&)/( 1 + Ml/m)], which would yield a 3 dB increase in our case, instead of the 2 dB increase 
indicated by the experimental data of Figure 8. The 1 dB discrepancy between predicted and 
measured increases is within the overall accuracy of the experiment. 

Speed dependence ofwheel acceleration. The peak wheel acceleration as a function of train 
speed was investigated by attaching a miniature accelerometer to the underside of the journal 
box and running the experimental vehicle in both the step-up and the step-down directions 
over a rail joint with height difference. As shown in Figure 9, the journal box acceleration 
level has the same characteristic speed dependence as the corresponding peak sound pressure 
level shown in Figures 4 and 5. 

Figure 4.18: Effect of static axle-load on the peak impact-sound pressure-level
for a rail joint (reproduced from Ver et. al. [125]). At low speeds, sound pressure is
independent of axle load. At high speeds, sound pressure depends on axle load.

rail-wheel impacts are caused by joints in the railways, wheel flats etc. Ver et. al. [125]

investigate the impact noise generated by various wheel and rail discontinuities. Their

experimental analysis reveal that for a level joint the impact noise is proportional to the

speed of a train and independent of its weight, as long as the train speed is below a critical

value (figure 4.18). When they increase the train speed above this critical value, impact

noise becomes weight dependent and speed independent. They also derive the expression

for the critical speed in terms of wheel and train mass, which is consistent with the simple

analysis described above. Similar observations are found by Steenbergen [117]. All these

railway vibration studies are in agreement with the impulse calculation described above.

At this point, we have two theories: first is based on the McFadden and Smith [90] as-

sumption which suggests that the impulses generated by a localized fault are proportional

to the load acting on a rolling element; second is based on simple momentum-based calcu-

lations and railway-vibration literature which suggests that the impulses are proportional

to the speed and independent of the load. So, the two theories are in disagreement with

each other. The question is which one should we use to predict the vibration signatures

of planet bearings. We carry out an experimental analysis to find out the answer to this

question.
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Defective 
bearing

AccelerometerLoad

Small rig

(a) Experimental setup

Defective bearing

Floating bearing

Applied load

Shaft

(b) Small rig design

Figure 4.19: Experimental setup used to measure the impulse generated by a
localized bearing-fault. Lever mechanism is used to vary the applied load and the
shaft in the small rig is driven by a hand drill.



118 Fault Detection in Planet Bearings

2.05 2.1 2.15 2.2
−3

−2

−1

0

1

2

3

time (s)

R
es

po
ns

e

2�/⇥d

time (s)

N
or

m
al

iz
ed

 a
cc

el
er

at
io

n

Figure 4.20: Typical acceleration signal measured by an accelerometer located
near the outer race of the faulty bearing. Each peak represents an impulse response
due to a bearing fault.

4.7.2 Experimental Determination of Impacts Generated by a

Localized Fault

Figure 4.19 shows the experimental setup used to determine the impacts generated by a

localized fault. The setup consists of a small rig with three bearings (figure 4.19). The

two bearings located at the ends support a shaft containing a floating bearing. One of

the end bearings (faulty bearing) contain a localized inner-race fault. A lever mechanism,

with 1:10 leverage ratio, is used to apply a constant radial load to the floating bearing.

This load is shared by the faulty bearings and the other end bearing. Different radial

loads can be applied to the faulty bearing by adding different weights to the lever arm.

An accelerometer is mounted near the outer race of the faulty bearing. The small rig is

driven by a variable-speed hand-drill. Experiments are carried out at two speeds (V =

0.18 m/s and 0.52 m/s) and five loads (F = 170, 320, 460, 580 and 740 N).

Figure 4.20 shows a typical response measured by the accelerometer. The response

contains periodic impulses, separated by a time interval of 2π/ωd, generated when rolling

elements pass through the fault. The vibration transmission path between the fault

and the measurement point remains constant as the locations of both the fault and the

accelerometer are fixed. Therefore, the response is not modulated and all the impulses

in the response signal (figure 4.20) are of the same magnitude. We calculate the average

magnitude of these impulses for different loads and speeds.

Figure 4.21 shows the variation of normalized impulse with the contact force acting on
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Figure 4.21: Measured variation in the impulse generated by a bearing fault with
the applied load at two rolling-element speeds. Theoretical impulse values predicted
from the speed-dependence (dotted blue) and load-dependence (dotted black) theo-
ries are also shown.

a rolling element at the time of impact for two different speeds. Each data point shows the

spread and the mean calculated for 10 different runs. It is clear from the figure that the

impulse is more sensitive to speed than load. Experimental data shows that the impulse

is proportional to V 1.4, but more experiments should be performed at wide range of speed

values to accurately calculate this relationship. Figure 4.21 also shows the theoretical

impulses predicted by the two theories: load dependence and speed dependence. Since

the measured acceleration is proportional to the impulse and does not give us the impulse

magnitude directly, we have used the first data point at each speed to normalize the

impulse values predicted by the two theories.

The experimental results presented in this section clearly suggest that the impulse

generated by a localized narrow-fault depends primarily on the speed of a rolling element.

There is some load dependence but it is secondary compared to the speed dependence.

4.7.3 Reason Behind Secondary Load-Dependence

In the previous section, we have observed that the impulse generated by a localized fault

depends primarily on the rolling-element speed. This observation can be explained using

the simple impulse calculation described in section 4.7.1 (equation 4.66). We also found
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Trajectory of the rolling element as 
it passes through the narrow fault

Figure 4.22: A rolling element of radius r with nonlinear contact springs passing
through a narrow fault of width d and depth h such that d < 2

√
2rh, i.e., the rolling

element never touches the bottom of the fault.

that impulse increases with the load acting on a rolling element during the time of impact,

although the variation with the load is secondary compared to the speed. None of the

existing theories explain this secondary load-dependence of impulse. Therefore, in this

section, we analyze the influence of various factors on the impulse calculation to find out

the reason behind this secondary load-dependence.

4.7.3.1 Nonlinear Contact-Stiffness

Contact stiffness between a rolling element and raceways is governed by the Hertzian

contact theory and it is a nonlinear function of load. As the applied load on a rolling

element varies, its contact stiffness changes. In this section, we evaluate the influence of

this nonlinear contact stiffness on the impulse generated by a localized fault.

Let us consider a rolling element travelling with a constant horizontal speed between

two surfaces representing inner and outer raceways (figure 4.22). The rolling element is

connected to the raceways by springs representing the contact stiffness. The initial static

compression in each of these contact springs is δ/2 which is caused by the application

of a constant force F . The values of the contact stiffness are calculated for the constant

applied load F . The trajectory of rolling-element’s centre of mass, when it passes through

the fault, is shown in the figure 4.22 and can be expressed as

y(t) =

{
−V 2

2R
t2 for 0 ≤ t < d

2V

− (d−V t)2

2R
for d

2V
≤ t < d

V
.

(4.67)

Equation 4.67 is based on the assumption that the rolling element never loses contact
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with the fault, and we have already established that this is true for a rolling element

located within the load zone of a typical wind-turbine planetary-bearing. We can now

write the equation of motion for the rolling element as

ẍ(t) + Ω2x(t) =
K

m
y(t), (4.68)

where Ω =
√

2K/m and y is given by equation 4.67. Solution of equation 4.68 is

x(t) =
1

Ω

∫ t

0

K

m
y(τ)sin{Ω(t− τ)} dτ. (4.69)

Substituting y from equation 4.67 into 4.69 and solving the integral yields

x(t) =
1

2

[
−(V t− d)2

2R
+

V 2

RΩ2
{1− cos(Ωt)} − dV

RΩ
sin

{
Ω

(
t− d

2V

)}]
. (4.70)

Total force in the spring between the rolling element and upper raceway is K {x(t) + δ/2},
and the static force (by ignoring the rolling element dynamics) in the spring isK {δ/2 + y(t)/2}.
The dynamic force in the upper spring can be calculated by subtracting the static force

from the total force. Therefore,

Fdyn = K

(
x(t)− y(t)

2

)
, (4.71)

where x(t) is defined by equation 4.70. The trajectory of the rolling-elements centre of

mass when it comes in contact with the right edge of the fault is defined by y(t) = − (d−V t)2

2R

(from equation 4.67). Since we are interested in the impulse when a rolling element

strikes the right edge of the fault, we substitute y(t) = − (d−V t)2

2R
into equation 4.71. The

substitution gives

Fdyn = −K
2

[
V 2

RΩ2
{1− cos(Ωt)}+

dV

RΩ
sinΩ(t− d

2V
)

]
. (4.72)

For our test bearing, Ω is of the order of 106 rad/s. Thus, the magnitude of the first

(cosine) term in the above equation will be much smaller compared to the magnitude of the

second (sine) term. Neglecting the first term in equation 4.72 and making a substitution

t̂ = t− d/(2V ) yields

Fdyn =
K

2

dV

RΩ
sin
(
Ωt̂
)
. (4.73)

Equation 4.73 gives us the dynamic force when the rolling element strikes the right

edge of the fault. In order to calculate the impulse generated during the impact, we
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Figure 4.23: An impact-force pulse due to a bearing fault

integrate the positive half-cycle of the sinusoidal dynamic force (figure 4.23). Therefore,

the impulse is given by

= =

∫ π/Ω

0

K

2

dV

RΩ
sin
(
Ωt̂
)

dt̂ = mV
d

R
. (4.74)

Impulse given by equation 4.74 is independent of the contact stiffness K and is same as

the one calculated without considering the contact stiffness. This shows that the contact

stiffness does not influence the impulse value. Since contact stiffness is a function of the

applied load, impulse is independent of the applied load. The simple analysis described

here shows that the nonlinear behaviour of the contact stiffness does not explain the

secondary load-dependence of the impact generated by a fault.

One assumption we make in the analysis described above is that the rolling element is

always loaded. But in some cases, if a fault is wide enough, rolling element might become

unloaded as it enters the fault. We now analyse the influence of this unloading behaviour

on the impulse value.

Let us first consider an inertia based approach. Impulse generated during the impact

in the vertical direction is proportional to the vertical velocity of a rolling element just

before the impact. If the horizontal speed of the rolling element is constant then for any

position angle θ

rθ̇cosθ = V, (4.75)

which gives

θ̇ =
V

rcosθ
. (4.76)

Using the above expression for θ̇ we can calculate the rolling-element speed in the vertical

direction as

Vvertical = rθ̇sinθ = V tanθ, (4.77)

where θ varies from 0 (at the point of entry into the fault) to d/(2r) (at the point of
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impact). Figure 4.24 shows the variation of the vertical velocity with position angle θ. If

the vertical displacement (h′ = d2/(8r) from equation 4.67) of the rolling element as it

passes through the fault is less than the static deflection of the rolling element (h′ < δ)

then the rolling element never becomes completely unloaded and vertical velocity at the

time of impact is V max
vertical ≈ V d/(2r). However, if the vertical displacement is greater than

the static deflection (h′ > δ) then the rolling element becomes completely unloaded. Once

the rolling element is unloaded, its velocity remains constant in the absence of any contact

force. In this case, the vertical velocity of the rolling element just before the impact is

less than V max
vertical. The position angle θ, at which the rolling element becomes unloaded,

is governed by the applied load. As we increase the applied load, static deflection in the

contact spring increases and the rolling element has to travel further into the fault before

it becomes completely unloaded. This reduces the difference between the vertical velocity

just before the impact and V max
vertical (figure 4.24). Hence, the vertical velocity of the rolling

element increases with the load, and this results in an increase in the impulse. But as

the load is increased beyond a point when the static deflection in the rolling element is

more than the maximum vertical displacement, the vertical velocity before the impact

stays constant at the value V max
vertical and impulse becomes load independent. A qualitative

variation in the impulse with the applied load is shown in figure 4.25.
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Figure 4.25: Qualitative variation in the impulse due a bearing fault with the
applied load. The regime in which experiments of section 4.7.2 were conducted is
also shown.

A similar conclusion can be derived by using a stiffness-based static approach. Let us

consider a spring with a constant stiffness K, representing the rolling element, travelling

with a constant horizontal speed. Initial compression in the spring is δ due to the applied

load and initial spring force is Kδ. If the initial compression is greater than the maximum

vertical displacement of the rolling element as it passes through the fault (δ > h′) then the

compression in the spring as it enters the fault becomes δ − h′, and spring force becomes

K(δ−h′) (figure 4.26). Change in the static spring force as the spring passes through the

fault is

∆Fspring = Kh′, (4.78)

which is independent of δ and hence independent of the applied load. Next, let us consider

another case where the static deflection in the spring is less than the maximum vertical

displacement. In this case, the spring becomes completely unloaded when it enters the

fault and the spring force becomes zero. The change in the spring force is

∆Fspring = Kδ. (4.79)

Since δ is a function of the applied load, ∆Fspring also depends on the applied load. Hence,

we get the impulse load-dependence similar to figure 4.25.

The qualitative analysis described here shows that the load dependence of the impulse

can only be explained if a fault is big enough for a rolling element to become completely
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Figure 4.26: A spring representing a rolling element passing through a fault. (a)
Initial compression in the spring is more than the maximum vertical displacement of
the rolling element. (b) Initial compression in the spring is less than the maximum
vertical displacement of the rolling element.

unloaded. For our test bearing this is not the case. The static deflection of a rolling

element of our test bearing at the contact force of 300 N is 70 µm and the maximum

vertical displacement of a rolling element when it enters the fault is about 40 µm which

is less than the static deflection. As a result, a rolling element in the test bearing never

becomes completely unloaded and the secondary load-dependence of the impulse which

we observed in the experimental analysis cannot be explained by the theory described in

this section.

4.7.3.2 Interaction Between Cage and Rolling-Elements

Impulse described by equation 4.66 is based on the assumption that the rolling element

travels with a constant horizontal speed. But under the application of a vertical load,

rolling element will accelerate as it enters the fault. Let us now remove this assumption

of constant horizontal speed and calculate the expression for the impulse.

Consider a rolling element at a position angle θ. We assume that the rolling element

is rotating without any sliding about the contact point O with an angular speed θ̇ and

an angular acceleration θ̈ (figure 4.27). Balancing the moments about the contact point

O gives (
I +mr2

)
θ̈ = Frsinθ. (4.80)
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Figure 4.27: Acceleration and forces acting on a rolling element as it enters the
fault (before impact).

Substituting I = 2
5
mr2 into the above equation and solving for θ̈ yields

θ̈ =
5F

7mr
sinθ. (4.81)

Using

θ̈ =
∂θ̇

∂t
=
∂θ̇

∂θ
θ̇ =⇒ θ̇∂θ̇ = θ̈∂θ =

5F

7mr
sinθ∂θ, (4.82)

we can obtain the angular speed of the rolling element at an angle θ as

∫ ω

ωo

θ̇dθ̇ =
5F

7mr

∫ θ

0

sinθdθ =⇒ ω =

√
ω2

0 +
10F

7mr
(1− cosθ), (4.83)

where ω0 = V/r is the angular speed of the rolling element before it enters the fault.

Substituting cosθ ≈ 1 − d2

8r2 , angle at the time of impact, into the above equation gives

the angular speed just before the impact as

ω =

√
ω2

0 +
5F

28mr

(
d2

r2

)
. (4.84)

We have already calculated the angular speed just after the impact using the conser-

vation of angular momentum, which is defined by equation 4.64. Now, we can determine

the impulse in the vertical direction as

= = mrω′sinθ − (−mrωsinθ) = mr (ω′ + ω) sinθ. (4.85)

Substituting ω′ from equation 4.64 and assuming that the fault is small, i.e., d2/r2 << 1,

we can simplify equation 4.85 as

= = mdω. (4.86)
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Putting the value of ω from equation 4.84 into the above equation gives

= = m
d

r

√
V 2 +

5Fd2

28mr
. (4.87)

Equation 4.87 contains both the load and the speed terms, which explains the load and the

speed dependence of the impulse. Now let us check whether this equation also gives us the

primary speed and the secondary load dependence, which we observed in the experimental

data. For our test bearing: r = 3 mm, d = 1 mm, and m = 10−3 kg. Putting these values

into equation 4.87 gives

= =
10−3

3

√
V 2 + 0.06F , (4.88)

and for V = 0.52 m/s (maximum rolling-element speed for the experiments described in

section 4.7.2), above expression becomes

= =
10−3

3

√
0.27 + 0.06F . (4.89)

Clearly, for F = 100 N (which is less than the minimum rolling-element force used in the

experiments of figure 4.21) the load term dominates the above equation and the influence

of rolling-element speed on the impulse becomes secondary. This contradicts with the

experimental observation.

The analysis we have done so far suggests that if the horizontal speed of a rolling

element is kept constant when it passes through a fault then the impulse depends on the

speed and not on the applied load. On the other hand, if we allow a rolling element

to accelerate freely under the application of an applied load as it passes through the

fault then the impulse depends on both the applied load and the speed, but the load

dependence is more prominent compared to the speed dependence. A rolling element in

a bearing is constrained by a cage. As the rolling element tries to accelerate under the

application of a vertical load, cage resists its changing speed. Therefore, the acceleration

of the rolling element depends on the applied load as well as resistance force between the

rolling element and the cage. In the following paragraphs, we investigate the influence of

this rolling-element-cage interaction on the impulse.

Let us consider a rolling element at an angle θ inside a fault (figure 4.28). The

rolling element is connected to a linear spring with spring constant kcage representing the

stiffness between the rolling element and a cage pillar. Speed of the cage inside a bearing

is determined by the rolling elements, if the cage is driven by the rolling elements. A

small change in the speed of a rolling element passing through a fault will not influence

the cage speed significantly, as all other rolling elements travel with a constant speed.
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Figure 4.28: A rolling element passing through a bearing fault and connected to
a cage pillar with a linear spring

Therefore, in our simplified model we assume that the other end of the spring is travelling

with a constant horizontal speed V . If the fault is small then the horizontal displacement

of the rolling element can be approximated by rθ, and the compression in the cage spring

becomes rθ − V t. Using this, we can write down a force balance equation for the rolling

element as (
I +mr2

)
θ̈ = Frθ − kcager (rθ − V t) . (4.90)

Assuming that the damping in the system is high enough so that the small oscillations in

θ die out quickly, we can calculate the steady-state value of θ from the above equation,

θ =
kcageV

kcager − F
t. (4.91)

By differentiating the above equation, we obtain the angular speed of the rolling element

just before the impact as

ω = θ̇ =
kcageV

kcager − F
. (4.92)

Substituting ω from equation 4.92 into the impulse equation 4.86 we get

= = mV
d

r

(
kcager

kcager − F

)

= mV
d

r

(
1 +

F

kcager − F

)
. (4.93)

Equation 4.93 includes two terms: the first term is same as equation 4.66 which explains

the speed dependence of the impulse, and the second term explains the load dependence

of the impulse. Figure 4.29 compares the impulse predicted by equation 4.93 with the

experimental data discussed in section 4.7.2 for two values of cage stiffness. The first data

point at each speed is used to normalize the analytically predicted values. Impulse values
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Figure 4.29: Measured variation in the impulse generated by a bearing fault with
the applied load (black) along with the impulse variation predicted by the cage-
interaction model for two values of cage stiffness (blue).

predicted by equation 4.93 show a trend similar to the experimental data and exhibit

both primary speed-dependence and secondary load-dependence.

While deriving equation 4.93, we assume that there is no clearance between the rolling

element and the cage. This is a reasonable assumption because these impacts occur inside

a load zone, and rolling elements drive the cage within a load zone of a bearing. Therefore,

all the clearance between a rolling element and a cage is already taken by the rolling

element when it enters the load zone.

4.7.4 Effect of Impulse Calculation on the Vibration Signatures

of Planet-Bearing Faults

In the previous section we have observed that the impulse due to a localized bearing

fault depends primarily on the rolling-element speed. There is some load dependence

but it is secondary compared to speed dependence. This observation undermines the

commonly used assumption that the impulse due to a bearing fault is proportional to the

load acting on a rolling element at the time of impact. In this section we investigate how

this new observation influences the sideband pattern of planet-bearing faults described in

section 4.4.
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Figure 4.30: Load-dependent impulse-train function

Figure 4.5 shows two impulse trains. The first impulse train is “load dependent” as it

is based on the assumption that the impulse is proportional to the contact force acting

on a rolling element. The contact force acting on a rolling element inside a load zone

is parabolic, therefore the impulse train due to a bearing fault takes the form shown in

figure 4.5a. The second impulse train (figure 4.5b) is “speed dependent”. For this impulse

train, the impulse values inside the load zone are constant as they are proportional to the

rolling-element speed. The impulse values outside the load zone are zero as the rolling-

element speed is greater than the critical speed required for speed dependence∗.

Sideband pattern of a planet-bearing outer-race fault for the speed-dependent impulse-

train is shown in figure 4.31a (see section 4.4 for how it is calculated). In order to determine

the sideband pattern for the load-dependent impulse-train, we just have to replace the

impulse-train function defined by equation 4.39 of section 4.4 by the impulse-train function

of figure 4.30. The rest of the analysis remains unchanged. The impulse-train function of

figure 4.30 can be described by

=train(γ) = =0

∞∑

m=−∞

εme
ιmγ, (4.94)

where =0 is the maximum value of the impulse inside the load zone and

εm =
−Cmγs − Cmγe + ι (Smγs + Smγe)

2(γs − γe) {m2 − π2/(γs − γe)2} . (4.95)

Equation 4.95 is based on the assumption that contact force inside a load zone can be

approximated by a sinusoidal function (figure 4.30). If the size of a load zone is 180◦ then

∗Critical speed is proportional to the square root of load. Since the load outside a load zone is zero,
critical speed is also zero. This makes the impulse load-dependent and we get zero impulse values outside
a load zone.
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Figure 4.31: Analytical vibration signature of a planet-bearing outer-race de-
fect: (a) calculated using speed-dependent impulse-train, (b) calculated using load-
dependent impulse-train. The frequencies of sidebands are same in both cases (a)
and (b), but the amplitudes are different.
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substituting γs = 0 and γe = −π into equation 4.95 gives

εm =





1
π(1−m2)

for m even
ι

4m
for m = ±1

0 for m odd and m 6= ±1.

(4.96)

Using the impulse-train function defined by equation 4.94 in the analysis described

in section 4.4 we determine the sideband pattern (figure 4.31b) for the load-dependent

impulse-train. By comparing the two sideband patterns of figure 4.31 we observe that:

1. the frequencies of the sidebands are identical in both cases;

2. the amplitudes of the sidebands are different in both cases.

The two impulse trains are defined in terms of Fourier series. The frequencies in the two

Fourier series are same but the magnitudes of the Fourier terms in the two equations are

different. This explains why the frequencies of the sidebands in the two cases are same

but the amplitudes are different.

This result directly influences the condition-monitoring and fault-detection algorithms

used in wind turbines. In most of these algorithms, variations in the sideband amplitudes

are recorded over time and the condition of a bearing is determined based on the changes

in these amplitudes. If a change in the sideband amplitude is detected, we must know

whether it is due a change in the operating speed or load or fault size. In order to answer

this question and to determine the condition of a bearing, it is crucial to know how these

sideband amplitudes vary with operating speed, load and fault size.

4.8 Conclusions

We develop an analytical model of a planetary drivetrain, including flexible ring-gear and

defective planet-bearing, to determine the vibration signatures of localized planet-bearing

faults. Following are the main conclusions.

• Vibration signatures of planet-bearing faults contain several modulation sidebands.

We identify all the sources of modulation and provide an explanation for their

formation.

• Sideband behaviour of a planet bearing with an inner-race fault can be described

by pωd ± nωc, where p and n are positive integers. Sidebands spaced by ωc are due

to the variation in vibration transmission-path caused by the carrier rotation.
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• Sideband behaviour of an outer-race fault can be described by pωd+(m±1)ωpc±nωc,
where m is an integer. In this case, three sources of modulation sidebands are

present: (i) variation in impulse magnitude as a defect passes through the load

zone; (ii) variation in the angle between impulse vector and ring-planet mesh; and

(iii) variation in the vibration transmission-path caused by the carrier rotation.

• Sideband behaviour of a rolling-element fault can be described by pωd + (m±1)Ω±
nωc. As with the outer-race fault, all the three sources of modulation are present.

• Amplitudes of modulation sidebands in a fault signature are governed by the vi-

bration modes of ring gear, and these amplitudes change as we move across the

frequency range.

• Theoretically predicted vibration signatures of planet-bearing faults are in close

agreement with the experimental results.

• We have shown both theoretically and experimentally that the impulse due to a

localized bearing fault depends primarily on the rolling-element speed and almost

independent of the applied load.
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Chapter 5

Conclusions and Future Work

This chapter summarizes the findings of this research and provides some suggestions for

future work. The headlines are: (i) skidding is predicted using simple analytical methods;

(ii) sideband analysis is used to detect planet-bearing faults; (iii) impulse due to a bearing

fault is independent of load. Further work is needed in five key areas: incorporation

of non-Newtonian lubrication in skidding model; skidding analysis under realistic time-

varying operating conditions; inclusion of cage clearance into skidding model; detection

of bearing faults under time-varying speeds; and determination of vibration signatures for

non-rectangular faults.

5.1 Conclusions

This research addresses two key issues in wind turbine gearboxes: skidding in high-speed

bearings and detection of localized faults in planet bearings.

5.1.1 Skidding in high-speed bearings

High-speed bearings of wind-turbine gearboxes operate at high speeds and low loads which

make them prone to skidding. Skidding occurs when the traction forces between rolling

elements and raceways are not sufficient to overcome drag and inertial forces acting on a

rolling element. Skidding is known to cause high subsurface shear stress and can lead to

premature bearing failure.

Unlike the classical fatigue failure mechanism, for which we have well-established theo-

ries to calculate bearing life, skidding mechanism in bearings is not well understood. Most

of the work done on ball-bearing skidding until now has been focused on axially-loaded

bearings operating under constant operating conditions. Wind turbine bearings, however,

135
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operate under combined axial and radial loads and time-varying operating conditions. In

this research, we study the skidding behaviour of ball bearings under both axial and ra-

dial loads as well as time-varying speeds. We present a dynamic model, which includes

gyroscopic effects, to analyse the roll-slip dynamics of rolling-elements in a ball bearing

for a wide range of operating conditions. Following are the main conclusions of this work.

1. For bearings operating under constant axial loads and constant speeds, skidding

occurs when operating load is less than the minimum load required to prevent

skidding. The value of this minimum load depends on bearing geometry, lubricant,

and operating speed. We provide simple equations to calculate this minimum load.

a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′ ≥ πhCDρ(ωth
c rp)

2r2

4∆umax

and
a∫

−a

b∫

−b

η(x′′, y′′)dx′′dy′′ ≥ G0h

∆umax
.

2. For bearings operating under combined axial and radial loads, skidding occurs when

a rolling-element enters a load-zone. The extent of the skidding inside a load-zone

can be reduced by increasing the applied load, but it is not possible to completely

eliminate skidding. We propose a simple analytical method to calculate the extent

of skidding inside a load-zone.

∣∣∣∣−ϑ3 +
3

2
θLϑ

2

∣∣∣∣ ≥
3Iωth

b ω
th
c tan2βθ2

L

8rµABFmax
e

and ∣∣∣∣
3

2
θLΘ2 −Θ3 + ϑ3 − 3

2
θLϑ

2

∣∣∣∣ ≥
πabIωth

b ω
th
c θ

2
Ltanβ

4µBCFmax
e Φ(a, b)

.

3. For bearings operating under constant axial loads and time-varying speeds, skid-

ding occurs if the frequency or the amplitude of speed fluctuation is more than a

critical value. These critical values increase with applied load. We derive a simple

equation to predict these critical values of the frequency and the amplitude of speed

fluctuation.

Ω∆ω ≤ 2µeFa(ri + ro)

zIcsinβ
(

1− cosβ
rp/r

) − CD
2Ic

πρr3
pr

2ω2
0

(
1− cos

rp/r

)
.
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We also demonstrate that skidding could occur under time-varying speeds even if

the applied load is well above the minimum load required to avoid skidding predicted

by the constant-speed skidding criterion.

4. This research shows that the mechanism of skidding changes with operating con-

ditions. Any skidding prevention criterion derived for constant axial loads and

constant speeds is not applicable for combined loading conditions or time-varying

speeds.

This work explains the skidding behaviour of ball bearings under a wide range of

operating conditions using a detailed dynamic model as well as approximate closed-form

solutions. The closed-form solutions described above: (i) help us to determine whether a

bearing will skid under given operating conditions without having to run the full numerical

model; (ii) provide a direct relationship between bearing geometrical parameters and

skidding; (iii) are computationally cheap and, therefore, can be implemented in a bearing

design tool. The methods developed in this research will help bearing designers to improve

the reliability of wind turbine bearings by predicting the amount of skidding at the design

stage.

5.1.2 Detection of localized faults in planet bearings

Localized faults in planet bearings are difficult to detect using vibration measurements

because of their complicated and time-varying vibration transmission path. A fault lo-

cated inside a planet bearing rotates around the bearing centre and it also rotates with the

carrier. This double rotation results in a complicated vibration transmission path. Most

of the work done on bearing fault diagnostics until now has been focused on fixed-axis

bearings and no work has been done on planet bearing faults so far. In this research, we

develop a dynamic model of a planetary drive to understand the vibration behaviour of

localized planet bearing faults. The dynamic model contains a flexible ring gear and a

defective bearing with localized faults. The model is used to derive vibration signatures

of planet bearing faults located on inner-race, outer-race, and rolling-elements. Following

are the main conclusions of this work.

1. Vibration signature of a planet bearing inner-race fault contains modulation side-

bands separated by carrier frequency. The source of this modulation is carrier rota-

tion. As a carrier rotates inside a planetary drive, the vibration transmission path

between a fault and an accelerometer located on ring gear changes. This change in

the transmission path results in modulation.
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2. Vibration signature of a planet-bearing outer-race fault contains additional side-

bands separated by planet frequency relative to carrier. This modulation is caused

by two additional sources: variation in impulse train as a fault moves in and out of

the load zone, and variation in the angle between a fault and a ring-planet contact

line.

3. Frequencies of these modulation sidebands are kinematic frequencies which are gov-

erned by the geometry of a planetary drive and operating speed. Amplitudes of

these modulation sidebands are governed by the geometry as well as the impulse

generated when a rolling-element passes through a fault.

4. This research shows theoretically as well as experimentally that the impulse gen-

erated when a rolling-element passes through a localized narrow fault primarily

depends on the rolling-element speed. There is some load dependence but it is sec-

ondary compared to speed dependence. This undermines the assumption, commonly

used in bearing-fault-diagnostics literature, that these impulses are proportional to

the load acting on a rolling-element during the time of impact. This finding is

important for algorithms used for condition monitoring of bearings. Most of these

algorithms record the variation in the sideband amplitudes with time. Since the

sideband amplitudes depend on the impulse, it is important to know whether a

change in the amplitude is caused by a change in the speed, or the load, or the fault

size.

This research will improve existing condition-monitoring and fault-detection algo-

rithms. Wind turbine gearbox maintenance costs can also be reduced by detecting a

fault at an early stage.

5.2 Future work

Future work that follows directly from this research falls into two main areas: (i) future

work on bearing skidding; and (ii) future work on planet-bearing fault-detection.

5.2.1 Future work on bearing skidding

1. The traction model described in section 3.2.3 is based on two assumptions: (i) lubri-

cant is a Newtonian fluid and (ii) contact is elastohydrodynamic (EHD). Newtonian

fluid assumption is valid as long as the contact stress between rolling-elements and
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raceways is less than the Eyring stress. If the contact stress is greater than the

Eyring stress, lubricant starts to exhibit non-Newtonian behaviour (figure 2.7). The

operating contact stress in a typical wind turbine high-speed bearing is close to the

Eyring stress and in some cases it is even higher. According to Johnson and Tevaar-

werk [70], this non- Newtonian behaviour of a fluid can be described by equation 2.6.

Further investigation could be done to find out how this non-Newtonian traction

behaviour of a lubricant changes the roll-slip dynamics of a rolling-element. The dy-

namic model of section 3.2.2 will remain unchanged. Only the traction equation 3.21

will need to be replaced by equation 2.6. According to figure 2.7, Newtonian equa-

tion over predicts the traction when the contact stress is more than the Eyring

stress. Therefore, it is expected that the minimum load required to avoid skidding

will be slightly more for a non-Newtonian fluid.

Another assumption made in the current analysis is that of the EHD lubrication

regime with no metal-to-metal contact. Lubrication contact regime is determined

by a film parameter (defined by equation 2.8) which is the ratio of film thickness

and surface roughness of contacting solids. If the surface roughness is of the same

order or greater than the film thickness generated between contacting solids, asperity

contact occurs. Surface roughness of rolling-elements and raceways of wind turbine

bearings is significantly less than lubricant film-thickness generated under normal

operation, and the EHD contact assumption is valid. Although in extreme loading

events, asperity contact might occur because of the reduction in film thickness, and

as a result the traction behaviour of a lubricant might change from EHD contact

regime to mixed-lubrication regime (figure 2.9). Johnson, Greenwood and Poon [68]

provide a mathematical theory based on statistical distribution of surface asperities

to calculate the traction forces in mixed-lubrication regime. The further work could

focus on extending the current research by replacing the EHD traction model by

the mixed-lubrication model and evaluate the change in the skidding characteristics.

Like the non-Newtonian case, the dynamic model would remain unchanged.

2. In this research we have demonstrated the effect of time-varying speed on the skid-

ding behaviour of a ball-bearing, but the analysis is limited to axially loaded bear-

ings. Further work could be done to extend the current work on time-varying speeds

to bearings operating under combined axial and radial loads. Another limitation

of the current analysis is that the frequency and the amplitude of speed variation

are assumed to be constant. In a wind turbine these parameters change with time.

Speed variation in a wind turbine often includes multiple frequencies such as blade

passing frequency and its higher harmonics, gear meshing frequencies etc. Further
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Figure 5.1: A real bearing fault with non-rectangular profile. Source: Kuhnell [80]

analysis could be performed to quantify the effect of variation in speed fluctuation

frequency and amplitude on skidding behaviour. The two further investigations

proposed here can be performed using the bearing dynamic model described in this

work as the model itself does not have limitations mentioned above. However, the

closed-form solutions to predict occurrence of skidding will not be applicable and

should be re-derived for the proposed operating conditions.

3. The dynamic model, used to predict skidding, developed in this research ignores

clearance between cage and rolling-elements. Cage clearance might not influence

the skidding behaviour under constant axial loads and constant speeds as roll-slip

response of each rolling-element is identical, but under combined loading conditions

and time- varying speeds cage clearance might have some influence on the skidding

behaviour. Further investigation could be done to quantify the influence of cage

clearance on skidding behaviour.

5.2.2 Future work on planet-bearing fault-detection

1. Vibration signatures of planet bearing faults presented in this work are derived for

constant operating speed and load. As we have mentioned earlier, loads and speeds

in wind turbines vary with time. How does this variation in speed and load alter
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the vibration signatures of planet bearing faults? This question could be addressed

in future work. Implementation of load variation in the existing dynamic model

of planetary drivetrain is straight forward as the load influences only the impact

generated by a fault and the frequency-response function derived in section 4.3

remains unchanged. Implementation of speed variation is not as straight forward

as load variation. Speed variation will cause the rotating coordinate system (of

section 4.2.5) to accelerate and this will add an extra term to the equation of motion

of the system. Hence, the frequency-response function must be re-derived to take

into account this angular acceleration.

2. The vibration signatures of planet bearing faults derived in the current research are

limited to rectangular faults with crisp boundaries. Real faults, however, do not

have well-defined shapes (figure 5.1). Further investigation could be performed on

the impact characteristics of faults of different shapes and sizes, and how they influ-

ence the sideband behaviour. We expect the frequencies of the sidebands to remain

unchanged as long as these faults are localized because the modulation frequencies

are kinematic frequencies and are independent of the impulse generated by a fault.

Amplitudes of the sidebands are likely to change as they are influenced by the im-

pulse generated by a fault. The current work could also be extended to include

distributed faults. Distributed faults have random shapes and, unlike a localized

fault, it would be difficult to derive a closed-form expression for the impact gener-

ated by a distributed fault. Perhaps a stochastic approach could be developed to

predict the fault response envelope by taking into account the random distribution

of asperities in a distributed fault.
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Appendix A

Comparison of Minimum Loads

Required to Avoid Drag-Sliding and

Gyroscopic-Spinning

Equations 3.38a and 3.38b give us the two loads: (i) minimum load required to avoid drag-

sliding, and (ii) minimum load required to avoid gyroscopic-spinning. In this section, we

identify the parameters which determine which of these two loads will be greater than the

other.

Let us calculate the ratios of the right-hand-sides of the equations 3.38a and 3.38b

such that

< =

(
G0h

∆umax

)/(
πhCDρ(ωth

c rp)
2r2

4∆umax

)
(A.1)

The left-hand-sides of equations 3.38a and 3.38b increase monotonically with the applied

load Fa; therefore, if < is greater than one than the load required to avoid gyroscopic-

spinning will be greater than the load required to avoid drag-sliding, and if < is less than

one then the load required to avoid drag-sliding will be greater.

Now, let us simplify equation A.1 by substitutingG0 =
mrpω2

i

20

(
1− cosβ

rp/r

)2 (
1 + cosβ

rp/r

)
sinβ,

ωth
c =

(
1− cosβ

rp/r

)
ωi
2

, and m = 4
3
πr3ρb. The substitution leads to

< =
16

15

ρb
ρ

r

rp

sinβ

CD

(
1 +

cosβ

rp/r

)
. (A.2)

For steel bearings ρb = 7800 kg/m3, for a typical lubricant ρ ≈ 900 kg/m3, and the
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Gyroscopic-Spinning

drag-coefficient for a ball CD = 0.47. Substituting these values into equation A.2 gives

< ≈ 20
r

rp
sinβ

(
1 +

cosβ

rp/r

)
. (A.3)

Equation A.3 shows that the value of the ratio < only depends upon the bearing

geometry parameters (r, rp, and β) and not on the operating speed. Therefore, the

bearing geometry alone determines which of the two loads (to avoid drag-sliding or to

avoid gyroscopic-spinning) will be higher.



Appendix B

Equations of Motion of a Continuous

Elastic Ring

In this section, we derive equations of motion of a continuous elastic ring. The derivation

is adapted from the work by Rao [105] and Huang and Soedel [63]. The effects of rotary

inertia and transverse shear deformation are neglected in the analysis.

Figure B.1a shows a free-body diagram of a section of the ring. Balancing the forces

in the radial and tangential directions gives

ρARrẅr = fr − P +
∂F

∂θ
−KrbRrwr (B.1a)

and

ρARrẅθ = fθ + F +
∂P

∂θ
−KθbRrwθ, (B.1b)

where P is the tensile force and F is the shear force. Moment balance about an axis

normal to the plane of the ring gives

∂M

∂θ
+ FRr = 0, (B.2)

where M is the bending moment. Consider an element located at a distance x from the

neutral axis of the ring (figure B.1b). If the axial stress in the element is σ then the

bending moment and tensile force can be described by

M =

∫∫

A

σxdA (B.3a)

and

P =

∫∫

A

σdA, (B.3b)
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Figure B.1: (a) Free-body diagram of a ring showing all the forces acting on a
section; (b) Differential element at a distance x from the neutral axis of the ring.

and the strain in the element can be defined by [105]

ε =
1

Rr

{
wr + w′θ +

x

Rr

(w′θ − w′′r )
}
. (B.4)

From equations B.3 and B.4 and using σ = Eε, bending moment and tensile force can be

calculated as

M =
E`h3

12R2
r

(w′θ − w′′r ) (B.5a)

and

P =
EA

Rr

(wr + w′θ) . (B.5b)

Substituting equations B.2 and B.5 into B.1 gives us the equations of motion of a con-

tinuous elastic ring, which are

Eh3`

12R3
r

(w′′′r − w′′θ )−
Eh`

Rr

(w′r + w′′θ ) + ρARrẅθ +Kθ`Rrwθ = fθ (B.6a)

and
Eh3`

12R3
r

(w′′′′r − w′′′θ ) +
Eh`

Rr

(w′θ + wr) + ρARrẅr +Kr`Rrwr = fr. (B.6b)
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n = 1 n = 2 n = 3n = 0

n = 1 n = 2 n = 3n = 0

Figure B.2: Vibration modes of an elastic ring. Top row represents inextentional
modes. Bottom row represents extensional modes.

Since wr and wθ are periodic with respect to θ, the can be expressed in terms of Fourier

series as

wr(θ, t) =
∑

n

wr,n(t)eιnθ (B.7a)

and

wθ(θ, t) =
∑

n

wθ,n(t)eιnθ. (B.7b)

To obtain the natural frequencies we substitute wr,n(t) = Wr,ne
ιωnt and wθ,n(t) = Wθ,ne

ιωnt

into equations B.7, and substitute equation B.7 into B.6 with fr = fθ = 0. Natural

frequencies of the ring are described by the equation [63]

ω4
n + c2ω

2
n + c0 = 0, (B.8)

where

c2 = −K1 −
Kr +Kθ

ρh
,

c0 = K2 +
n2Eh3

12ρ2h2R4
r

(
n2Kθ +Kr

)
+

Eh

ρ2h2R2
r

(
n2Kr +Kθ

)
+
KrKθ

ρ2h2
,

K1 =
n2 + 1

ρhR2
r

(
n2Eh

12R2
r

+ Eh

)
,

K2 =
n2(n2 − 1)2

R6
rρ

2h2

E2h4

12
.

Equation B.8 has two distinct roots for each n. One of the two roots represents predomi-

nantly an inextensional mode and the other root represents extensional mode (figure B.2).

Frequencies of extensional modes are generally an order of magnitude higher than the fre-
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Table B.1: Comparison of natural frequencies of the ring of table 4.1 calculated us-
ing complete theory (inextensional and extensional, equation B.8) and inextentional
only theory (equation B.10).

Inextentional only (Hz) Complete theory (Hz)
Inextensional Extensional

n=0 0 0 1004.3
n=1 0 0 1420.7
n=2 72.70 72.63 2247.7
n=3 205.63 205.38 3179.5
n=4 394.27 393.76 4146.0
n=5 637.62 636.75 5127.7

quencies of inextensional modes [63]. Therefore, the analysis can be simplified by ignoring

the extensional vibration of the ring. Using the inextentional assumption wr = −w′θ, a

simplified expression for the frequencies of inextensional modes can be obtained as [63]

ω
′2
n =

n2(n2 − 1)2Eh2

12ρR4
r(n

2 + 1)
+
Krn

2 +Kθ

ρh(n2 + 1)
. (B.10)

Table B.1 shows the natural frequencies of the free ring, with parameters defined in

table 4.1, calculated using equations B.8 and B.10. The frequencies of inextensional modes

calculated using equation B.10 are in close agreement with the frequencies of inextensional

modes calculated using equation B.8. The frequencies of extensional modes are an order

of magnitude higher than the frequencies of inextensional modes. This suggests that the

inextensional ring assumption made in section 4.2.1 is reasonable, and the frequencies

of the ring can be calculated using equation B.10 for n > 0. The modes associated

with n = 0 are: (i) rotational mode with zero frequency, and (ii) breathing mode. The

breathing mode involves the extension of the ring, and its frequency is obtained from

equation B.8 as

ω
′2
n =

1

2




Kr +Kθ

ρh
+

E

ρR2
r

+

√(
Kr +Kθ

ρh
+

E

ρR2
r

)2

− 4Kθ

ρ2h2

(
Eh

R2
r

−Kr

)
 . (B.11)



Appendix C

Matrices of the Planetary Model

This section details the matrices used in the planetary model of section 4.2.

Mass-Matrix Terms. System mass matrix is given by

Msys = diag(Ms,Mr,Mr,Mp1 , · · · ,MpZ︸ ︷︷ ︸
for z planets

,Mb,Mc), (C.1)

where

M(•) = diag(m(•),m(•), I(•)) for (•) = s, pi, b and c,

and

Mr = diag(M0,M1, · · · ,Mn).

Stiffness-Matrix Terms. System stiffness matrix is given by

Ksys =




KB +
∑Z

i=1

(
K

sp
11

)
i

0 · · ·
(
K

sp
12

)
i

· · · 0 0

[ω∗r ] + krpK
rp
22 · · · krp

(
K

rp
21

)
i

· · · 0 0

.
.
.

.

.

.

.

.

.

.

.

.

krpK
rp
11 + K∗i +

(
K

sp
22

)
i
· · ·

(
K

bp
21

)
i=Γ

(
K

cp
21

)
i6=Γ

. .
.

.

.

.

.

.

.

K
bp
11 + Kcb

22 K
cp
21

symm. KB + Kcb
21 +

∑i6=Γ
i=1:Z

(
K

cp
11

)
i



,

where [ω∗r ] = diag(ωr,ωr), and K∗i = (Kcp
22)i if i 6= Γ, K∗i = Kbp

22 if i = Γ.

Component stiffness matrices are:

(Ksp
11)i = ksp



S2

(αi−φ) −S(αi−φ)C(αi−φ) −rpS(αi−φ)

C2
(αi−φ) rpC(αi−φ)

symm. r2
s


 ;
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(Ksp
12)i = ksp




S(αi−φ)Sφ S(αi−φ)Cφ −rpS(αi−φ)

−C(αi−φ)Sφ −C(αi−φ)Cφ rpC(αi−φ)

−rsSφ −rsCφ rsrp


 ;

(Ksp
22)i = ksp




S2
φ −SφCφ −rpSφ

C2
φ −rpCφ

symm. r2
p


 ;

(Ksp
21)i = (Ksp

12)Ti ;

(Kcp
11)i =



krcpC

2
αi

+ ktcpS
2
αi

(krcp − ktcp)SαiCαi −ktcprcSαi
krcpS

2
αi

+ ktcpC
2
αi

ktcprcCαi
symm. ktcpr

2
c


 ;

(Kcp
12)i =

(
Kcb

21

)T
kbc =⇒ kcp

;

Kcb
11 = (Kcp

11)
kcp =⇒ kcb
i=Γ ;

Kcp
22 = diag(krcp, k

t
cp, 0);

Kcb
12 =

(
Kcb

21

)T
i=Γ

.

Symbol [•](•) =⇒ � or [•](•) =⇒ � means that the term (•) should be replaced by � in the

matrix [•].

Transformation Matrix. Coordinate transformation matrix from fixed coordinate-

system (XfYfZf ) to rotating coordinate-system (XY Z) is given by

T = diag(T1,T2,T1, · · · ,T1︸ ︷︷ ︸
for z planets

,T1,T1), (C.3)

where

T1 =



Cθ∗ Sθ∗ 0

−Sθ∗ Cθ∗ 0

0 0 1


 ; (C.4)

T2 =

(
Ta Tab

−Tab Tb

)
;

Ta = Tb = diag(1, Cθ∗ , C2θ∗ , · · · , CΦθ∗);

Tab = diag(0, Sθ∗ , S2θ∗ , · · · , SΦθ∗).



Appendix D

Effect of Coriolis and Centripetal

Terms on the Natural Frequencies

In section 4.2.5, we assume that at small speeds the effect of Coriolis and centripetal

terms on the dynamic response of a planetary drive are small and can be neglected. In

this section we justify this assumption by showing that the natural frequencies of a wind-

turbine planetary-drive do not change much due to the Coriolis and centripetal terms for

typical wind-turbine operating speeds.

Following from section 4.2.5, equation of motion of a planetary drive in the fixed

coordinate-system is

Msys¨̄q + K̄sysq̄ = F̄. (D.1)

System coordinates in the fixed coordinate-system can be defined in terms of system

coordinates in the rotating coordinate-system (using equation 4.23) as

q̄ = TTq. (D.2)

Substituting equation D.2 into equation D.1 gives

Msysq̈ + ωcCLq̇ +
(
Ksys − ω2

cKc

)
q = F, (D.3)

where

CL =
1

ωc
TMsysṪ

T (D.4)

is the Coriolis matrix and

Kc = − 1

ω2
c

TMsysT̈
T (D.5)

is the centripetal matrix.
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Substituting expressions of Msys (from equation C.1) and T (from equation C.3) into

equations D.4 and D.5 yields

CL = diag


Cs

L,C
r
L,C

p1

L , · · · ,Cpz
L︸ ︷︷ ︸

for z planets

,Cb
L,C

c
L


 (D.6a)

and

Kc = diag


Ks

c,K
r
c,K

p1
c , · · · ,Kpz

c︸ ︷︷ ︸
for z planets

,Kb
c,K

c
c


 . (D.6b)

Sub-matrices in equation D.6a are defined as

C
(•)
L =




0 −m(•) 0

m(•) 0 0

0 0 0


 for (•) = s, pi, b and c, (D.7a)

Cr
L =

(
0 C12

L

−C12
L 0

)
, (D.7b)

and

C12
L = −diag (0,M1, 2M2, · · · , nMn) . (D.7c)

Sub-matrices in equation D.6b are defined as

K(•)
c =



m(•) 0 0

0 m(•) 0

0 0 0


 for (•) = s, pi, b and c, (D.8a)

Kr
c =

(
K11
c 0

0 K11
c

)
, (D.8b)

K11
c = diag

(
0,M1, 4M2, · · · , n2Mn

)
. (D.8c)

Substituting q = q0exp(λt) and F = 0 into equation D.3 we get the eigenvalue prob-

lem, which is given by

AU = λU. (D.9)

Matrices in equation D.9 are defined as

A =

(
0 1

−M−1
sysKsys + ω2

cM
−1
sysKc −ωcM−1

sysCL

)
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Typical operating range of a 
wind-turbine planetary-drive
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Figure D.1: Variation in the natural frequencies of a planetary drive with carrier
speed caused by the Coriolis and the centripetal terms.

and

U = (q0, λq0)T .

Solution of equation D.9 gives us the eigenvalues λ and eigenvectors U. Figure D.1 shows

the variation in natural frequencies (upto 500 Hz) of the planetary drive of table 4.1 with

the carrier speed ωc. The translational modes bifurcate into two frequencies for non-zero

carrier speeds due to Coriolis term. Clearly the variation in the natural frequencies of the

planetary drive are small and can be ignored for the typical operating speeds of a wind

turbine. For the applications involving large rotational speeds, however, changes in the

natural frequencies can be large and must be accounted for.
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Appendix E

Critical Speed of a Rolling Element

Passing Through a Fault

Consider a rolling element of radius r and mass m passing through a narrow localized fault

(figure E.1(a)). Forces acting on the rolling element after it enters the fault are shown in

the free-body diagram of figure E.1(b). Balancing the forces in the normal direction gives

F1 = F cosθ −mrω2, (E.1)

where F1 is the reaction force acting on the rolling element. To insure that the rolling

element does not loose contact with the left edge of the fault before the impact, reaction

force F1 must be greater than zero from the time the rolling element enters the fault until

it hits the right edge of the fault. Therefore,

F1 ≥ 0 =⇒ F cosθ ≥ mrω2. (E.2)

V
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F1
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Figure E.1: (a) A rolling element passing through a narrow localized fault; (b)
Forces acting on a rolling element after it enters the fault.
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Angular velocity of the rolling element at an angle θ is given by equation 4.83. Sub-

stituting equation 4.83 into E.2 yields

V 2 ≤ Fr

7m
(17cosθ − 10). (E.3)

For a narrow fault (d2/r2 << 1) cosθ ≈ 1. Substituting this into equation E.3 gives the

expression for the critical speed as

V ≤
√
Fr

m
. (E.4)

Speed defined by equation E.4 is the maximum speed a rolling element can have to always

maintain contact with the left edge of the fault until it hits the right edge.

Next we derive the expression for the impulse when the speed of a rolling element is

above the critical speed. From equation E.3, the angle at which the rolling element looses

contact with the left edge is

θ1 = cos−1

(
10 + 7mV 2

Fr

17

)
, (E.5)

and the speed of the rolling element at that angle is

ω1 =

√
ω2

0 +
10F

7mr
(1− cosθ1). (E.6)

After the rolling element looses contact with the left edge, the only force acting on it is

the applied force F . Hence, its vertical speed just before the impact becomes

V 2
vertical = r2ω2

1sin2θ1 +
2Fr

m
(cosθ1 − cosθ0) , (E.7)

where θ0 is the angle at which impact occurs, and is given by cosθ0 ≈ 1 − d2/(8r2).

Substituting the expression of θ0 into equation E.7 gives

V 2
vertical = r2ω2

1sin2θ1 +
2Fr

m

(
cosθ1 − 1 +

d2

8r2

)
. (E.8)

Following from equations 4.86 and E.8, impulse in the vertical direction can be calcu-

lated as

= = 2mVvertical = 2m

√
r2ω2

1sin2θ1 +
2Fr

m

(
cosθ1 − 1 +

d2

8r2

)
. (E.9)

Equation E.9 suggests that the impulse, for the case when the rolling-element speed is
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above the critical speed, depends on the load acting on the rolling element.

If the force acting on a rolling element is zero, for example unloaded zone of a bearing,

then the angle at which the rolling element looses contact is θ1 = 0 (from equation E.3).

Substituting θ1 = 0 into equation E.9 gives

= = m
d

r

√
Fr

m
. (E.10)

Equation E.10 shows that in the unloaded zone of a bearing, impulse due to a fault

depends on the load acting on a rolling element and not its speed. Since the load is zero,

impulse is zero.
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