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SUMMARY

Vibration generated by underground railways is an increasinglyfiseymi problem in densely
populated urban areas. One popular method used to reduce vibration transnatteearby
buildings is floating-slab track, whereby a concrete slab suppoheto rails is isolated from
the tunnel invert typically by means of rubber bearings or steel springs.

This dissertation is concerned with the often disappointing perfornadricating-slab track
in reducing ground vibration propagated from railways in tunnels. \aoraévels in the soil
surrounding the tunnel are investigated using analytical models, whaoh @elatively fast
computation times to be realised. The tunnel is considered as @lihdrical shell of infinite
length, surrounded by a viscoelastic continuum of infinite extent to mbeéelsoil. The
equations of motion for the tunnel and soil are solved in a modal waveninedpgency
domain. Three different infinitely long track models are considesmesimple slab beam in
bending only, a slab beam in bending and torsion, and a full track commisagbeam and
slab beam. These are coupled to the tunnel by a spatial convolution nteéhethb bearings
being represented as an elastic layer. Excitation by random rasgtiisplacement inputs
between a series of train axle masses and the rail bedra fflttrack model is considered. A
separate approach utilises a repeating-unit method to creat¢elgflong double-beam models
of the track alone, allowing the effect of various parameters ah ftmice transmitted to the
foundation to be examined. Some aspects of the dynamic behaviour ofgfisiaty track have
been observed experimentally by means of impulse tests performed in a railway tunne

The various wave-propagation effects in the three-dimensional waokitsoil system give
results which cannot be predicted with the simple mass-spring moalaisionly used in the
design of railway track for isolation of vibration. These resaiiggest that insertion-loss
predictions greater than 6dB are in most cases exaggerateuaatioet technique of floating the

track slab may in fact cause increased transmission of vibration under certatronendi
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Chapter 1

INTRODUCTION

The purpose of this chapter is to describe the reasons for doingcheseatheModelling of
Ground Vibration from Underground Railway® set out the objectives of such research, and to

give a brief outline of the chapters following this introduction.

1.1 Motivation for the Research

This dissertation investigates the generation of ground vibration from undergrduaysaiThe
transmission of ground vibration into nearby buildings has become a togieaifimportance,
as many underground railways operate in densely-populated urban areaslzouodd in both
residential and commercial zones. Indeed, traffic-generated igibrand noise is currently a
European Union priority area for research.

At a time when people’s tolerance of environmental disturbances suabise and vibration
is decreasing, the understanding of the vibration-generation mechamigsngerground railways
is vital. The cost of taking vibration-isolation measures mearnts délaulations of their
effectiveness must be correct. There is therefore a neeétiled and accurate models of the

total system comprising the track, tunnel, soil and buildings.
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1.2 Objectives of the Research

The scope of this dissertation is the source of the ground vibrationistithie underground
railway itself. In particular, it is concerned with the viboatisolation performance of floating-
slab track, whereby a concrete slab supporting the two railsl&ed from the tunnel invert by
means of resilient bearings. The dissertation focuses on thacies between systems where
the vibration wavelengths are comparable to system dimensionsregnericy range of interest
for vibration from urban railways is approximately 20Hz to 100Hzhvét speed of about
200m/s, shear waves in the ground will have a wavelength of 4m at 3@Hmiddle of this
range. This wavelength is of the order of the spacing of tragsattle tunnel diameter, and the
distance from the tunnel to building foundations; modelling is therefdfeuli because
interaction between these entities cannot be ignored.

There are three objectives for the research undertaken. Theypdhjactive is to create a
structurally correct mathematical model of the track, tunnel and soil, wikieh itato account the
major dynamic characteristics of the three-dimensional syst@urrent design methods are
based on simplistic lumped-parameter models, whose accuracy isvisaimdubious; better
design tools are needed. However, a disadvantage of more detailed lmatiel computation
time required to generate results by computer, especially withenah techniques such as
finite-element (FE) analysis. To be useful as a design tooh&iking informed choices about
various vibration-isolation options, any mathematical model must bécab&implemented as a
relatively fast-running program on a standard personal computer. Aéuwsn is to create a
mathematical model based as much as possible on analytical metbottet closed-form
solutions can be used to speed up computation for a particular set of parameters.

A second objective is to test the hypothesis that floating-slak isanot always an effective
means of vibration control. Given that measurement of the perforroaficating-slab track is
almost impossible, the analytical models developed in this disearte used to evaluate its
performance computationally. The reader is directed to Section Sa3diecussion of this issue
and to Figures 5.35 to 5.38 in particular, which show how poor the vibrationasolat

performance of floating-slab track can be.
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A third objective is to provide analytical results which could be @sedart of a validation
process for an FE (or other numerical) model of an underground railMélyough analytical
methods can give much insight into a general problem — becausettirs famntributing to the
overall behaviour are explicitly apparent — they are usuallyduitid a small set of soluble cases.
Thus it can be difficult to apply an analytical approach to a spesittiation and a numerical
method must then be used instead. Once validated, a numerical modelasilylthe adapted to

deal with the complexities of individual sites.

1.3 Outline of the Dissertation

This dissertation falls into three sections: a review of prewian, theoretical modelling of the
underground railway, and field vibration measurements.

Chapter 2 gives a literature review of previous research on thenaygaf different types of
railway track, the prediction of ground vibration from surface and unolengr railways, and
experimental measurements of railway-induced noise and vibration.s dllows the
identification of new areas which can be addressed by the currdnttiues providing a starting
point for the theoretical modelling.

Chapter 3 considers the modelling of floating-slab railway trackedan the theory of
beams on elastic foundations. A repeating-unit method is used to cotrsitkanodels, and the
effects of various parameters are investigated. Chapter 4 Ibotkedalling a tunnel surrounded
by soil, using cylindrical shell theory for the tunnel and elastictiouum theory for the soil.
The solution is developed in a modal wavenumber-frequency domain, the familiar trmanita
response being obtained by a sum of modes and inverse Fourier trarisforfran the
wavenumber to space domain. Chapter 5 considers the problem of joining andneback
models together, to give a complete model of the underground railwde joining is
formulated as a convolution of frequency-response functions in space, wincplémented by
multiplication in the wavenumber domain. The complete model allowsatbalation of power
spectral densities and RMS levels of soil vibration around the turmeh & train is running

through it.
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Chapter 6 describes some field measurements carried out usingermanhmer tests inside
an underground railway tunnel. Although no measurements could be madesail threon its
surface, several useful observations regarding the dynamic behavtbertcdck and tunnel can
be made. These are compared qualitatively to results from thgirmanmodels of Chapter 5,
allowing some degree of validation.

Overall conclusions and suggestions for further development of the wa&nped in this

dissertation are given in Chapter 7.



Chapter 2

LITERATURE REVIEW

This chapter reviews previous work relevant to the current problens ifidiudes the impact of
train-induced ground vibration, the design and analysis of railway trawktiods for predicting

the propagation of ground vibration, and measurements of ground vibration.

2.1 Impact of Ground Vibration

The effects of vibrations on buildings and their occupants have been ssaunby many
researchers, for example Kraemer [111], Hunt [89], Cryer [38] and#g]. People experience
vibration transmitted into buildings as both vibratory motion and re-eatliabise caused by
vibrating surfaces. Grootenhuis [78] states that the problem frequangg for groundborne
vibration transmitted from underground railways is 15Hz to 200Hz. &irfigures are given by
Greer and Manning [77]: 30Hz to 250Hz for re-radiated sound and 1Hz to 80Herteptible
vibration. Data in Heckl et al [82] shows that peak levels occtiveimange 40Hz to 80Hz. The
levels induced in buildings by transmitted ground vibration are nevesheddstively low
(slamming a door can cause higher levels).

The ORE review [152] notes that structural damage is only lidebyve vibration levels at
which people feel unsafe (the “coefficient of human safety” priagipSuch levels occur during
earthquakes and are much higher than those due to traffic-induced groutidnilmacasionally
building damage has been attributed to ground vibration due to sources suearlas pile

driving. The effect is thus one of discomfort and annoyance for a buddisgupants rather
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than of structural damage. However, people often overestimate \bks lef vibration
subjectively,thinking damage is occurring because they are being annoyed [152]. Vibration i
buildings can also upset sensitive equipment [89].

A survey of surface railway noise and vibration by Knall [107] found pleaple’s reactions
to noise correlate closely to sound pressure level, but vary winteydiven vibration level, and
that perceived annoyance and discomfort depend on the number of stagistits exceeding
threshold levels, rather than how often trains run. Ohrstrom [154] foungdebgte living near
railway lines have a 10dB(A) lower tolerance to noise when trersimultaneous strong
transmitted vibration exceeding 2 mm/s. Howarth and Griffin conduetsld of simulated
railway noise and vibration on human subjects, to quantify how more pamisour at lower
vibration levels result in equal annoyance [87], and to quantify the equrealeetween sound
exposure level and vibration dose level to determine equal annoyancdifierting proportions
of simultaneous noise and vibration [88].

Zach and Rutishauser [204] give acceptable vibration limits rangorg 0.2 mny s (for
quiet residential buildings at night) th4 mny s(for noisy residential buildings in the day), with
corresponding limits in sound pressure levels from 25dB(A) to 40dB(Ate@table sinusoidal
vibration levels for various living and working areas are codifiedtamdards such as BS
6472:1992 [24], and depend on many factors, including the duration and frequencyiehtrans
vibrations, the usage of the buildings and the time of day. Toleranearly morning and
evening trains is less [152]. However, there are no standards as wssessing the source,
although an ISO committee (ISO/TC 108/SC 2/WG 8) is currentlyidemsg the prediction of

groundborne vibration from underground railways.

2.2 Railway Track

The design of railway track is enormously varied. There aceraésy approaches to modelling

its dynamic behaviour.
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2.2.1 Track Designs

Many aspects of the design of railway track are discussed ibothle by Esveld [50]. Surface
railway track is usually “ballasted”, the traditional form hwviails which rest on a bed of coarse
crushed rock, the ballast. However, due to settlement and degraddtiamse;j ballasted track
requires much maintenance, an operation carried out less easilyronddrghan above. This
led in the 1960s to the introduction of non-ballasted tracks mounted dwatdloncrete slabs.
Slab track is several times more expensive to construct andesadiare sound than ballasted
track, but requires much less maintenance (Henn [84]).

Many different track designs have been proposed to reduce the traosroisgbration and
sound and several are described in the ORE report [151], with vibratiatios performance
gauged by a simple mass-on-a-spring argument. Resilient rulebeeres can be used in both
ballasted and non-ballasted tracks: rail or baseplate pads, gpeeiseand ballast mats, in order
of effectiveness. Special non-ballasted track constructions ritl several groups. Rail
mountings based on conical rubber elements include the Clouth systembukdj, the Cologne
Egg (see also Braitsch [21]), and the shear-transmitting etedescribed by Ando et al [5].
Sleeper-mounting systems include the Paris metro STEDEFmsystewin-block concrete
sleepers mounted in rubber “boots” (see also Duval [47]).

Floating-slab tracks mount the rail-supporting concrete slab omengdilearings of rubber,
glass fibre or steel springs, to give a large isolated mwads$hence low natural frequency with
theoretically large reductions in vibration transmission. Desigiising short pre-cast slab
sections include the Toronto “double-sleeper” (slabs 1.5m long), the Esaenmack in Munich
and Frankfurt (3.4m long) and the New York subway (7m long), while thestBNIPACT
system supports a continuous slab. A very large isolated mage @hieved with composite
track consisting of a floating concrete tray containing ballagtazk. Examples include the
Uderstadt track in Cologne, and the Barbican (two tracks on one deckiegatlilly Line
(single-track deck) systems in London.

Vibration counter-measures in railways have generally been developeal bayd error, with
the most effective also the most expensive. Damping of low fremse(ito 30Hz) involves

considerable expense and is difficult to achieve [151].
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Singal [164] discusses the design of non-ballasted track, includinguséduand electrical
considerations. In particular, the goal of using very soft railpadsskb bearings in floating-
slab track to maximise reduction of noise and vibration conflicte thié requirement for the
track to be rigid enough for safety and stability, as noted alsadgt&huis [78] and Wilson et
al [191]. In practice a compromise has to be made between vibrstiation and other track

requirements.

2.2.2 Simplified Track Analysis

As mentioned above, design predictions of track vibration-isolation penficemiaave usually
been based on a simple lumped mass-spring argument. Using this hppeabh and
Rutishauser [204] claim that a 25dB reduction in transmitted vibrati0tdz can be achieved
by using a floating-slab track with an 8-9Hz natural frequency. t8taireck and Kurze [188]
define a decibel “insertion loss” for ballast mats in undergrounkivagé using a one-
dimensional impedance model. This assumes that the ballast matingple spring and the
tunnel is rigid; with this and measurements they claim a 20dB reduction of tunneltwaitiorn.

Similarly large reductions are predicted by Wettschureck [186, 1@&7hdllast mats in
railway tracks above ground and on bridges, and by Isaksson [95], who usegdaance
model of [188] combined with statistical energy analysis for siattaats on bridges. Wilson et
al [191] predict high reductions above 20Hz for a floating-slab tracigrks$ for a 14-16Hz
natural frequency, but their measurements on the surface abovevilag tannel indicate only a
modest reduction of 7dB above 31.5Hz. A lumped-parameter approach for undergitvusng r
track is also advocated by Capponi and Murray [28].

The pitfalls of this simplistic design approach are highlightedsbser and Manning [77],
who note that a lumped-parameter model on a rigid foundation is perhéipeisufor a tunnel
in hard-rock ground, but that more sophisticated approaches such asldimézvemodels are
required otherwise. To complicate matters, there is no standandidefof insertion loss — an
in-specification isolation performance can become out-of-specificatvith a change of

definition.
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2.2.3 Beam Models of Track

Hetényi [85] states that an Euler beam on a continuous elastic fmmdats first analysed by
Winkler in 1867 in order to investigate railway track behaviour, and dissuseveral similar
models. Variations on the basic Winkler beam have been widely useddil railway track,
but the context has nearly always been ballasted track withnplasis on track behaviour
rather than ground vibration. Kerr [106] gives design curves for detexgnan empirical
stiffness per unit length for use in the Winkler model through rdiecteons measured under
known axle loads.

Cai et al [26] conduct a free-vibration analysis of a track medelk a rail beam supported
via springs on discrete crosswise sleeper beams, which restnéde¥oundations. The track is
composed of a number of single-span units characterised by an exact dytifémegssapproach.
Cai and Raymond [25] extend this model by including an axial raieftwcsimulate thermal
forces, and a varying sleeper Winkler stiffness to represent urmalEst compaction. The
transverse response to both deterministic and random loading of aty gedloaded,
Timoshenko beam on an elastic foundation is determined by Chang [30].

Mead and Yaman [134] calculate the harmonic response of infinite beamsmple,
transverse elastic, and general elastic periodic supports. A ptmpagonstant determines the
reaction forces under the periodic structure’s two semi-infiniteeldying either side of the
loaded span. Nordborg [147, 148] applies the same idea to a rail beanodit seeper-beam
supports to determine its forced response as a linear combinatios foée-vibration solutions.
Ballast properties are determined by fitting experimental wathe model. A similar model is
used by Dalenbring [40] to ascertain the vertical rail motion wlifferent experimentally
determined railpad stiffnesses.

A beam model of floating-slab track is used by Samavedam and [@&&sto evaluate
vibration isolation. The model is like a double Winkler beam, compramanfinite rail beam
on railpad springs resting on an infinite slab beam on bearing sprifigs. tunnel floor is
assumed to be rigid compared to the slab bearings (however, a haispagposed to represent
the tunnel floor for non-floating slab). Infinite double-beam periodiactires are used by

Forrest [61] to model the rails supported on continuous and discrete floating slabs.
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To use models like these, appropriate properties for the resil@nerts must be specified.
Melke and Switaiski [139] describe some of the problems in perfortestg to determine the
static and dynamic stiffnesses and loss factor of such eleme@tdde and Wismer [68]
summarise the various viscoelastic constitutive laws which camsée@ and describe a “non-
resonant” method for measuring complex stiffness. Thompson et al {iEg2tibe another
method and note that the stiffness of viscoelastic materialsdi@ds depends on the preload,
temperature, frequency, strain magnitude and strain history. Badedavatory measurements
of elastomeric materials used in railways, Castellani €% propose an interpretative model
with separate terms for strain-rate dependent stiffness, étystatissipation and viscous
dissipation. Dalenbring [40] notes that the stiffness of an individuildepends on a “form
factor”, the ratio of loaded surface to free surface. Fenandeu§e3] measurements to propose
a fractional derivative model of dissipation in railpads; howeverragbponse of a beam track
model using this law shows no significant differences to that ofusngy standard viscous

damping [54].

2.2.4 Beams with Moving Loads

Patil [155] determines the response of a harmonically loaded Wibkkem when a mass is
applied suddenly. Duffy [46] extends this to a moving mass, findingé¢ksahance is lowered
by an increase of velocity as well as increased mass, andne@sachanges in the waves at and
above critical speed. A time-domain finite-element (FE) apprizagbed by Chang and Liu [31]
to find the response of a non-linear beam on an elastic foundation tessaanaa spring
traversing it with constant velocity or acceleration.

Much work on moving loads has also been done in the context of simply-suppeated
modelling bridge-type structures. Blejwas et al [16] use a-8tapping method to treat the two
cases of a smooth mass traversing a smooth beam and an idedlistsl (m@ass-spring-mass)
traversing a rigid sinusoidal surface. Esmailzadeh and Ghorashigé3n approximate modal
solution to find the response of a simply supported beam traversed tialypdistributed mass
moving at constant velocity, showing that very large displacemertdogeabove the critical

speed. The midspan response to a sequence of loads with time-vatguity vehose arrival
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times are a Poissonian random process, is investigated by Zibdeh and Rackwitz [2@6¢t &a
[198] provide an analytical solution for a simply supported beam traldrgea train, by
superimposing the results for two sets of equally spaced loads, tofee #ee front wheels of
each bogie assembly, the other for the back wheels.

A more complicated structure is treated by Wang and Lin [183], wha usadal solution to
investigate a multispan Timoshenko beam excited by a random load nadwogstant velocity.
Belotserkovskiy [12] examines a harmonic force moving along infinitéoglie structures
representing railway track. The structures are beams on vatmnuighuous or discrete
foundations, with the periodicity arising from rail joints (low-freqog effects) or sleeper
spacing (high-frequency effects). Since urban trains travelesids much less than the critical
speeds of waves in tracks, the movement of loads would only have to beéecet®xplicitly

when this type of parametric excitation is important.

2.2.5 Train-Track Interaction

Detailed treatment of railway vehicle dynamics is given bygGand Dukkipati [69]. The
concern is with the vehicle and not the effect on track response; degnges of freedom are
considered, in more than one plane, as are trains of more than one. véhijheoto et al [67]
consider the effect of track irregularities on the dynamics gti-Bpeed trains. Frohling [64]
investigates low-frequency vehicle-track interaction by meanscik-profile inputs to an eleven
degree-of-freedom vehicle model, in order to determine forces fomusesettlement law for
ballasted track. Zhai and Cai [205] describe a ten degree-dbfregehicle model excited by
wheel-rail irregularities on a track represented by an infibgam on discrete mass-spring
supports.

Research into rail corrugation and other damage has produced mang-teluklinteraction
models. Grassie et al [76] model ballasted track with infliezms on a Winkler foundation, on
a continuous two-layer support incorporating sleeper mass, and on dmgoetats including
sleeper masses. Their concern is the effect on track dynamécsrain, modelled as a wheel
mass on a Hertzian contact spring (see Johnson [98] for Hertziaat@pitaversing the short-

pitch (40-80mm wavelength) rail corrugations responsible for “roamilg’r The two-layer
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model is extended by Grassie and Cox [75] to cope with unsupported slégpsetting a
section of the ballast layer to have zero stiffness and dampitigpanameters determined from
impulse responses of a test track with hung sleepers. Grédkigeheralises the model to treat
any non-sinusoidal rail-wheel roughness, and compares predicted cont&ctafat rail-seat
moment (which influences cracking of concrete sleepers) to measurements.

Lucas [122] uses a rail beam supported on discrete sleeper bearsgriagd to examine
ballast settlement due to impulsive forces from rail dips a$ &g wheels traversing rail
corrugation. Clark et al [35] use a similar model, with theabt@nd experimental results
showing that the Hertzian contact does not significantly affacktdynamics below 750Hz.
Hemplemann et al [83] investigate the wheelset and track modesthoulge responsible for
corrugation by means of a more complicated rail model compristoghaination of beam, plate
and rod dynamics and supported on rigid-body sleepers with railpad and bptiags. A
similarly complex rail, with a rail-head beam in bending and darsind plates for the foot and
web, resting on uniformly distributed support, is used by Bhaskar @Ballfl] in conjunction
with a detailed conformal contact model to understand corrugation generation.

Minimisation of the dynamic forces causing track damage is iigatstl by Dahlberg et al
[39] using measured sleeper and railpad parameters in a model siomsieeper beams
supporting a rail beam traversed by a single wheel, with ewxtitptovided by a wheel flat and
rail joints. Dalenbring [40] and Nordborg [147, 148] determine the respongeiofperiodic
track structures to both parametric and rail-wheel roughnestga@xei A beam on discrete
supports, excited by a lumped-mass wheelset with Hertzian cositactlysed by Ishida et al
[96] to determine track behaviour with high-speed trains. OscarssorDalnitberg [153]
consider a similar structure using FE methods.

Vehicle-bridge interaction has also been studied. Courage and vaduBiaa [37] consider
a multi-vehicle train running on an elevated railway track modaledine sections, each
comprising a rail beam mounted via railpad springs on a viaduct bRarhroughness and out-
of-round wheels provide the excitation. Bridge response to road vetnalessing road surface
roughness has been considered by Wang and Huang [184] for cable-stayes imadiglled by

two-dimensional FE beam elements, by Waarts and Courage [182] usingatadimesh of FE
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beams to determine dynamic amplification factors for partseef sridges, and by Boudjelal et
al [19] using a more complicated FE bridge model composed of plateesmd elements to
determine response with both two- and three-dimensional vehicle models.

While parametric excitation such as sleeper spacing is t®aslefine, quantifying rail
roughness profiles is more difficult. Frederich [62] defines a ditanfior the power-spectral
density (PSD) of track-geometry irregularity, based on fittimgyes to measured data from many
sources. The PSD is of the same form for irregularity irewdfft track dimensions (height,
alignment, track width etc), and gives more weight to longerutaeigy wavelengths. Frohling
[63] uses this formula to characterise measured South Africelk gesometry. Ford [60] uses
measured rail surface profiles directly as input to a simpdssmspring vehicle model to
determine rail forces. Some of the problems encountered in measwwokggeometry are
discussed by Yoshimura et al [199], who describe a “restored wavefoethibd to correct track

irregularities as they are measured.

2.2.6 Other Models of Railway Track

More realistic track models consider the non-rigidity of the unogylgoil. Ono and Yamada
[150] use a standard infinite rail beam on mass-spring sleeperebballast and roadbed are
considered elastic with an assumed pressure distribution actingnokesising area with depth.
Responses to rail-joint and wheel-flat impulses, and to rail-wtoeglhness demonstrate that
waves propagate down into the roadbed, as well as along the track as in a Winkler model.
Several researchers have investigated track dynamics usirg dlaiments to model beam
tracks on non-rigid subgrades. Luo et al [123] simulate the infinitausder the track with a
finite FE mesh with rigid boundary conditions; the soil mesh is nege enough that waves
cannot return from the boundaries within the time considered. Sadegkohodtek [162] use
a plane-strain FE model of the soil with viscous absorbing boundauieseionine the dynamic-
stiffness of the foundation for use in a beam track model. Esveddl [6tl] determine the
response of a paved-in tramway with a discrete-element mod&s different concrete slab,
asphalt and soil layers. Triantafyllidis and Prange [176, 177] lobigltspeed train energy loss

associated with train-track interaction through a rail beam @hfogtings resting on a halfspace
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represented by a boundary-element formulation. An asymmetric rail td®iléne occurs due to
Doppler effects as the train speed approaches the subsoil's sudaeeselocity. Auersch [8]
uses a similar approach but with a layered soil, to compare mea@iott measured dynamic axle
loads and displacement magnitudes.

Clearly soil interaction has important effects on track dynami¢g& model the soill
realistically requires an understanding of wave propagation in solids angtheds available to

deal with it, which is the subject of the next section.

2.3 Prediction of Ground Vibration

The soil through which ground vibration propagates from a railway caworeptualised as a
halfspace, a semi-infinite solid bounded only by the plane formed tspitace. For deeply
buried vibration sources, such as many underground railways, soil can leptoatised as an

infinite solid if only local effects are of interest.

2.3.1 Wave Propagation in Solids

Achenbach [1] and Graff [73] give solutions to many problems of wave propagn elastic
solids, noting the seminal contributions made between 1880 and 1910 by Rayerdhand
Love. Achenbach [1] describes the different types of waves that can occur int@rselal and
Gutowski and Dym [80] also provide a summary applied to ground vibrationthelrbulk
medium, longitudinal pressure waves (P-waves) and transverse s (B-waves) can exist.
Other types can arise at interfaces: Rayleigh waves (nonssiigpevaves propagating along a
free surface with in-plane longitudinal and transverse components)el&y waves (surface
waves confined to the neighbourhood of the interface between two halfspack$erent
materials); and Love waves (dispersive interface waves withomgierpendicular to the
interface). Of the three wave types occurring in a uniform pedts, P-waves travel fastest (so
are also known as primary waves because they arrive firstgv8sware slower (so are also
known as secondary waves), and Rayleigh waves are slowest.

Analytical solutions for the surface motion of an elastic homogensou®pic halfspace

subject to concentrated point and line loads at and below the suradersed in Lamb [118]
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in the form of integral equations and summarised in [1, 52, 73, 159]. Fontdqaud, Rayleigh
waves propagate outwards across the surface with a circulafrevayevhile S- and P-waves
propagate outwards and downwards with a hemispherical wavefront; hme doad, the
wavefronts are a straight-line and a cylindrical surface otispdy. Thus Rayleigh-wave
magnitudes are reduced much less by the effects of geometwads. Many books [73, 98,
159] quote the Miller and Pursey partition of energy between theratitfavave types in a
halfspace loaded by a disc as 67% Rayleigh waves, 26% shear wdvé% gressure waves.
These two factors suggest that the surface response of a balispalways dominated by
Rayleigh waves at large distances from the load. However, J¥®H] shows that a high
proportion of energy goes into Rayleigh waves only at low dimensiofilgsencies (angular
frequency by disc radius on S-wave speed), that is, for low frequerscyadr disc area (tending
to a point load). At higher dimensionless frequencies, the Rayleigh-wave coatrilsutio more
than 10%, with most energy (60% to 80%) going into P-waves and the remainder into S-waves.
Stresses and displacements induced by various loading conditions inn&e elfastic solid
are derived by Eason et al [48]. Pekeris and Lifson [156] determnénsurface motion of a
halfspace to a buried pulse. Energy radiated from a spherical source in aneftdstiemedium
is considered in Rudnicki [160]. Wave propagation in layered mediaatett in Ewing et al
[52]. Much of the work on wave motion in elastic media has been promptéalbgiation
analysis, a good summary of which is given in Karabalis and Bed@f.[ Analytical
approaches can be found in Richart et al [159], beginning with oscillaifdostings resting on
a halfspace and finishing with vibrations of rigid foundations supported|éy. pWolf [192]
describes cone models (for circular foundations) and wedge moded¢riffoioundations) which

spread downwards with an angle determined by wave propagation considerations.

2.3.2 Absorbing Boundaries for Finite Models of Infinite Media

The interaction of complex structures with soil which is not necd#gdomogeneous is often
analytically intractable. An approximate numerical approach ssi¢heafinite-element method
(FEM) or finite-difference method (FDM) must then be used. Usiradp a method gives a finite

model whose boundaries reflect waves rather than transmit thdoesthe infinite soil. Thus
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boundary conditions which absorb incident waves are required. Lysmer arehi@ybl [124]
were among the first to propose one, the “standard viscous boundary”, egfuteaterays of
normal and tangential dashpots applied to the artificial boundarywad-dimensional model to
absorb P- and S-waves. White et al [189] alter the definition @iraioien efficiency to define
the optimal dashpot coefficients as functions of Poisson’s ratio, giieg‘unified viscous
boundary”.

Deeks and Randolph [42] extend the viscous boundary to plane-strain axisignifie
models. By considering travelling cylindrical waves, they develop bowsdaonsisting of
parallel springs and dashpots to absorb S-waves, and springs, dashpotssesltmabsorb P-
waves. Similar mechanical systems as boundaries are proposedlibbgkas et al [104], using
the two-dimensional wave equation in the domain exterior to that beadglied as a prototype
situation. Sochacki [167] uses the two-dimensional wave equation to fat brundary
conditions which absorb S- and P-waves, then derives approximate versioss in FDM.
Peng and Tokso6z [157] describe optimal absorbing boundaries for modelliagdimensional
elastic wave propagation by FDM. Wolf and Song [196] develop a doublyp&styenmulti-
directional boundary, of which the viscous boundary is a special caggande and De Roeck
[43, 44] formulate and demonstrate a frequency-dependent absorbing boundarprtdoditi
modelling soil as a saturated poroelastic medium. An absorbing boundentyin the FE sense
is determined by Wolf and Song [195] through the geometric similarity of an aylekeavation
in a halfspace with an infinitesimal layer of finite elemenftknown properties to one without
the layer.

Another approach to absorbing boundaries is to use “infinite” elements,asuthe two-
dimensional ones of Chow and Smith [33], the axisymmetric and thressiomal frequency-
domain ones of Medina and Penzien [135] capable of transmitting Ray#igar and pressure
waves, or the axisymmetric ones of Yun and Kim [203] for a layered halfspace.elefgments
are the same as normal finite elements except for the ynbhthe element domain [203]. The
shape functions have an exponential term which ensures that theyaleeay at large distances
[33]. Infinite elements are now included in the standard elemeiairiblsr of commercial FE

packages such as ABAQUS.
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A popular way to represent the unbounded soil medium is the boundary-elewmttod
(BEM), described in Karabalis and Beskos [105] and Wolf and Darbre [18HM uses
fundamental solutions (Green’s functions) of the medium’s governing egsaild generate
integral equations relating the boundary displacements and tracfidrese equations can be
used in a time-integration scheme or to determine a dynanfizessfrelation for the soil. Only
the boundary has to be discretised — the exterior region remaiostiaucm, automatically
taking care of the radiation condition. Other work on soil-structusraation using the BEM
approach includes Aubry and Clouteau [6] and Aubry et al [7] (layerés);sdlolf and Darbre
[194] and Takemiya et al [170] (shallow foundations); and Lo [121] (piled fdioms. A
variation described in Wolf and Darbre [193] is to determine the dynstifiiness matrix of an
embedded foundation as the difference of those for the halfspace (deteemactly) and the
excavated part (determined by FEM). These examples are cahogitiie determining the
dynamics of a structure which interacts with soil, rather thanstigaging ground vibration

propagation.

2.3.3 Estimation Methods for Groundborne Vibration Transmission

Empirical or semi-empirical models are often used in prattigeredict ground vibration from
surface railways, especially when it is difficult to deterenappropriate parameters for use in a
more complex theoretical model. Considering a road or a railgvayline source, Gutowski and
Dym [80] propose an exponential law of decay with distance fromnbewith the coefficient
of decay determined from actual measurements. Melke and KrfB&radvocate the use of
transfer functions measured between various parts of a railwagystem to formulate more
informed transmission laws. Fujikake [65, 66] describes a predictioequoe based on taking
the track and ballast as single-degree-of-freedom systems aeaellimy the soil transmission
path as a band-pass filter approximating the measured transfeorfubetween the railway and
observation point. Measured ground transfer functions are also used bypRéoahd Ashiya
[201] to examine the effect of changes in the rolling stock on groundtiabr The model can
be a simple product of attenuation factors for the various parts tfatiemission path, derived

from large databases of measurements from many sites, aadhub] Bessason and Harvik
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[125]. A simplified measurement-based propagation law is also ilbedcm Ackva and
Niedermeyer [2].

Prediction of ground vibration from underground railways has also oftexl i@h empirical
means. An approach based on transmission factors gleaned from aselatblmver 3000
measurements from various sites is utilised by Hood et al [8Gjer@nethods, such as those in
Kraemer [111] and Melke [137], rely on semi-empirical transmisks in conjunction with
impedances derived from simplified lumped-parameter models of dok &nd the receiving
building. Trochides [178] compares laboratory measurements on a-doaladtunnel-soil-

building system to predictions from approximate impedance models combined with SEA.

2.3.4 Models for Ground Vibration from Surface Railways

Analytical methods can be applied to surface ground vibration. Alalpré&ents a parametric
study of train-induced ground vibration based on the motion of a uniform hafk@ated by an
obligue moving force. Jones and Petyt investigate ground vibration fitwways through strip
loads acting on a halfspace [101], on an elastic layer on a rigid fimmd&02], and on an
elastic layer on a halfspace [103]. A detailed analysis of wavpagation in layered soils is
used by Auersch [9] with measurements to produce a simplified prediction scheme.

Hunt [90, 91] models the vibration at a distance from a surface roduyvegnsidering the
vehicle inputs on the road as a series of random point loads and usibés [4a48] far-field
halfspace responses, which assume dominance of Rayleigh wavesnobeisfitted vibration
measured near busy roadways quite well. The same approach is $aal dyd Ang [81]. Ng
[146] uses similar ideas in constructing a beam-on-halfspace modedusface railway track to
compare to vibration measurements, but in this case an approximatéeltednalfspace
response is needed to couple the infinite track beam to it. Ford [88]ausuperposition of
Rayleigh-wave propagation induced by a series of axle loads to bhbthé¢ ground response is
dominated by frequencies near the sleeper-passing frequency. Kndo¥eaguson [117]
assume that the quasi-static deflected shape of the railacky under an axle load provides a
point-force input to the halfspace as it passes through a sleepsymaritie responses due to the

many simultaneous sleeper inputs of a moving train by a Green’soluragiproach. Ground
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vibration can be reduced by careful selection of sleeper and axdmgp459, 117]. Krylov
[114, 115] uses this model to predict a ground-vibration “boom” when trairee@xbe soil's
Rayleigh-wave speed; trans-Rayleigh conditions of high-speed trainsry soft soils have been
observed in western Sweden to increase ground vibration levels tgtf6ld Measurements of
ground vibration from heavy freight trains are compared to a model ingpan infinite rail
beam on discrete mass-spring sleepers resting on a three-dina¢nayered medium by Jones
[99] (with other simpler models) and Jones and Block [100].

FEM has been much used to model surface railway ground vibrationrdiGirel Recchia
[72] investigate the influence of sleeper type and ballast deptloondjresponse by means of a
detailed FE track and vehicle model supported on a three-dimensiorsaedaynedium
representing the ballast and subsoil, comparing results to undemtessdurements. Yoshioka
[200] uses a two-dimensional FE model with viscous boundaries to celdbktvibration
propagation through the cross-section of a railway embankment ondayeke Takemiya [169]
uses a “2.5-dimensional” FE track-embankment cross-section restmdnalfspace represented
by BEM to quantify the effect of a wave-impeding block (WIB) in #@bankment under
moving track loads. Takemiya and Goda [171] extend this to a laydfepgdt®. Peplow et al
[158] use BEM to evaluate the performance of a WIB in uniform anerddyhalfspaces. A
three-dimensional FEM-BEM treatment of a railway comprisug tail beams on rigid sleeper
footings on a halfspace is given in Mohammadi and Karabalis [140]. ¥addHung [197]
examine the effect of filled and open vibration-screening trenches near ayrtilerby means of
a two-dimensional FE model bounded by infinite elements. Madhus et2é] use a
substructuring method to model the response of layered soil under aackEnodel, finding
that stiff tracks give lower ground vibration close to the track Hawe little effect at large

distances, where the total load rather than its distribution is important.

2.3.5 Models for Ground Vibration from Underground Railways

An analytical methodology for calculating ground-vibration propagation usimgel and
building models of infinite length to simplify solution is presentedHiopt [93]. Balendra et al

[11] use a substructure technique, based on consideration of the two-dimlenaimaquation,
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to create a cross-sectional model of a rigid tunnel and a tigpd feundation embedded in a
viscoelastic halfspace. Kostarev [109] represents an underground tuswreeh acoustic
waveguide in a halfspace, implemented by defining a variation in ywewdsvith depth. Krylov
[113] applies earlier work [117] on surface railways by assumingthigatunnel diameter is
much smaller than the wavelength of low-frequency propagated wavbést &ach sleeper in an
underground track can be construed as a point load buried in a halfspacean@Woore [79]
treat the interaction between two deep side-by-side circular trimelsolving the three-
dimensional wave equations for two cylindrical cavities in an unbounded medium.

Underground railway tunnels of circular cross-section are analogdusied pipes. Singh et
al [165] model a seismically loaded pipe using the axisymmetsponse of an orthotropic
cylindrical shell buried in an infinite medium subject to an axialvelling pressure wave. The
thick-shell theory used in [165] is compared to thin-shell theory in [18@jpke [110] applies
the thick-shell approach of Gazis [70, 71] to a “pipe in a pipe”, theangipe representing a
buried pipeline and the outside one, of infinite outer diameter, reprgeéndé surrounding soil.
The solution is general, but the results only consider the driving-msponse of the pipe based
on the translation mode of the pipe cross-section. Hunt and May [94idendeveral
circumferential modes of Kopke’s solution to calculate soil respoasmsd a simply loaded
railway tunnel.

Numerical models include the two-dimensional plane-strain FE moddlehdra et al [10],
which represents the cross-section of a Singaporean subway-soikpgiditem and utilises a
viscous boundary. The tunnel and soil are modelled with solid elementsyuitiestorey
building as a framework of beam elements. Chua et al [34] usentidel to calculate the
vibration reduction effected by soft railpads and floating-slab t@mkstruing the train input as
a line load determined from a lumped-mass model of wheel and tRitgker and Said [161]
use a similar model bounded with boundary elements to determine #w effan open
vibration-screening trench between tunnel and building, and of a stif platthe ground
surface. Thornely-Taylor [173] applies FDM to such a cross-settiepgesentation to predict
vibration levels at specific sites. However, such two-dimensiondkeia ignore the longitudinal

dynamics of the track and tunnel.
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2.3.6 Building Vibration and Isolation

Attempts to shield buildings from groundborne vibration have been made hbggplaave
barriers such as walls or trenches in the ground. The ORE rédpdit §tates that maximum
attenuation occurs when the ground cuts are arranged perpendiculadired¢hien of incidence
and when the impedance of the ground is significantly smaller thanoththe cut. High
frequencies are more effectively damped than low frequenciesawdengths longer than the
barrier depth just go around it. Massarch [129] describes the uses alughions to stabilise
isolating trenches and so allow greater depths.

Another approach is to mount the building on steel springs or laminated roddnengs.
Some case studies of base isolation near or above railwayseussdid in Commins et al [36],
Manning [128], and Anderson [4]. Although it is acknowledged that the astuattural
dynamics are more complex, all idealise the building as a onealefifreedom mass on a
spring in order to select bearings to give a low natural frequamdyhence theoretically large
vibration reductions, just as in floating-slab track design. Manufstunf base-isolation
springs also work on the mass-spring assumption (see Jaquet anddHei#d). However,
Newland and Hunt [145] show that even a simple model of an elastiet®roiumn mounted
on a pile via a resilient bearing has many resonances rathahthaimgle one of a mass-spring
model. This is borne out by their measurements of transmissiatlity pile cap excited by
passing underground trains.

Chouw [32] examines the effect of a WIB placed directly undeamd model of a building
on rigid footings supported by an FEM-BEM foundation. Field tests of this WIB arelubsor
Forchap and Verbic [58]. Cryer [38] (see also Hunt [92]) construmt®-alimensional periodic
building model of infinite horizontal extent by repeating a portah#&aunit of beams. This
infinite model was found to predict vibration levels in actual buildmgeh better than a finite
model. The portal-frame units are described by the direct dyrstififeess approach given in
Langley [119], and repeated by Floguet's theorem as described by We@adl[31, 132]. A
comprehensive summary of analytical methods applicable to periodituses can be found in

Mead [133].
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2.4 Measurement of Railway-Induced Vibration and Mise

There have been several studies of vibration and noise produced by aibiveals; apart from
those already mentioned in conjunction with theoretical modelling. Kb@B] [gives some
measurements taken near a surface high-speed railway line, shioietthat soil-surface velocity
has an approximately reciprocal relationship to distance fronrdhk.t Lineside levels due to
heavy freight trains are discussed by Dawn [41], with a maximagponse apparent when the
sleeper-passage frequency coincides with the resonance of thevebtele on the track.
Measurements obtained at three different surface railway/tsjt&/olberg [180] show decay with
distance from the track following a simple power law. Capponi [28$ents measurements of
attenuation between the rail foot and tunnel wall in the Milan undergraumdh show that
ballasted tracks achieve the least attenuation and heavy flointracks the most. A similar,
later study is detailed by Bocciolone et al [18]. Bovey [20] dessran impact method using a
drop hammer to determine the transfer functions between variousoptrestrack and between
the tunnel and the soil surface in the London Underground. Heckl et aldi8]ss the
mechanisms of railway-induced structural vibration in relation toestypical data. Okumura
and Kuno [149] apply statistical analysis to railway noise and vioratata obtained from a

multitude of sites in an urban area.

2.5 Conclusions

Many types of non-ballasted track have been devised for reducing vibitaiamission from
underground railways. Beams on continuous and discrete foundations developethdrom
original Winkler beam have been widely used to investigate the dgaarhballasted track, but
design for vibration isolation using resilient elements has beerd lmasesimple mass-spring
models. In any case, the ultimately rigid foundations of these mousa that soil vibration
cannot be determined directly.
Prediction of ground-vibration transmission from railways is often donpractice with

estimation procedures based wholly or largely on empirical datae Bbphisticated approaches

are based on analytical methods for wave propagation in soil, whichdge& insight, or
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numerical methods like FEM-BEM, which can deal with the compkxibf specific sites.
However, there will always be the problem of selecting approppatameter values when
absolute quantitative predictions are desired.

Ground vibration from surface (generally ballasted) railwayshess treated with detailed
models which often include track dynamics and are sometimes timeesional. However,
models of underground railways have either not considered tunnel dynaityasr fhave only
been two-dimensional. None have included detailed track models. Themesis need to
develop a detailed three-dimensional underground-railway model that ischmleynamics of
the train, the track, the tunnel and the soil. An analytical approaaldwive insight into the
physics involved, as well as allow the comparative effectivenegbaftion-isolation measures
to be gauged. In addition, it would be computationally fast compared apm@oach such as

FEM-BEM. This is a gap this dissertation aims to fill.
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MODELLING TRACKS

Traditional railway track consists of the two steel railtdaed to sleepers (once wooden, now
often concrete) laid crosswise at intervals of about 0.6m, the sdesppported on a bed of
ballast (crushed stone of large particle diameter). When the first uodedgrailways were built
about a century ago, ballasted track was naturally used. Howe\Vast Baifts and settles due to
repeated train passage and so needs constant maintenance to kesgk timegood repair, an
activity which is not as easy to carry out on underground railwa las on surface ones. Thus
underground tracks were introduced where the rails are dirediyéasto a concrete slab cast in
the tunnel invert. Such a track design requires much less mainterdihceigh it is still
uneconomic in comparison to ballasted track for the much longer masuiriace routes.
Nevertheless, a major drawback of directly fixed track isitHatds to higher levels of ground
vibration and noise generation, since ballast absorbs quite a lot of thg iemeaged to it, while
concrete is much less damped. This has led, beginning in the 1960y opukerity of a design
known asfloating-slab trackfor underground railways, whereby the concrete track slab is
mounted on resilient bearings, or “floats” above the tunnel invert, iff@m ® provide a degree
of vibration isolation to the tunnel and surrounding soil.

The typical arrangement of a floating-slab track (FST) imrael is shown in Figure 3.1.
Only one tunnel with its track is shown; in the London Underground theresamaly two
tunnels in close proximity, one for each direction of travel. Therdi® are mounted via rail

pads and rail fasteners onto a massive concrete slab, which inetisnon slab bearings
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Figure 3.1: Underground railway layout showing the components of floating-slab track.

supported by the tunnel invert. The slab may be cast in-situ, resualtengontinuous length of
concrete, or may be constructed of a number of discrete pre-cishsdaid end to end. The
rail pads are rubber and protect the concrete against crackinglless reduce the amount of
noise generated. The slab bearings can be rubber blocks or stegd,sprican be replaced by a
continuous sheet of rubber under the slab. Their purpose, in conjunction witcthslab, is to
provide vibration isolation to the tunnel invert from the track. The vdmasolation
performance is usually assessed on the basis of simple lumpeespriagsmodels, where
isolation is predicted to occur above some designed low natural frequetowyever, such an
approach ignores important dynamic effects due to the structure wathketunnel and soil. As

a starting point for investigation of these effects the track alone can be cashsidere

3.1 Modelling of Floating-Slab Track with Beams

The three-dimensional underground railway track shown in Figure 3.1 ctholght of as a
two-dimensional model consisting of an infinite beam, representingvbeails, mounted on
another infinite beam, representing the slab. This is shown in F&Rfa). An infinite track
length is reasonable, as real railways are very long. Tkécelayers between the two beams
represent the rail pads and the slab bearings. The foundation is peshsided. This is an

extension of a simple beam on an elastic foundation (Winkler beah®.loWwer beam may be

(a) rails (b) rails
S : = 3 S s = =

slak I[ I Il slab:

Figure 3.2: Double-beam models of floating-slab track with (ajrdiruous slab (cast in-situ)
and (b) discrete slabs (pre-cast sections).
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Figure 3.3: Double-beam unit showing (a) the displaceméatxl rotation® and (b) the shear
forcesQ and bending momenkd at the ends of the unit.

divided into finite sections to model discrete slabs, as in Figure 3.2(b).

Either of the two models given in Figure 3.2 can be thought of as bensgracted of an
infinite number of finite-length double-beam units. For continuous slak, tbeth the top and
bottom beams of the unit are joined end-to-end; for discrete sta) tnaly the top beams are
joined. Such a double beam unit is depicted in Figure 3.3. Euler beam be®mMeirovitch
[136] or Newland [143]) gives the equation of motion for the displacemgnt) of a beam in
bending as

2 4
2J°u +E|du

mdz ox*

= f(x,1) (3.1)

wherem is the mass per unit length aBtithe bending stiffnes€(Young’s modulus| second
moment of area) of the beam, amdx,t) is the distributed force per unit length acting on the
beam. For the top beam, the force figx,t) = -k u + k u, and for the bottom beam,
f(x,t)=ku - (k + k) u, so that the coupled equations of motion for the top and bottom
beams can be written as ®22matrix system
o {ml/El1 0 }U N { k,/El, -k,/El, }u -
0 m, / El, -k,/El, (k, +k,)/El,

whereu is the vector of displacements,{ u, ' pf the top and bottom beams, dnis stiffness

(3.2)

per unit length, with subscript 1 denoting the top beam, subscript 2 the bofteemumeral IV
indicates the fourth derivative with respect to distax@nd dot indicates differentiation with
respect to tim¢. The effects of damping can be included by making the materiainpéers

complex once the problem is in the frequency domain. This is possibbeigh the
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correspondence principle, whereby the real parameters of an eladiiem can be replaced by
complex ones to model the equivalent viscoelastic problem (see Bland [15] for example)
Substitution of the harmonic solutian= U(x)€* into (3.2) yields

yv = {(mlwz - kl)/ El, kl/ El, }U

k,/El, (mw’ - k = k)/ EL (3.3)

= [B]U
wherew is angular frequency. Substitution of an expoiaéisblution of the formU = Ve™ in
(3.3) results in an eigenvalue problem Bj, [with eigenvaluesy® and eigenvectorg. The two
eigenvaluesr,® and a,* yield four roots each, which together with the tigenvectors/, and
V, allow the general solution for the displacemerthefbeam to be written as

U= (A" + Bé*lu Ce™ + D‘éf’ﬂ)v1 + (3.4)
EE” + FE"> + G&" + He*?)V,
whereA, B, C, D, E, F, G andH are arbitrary coefficients. The four roots ofeagenvalue are of
equal magnitude but separated in the complex phgne phase difference of/2 from one to
the next; thus all roots can be obtained from onpsuzcessive multiplication by as in (3.4).

i(@+2nm)

This can easily be seen by considering an eigeavalupolar form asa* =re , and

4072 - Hence there are two

applying De Moivre’s theorem to obtain the rootsas 4/r .€'¥
roots with negative real part, corresponding taisohs which decay with increasingand two
with positive real part, corresponding to growinglusions. The position of a root in the
complex plane determines whether the root corredpaa localised or travelling waves at a
given frequency. If (3.4) were to be solved fataauble beam with infinite extent in the positive
x-direction excited a = 0, then the growing solutions would be ignored, beeathe response
must tend towards zero at infinity.

The dynamic stiffness matrix (DSM) relating the gealised forces (forces and moments) to
the generalised displacements (displacements aatorts) at the beam ends can be obtained
from the general boundary conditionsxat 0 and x = L, giving eight equations relating the end

displacements to the eight coefficients in (3.4 aight equations relating the end forces to the

coefficients. The boundary conditions for the bgam are (see Figure 3.3)
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U1|x:0 = Yl U1|x:|_ = Y2
du

dUl =0, - =0,

dx x=0 dx x=L
d’u,| _ -M, d’u,| _ M, (3.5)
d< | ElL d<*|_  El
dsU1 — Q d3U1 — -Q,

dc |, ElL dc |, ElL

with the boundary conditions for the bottom beam the same, butdyitand El,, replacingU,
and El,, and subscripts 3 and 4 instead of 1 and 2 everywhere else. By Supstiet
displacements (3.4) into the boundary conditions (3.5), the sixteen equatiobs rendered in
matrix form as

Y =[M]JA and Q=[NA (3.6)
where Y={Y, ©, Y, ©, Y O, Y O}" is the vector of all end displacements
(including rotations),Q={Q, M, Q, M, Q, M, Q, M}' is the vector of all end
forces (including moments), and={A B C D E F G H' is the vector of the
coefficients in (3.4). The elements & and N] are given in Appendix A. By eliminating the
coefficientsA from the 8x8 system of (3.6), the DSK][of the double-beam unit is found from

Q =[N][M] %Y =[K]Y (3.7

at a particular frequenay

3.2 The Repeating-Unit Method

The full, infinitely long track structure is simply an infiniters of repeated double-beam units
added end to end. The unit DSM derived in the previous section can be obtairidhe DSM
for a semi-infinite track as described below, then two semi-tefimacks can be joined at their

free ends to yield the infinite track model.

3.2.1 Determination of the DSM for an Infinite Structure

The semi-infinite structure shown in Figure 3.4 illustrates thecjplie of the repeating-unit

method. The objective is to obtain the DSM for the semi-infinrtecsire; it is clear that adding
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Figure 3.4: Addition of one more repeating unit to a semi-infinite delodden model, showing
the states$ of the left-hand ends of the units.

one more unit to such a structure will not change its DSM. Théaueatsed here is that

employed by Cryer [38] to model buildings as infinite structures afrbelements. This in turn

is based on the transfer-matrix methods described by Mead [130, 131, 132] and Livesley [120].
The unit's DSM K] is used to generate the transfer matfi, [which relates thetate of

displacement and forc8={Y" QT} T at theleft-handend of a unit to thetateat theleft-hand

end of the previous unit. The DSM matrix equation (3.7) can be partitmetadten the forces

and displacements at the left and right ends of the unit. Given emaixtorces acting on the

semi-infinite structure except at the free end, compatibilijddions require that the

displacements at the right-hand end of jfeunit are equal to the displacements at the left-hand

end of the {+1Y unit, while equilibrium requires that forces are equal and opposite.

Partitioning (3.7) and substituting the equilibrium conditions gives

Ql _ Q. {[K”] [K.r]} vl _ {[K..] [m} Y, .
Q; _Q|j+1 [Krl] [Krr] er [Krl] [Krr] Yj|+l
where the sub/superscripts bfand r refer to the left-hand and right-hand ends of a unit

respectively. Rearrangement of (3.8) results in the relationship

{v} _ { K, 1K K, HY} _ [T]{Y{} (3.9
Qj+1 [K rr][K Ir] :[K II] —[K rl] {-l< rr][K Ir Qi Qi

between the stat§,,; and the stats, .

The crux of the method is that states propagate along the structcinanged except in
amplitude and phase. If the complex amplitude-modifying factdr ieen from thej™ unit to
the (j +1)" unit

S..=[TS, and §,=AS (3.10)
which is an eigenvalue problem if][with eigenvalues! and eigenvectorS,; . Equation (3.10)

is a statement of Floquet's theorem (see Ferrari [55]). Hemntodel of Figure 3.2(a) with a
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continuous slab beam, both the top and bottom beams are joined from unit $o amatt T'] is
an &8 matrix and there are eight eigenvalues, essentially four éawh beam. Four of these
have |A|<1, corresponding to decaying solutions sasincreases, and four havgl|>1,
corresponding to growing solutions. Since for excitation at the free end plo@sesnust vanish
as X —» o, only the four decaying solutions are used to obtain the DSM.

Any state of the free end can be expressed as a linear combinatihe four eigenvectors
with |/1|<1. If the coefficients for each eigenvector contribution aretewitas a vector
C={C, C, C, ¢, and the end state and four eigenvectors split between displacements

and forces, then

& [Il 7_2 Y_3 Y__“p :[Y__]C (3.11)
Q.=[Q, Q, Q; QJC =[QC

where the overbar indicates eigenvector quantiteguations (3.11) can be used to elimirate

to obtain the 44 DSM[K _] of the semi-infinite structure from

Q, =[QIYI 'Y, =K JY, (3.12)
The dynamics of the semi-infinite structure havevrmeen condensed to a relationship between
the forces and displacements at the free end. iftdga[K ] in this way involves one
computational step, whereas an analogous solutioa finite structure — adding units together
until convergence is reached — requires many itarst

For the model of Figure 3.2(b) with discrete slaams, the DSM of the repeating unit is
extracted fromK] in (3.7) to relate only the top beam’s forces digplacements, given that the
end forces on the bottom beam must be zero if thods remain free. Hencg][is 4x4. When
the repeating unit process is applied to this n&MDthere will be only four eigenvectors, two
having|/]| <1, and thus only two eigenvectors will appear i1 {3, resulting in a2 [K _].

The DSM for a semi-infinite structure extendingtt® left can be obtained by a similar
argument to the proceeding one. Alternativelgaih be obtained directly by symmetry from the
DSM for the structure extending to the right, byaeging the sign of the off-diagonal elements
relating the free-end forces and rotations, andftbe-end moments and displacements. The
DSM for an infinite structure can be obtained bydiag the DSMs for two semi-infinite

structures, one extending to the left, the othehéoright.
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3.2.2 Adding Axle Masses to the Model

Masses can be placed on the rail beam to represent the unsprungf exdeswheel assemblies

of a train of infinite length running on the track, as shown in Figure Bt DSM for the new
infinite model is obtained by applying the repeating-unit method to a dbehla unit with a
lumped massn, added to one end. The inertia force introduced by this mass,i9” Y, added

to Q,, or —-mw?®Y, added toQ,, depending on which end the mass is situated at. Therefore the
new unit's DSM is created simply by adding-an,«w’ term to the appropriate main diagonal
element of the original double-beam unit's DSK/] in (3.7). The DSM for the case of a force
input at the middle of an infinite track with axle masses, Fi@ubéa), is relatively simple to
obtain: the DSMs for the left and right semi-infinite structumes both calculated from units
with masseasll at the left-hand end (@il at the right-hand end).

A more useful and realistic model for simulating roughness and other imiégslaf the rail-
wheel contact is to use a displacement inploétween the centre axle-wheel mass and rail beam,
as shown in Figure 3.5(b). This time the right semi-infinite &ireds based on units with axle
masses all on the right-hand end, while the left is based on uttitdeftihand masses, so that
the middle of the resulting infinite track structure has no axssmn The centre mass is added to
the structure with a harmonic roughness displacerdenfe'® interposed. This displacement
can be thought of as the variation about the mean of the roughness. Singpesar¢ no
external inputs except the roughness displacement, i the displacement of the new mass in
the frequency domain, then the interaction force acting on it must be egualdgf Y, ; an equal
and opposite interaction force acts on the rail beam directly bé@vmass, so that

Q - mw’Y, =0, while the other forces acting at the centre are zero. Tfwses

(@) i (b) .
O O 0 O O O O e O
L= 2l = = == = s 3= =l =]l= =]

L L

Figure 3.5: Infinite track model with an infinite series of axlgeel masses added to the ralil
beam, excited by (a) a force at one mass (b) a displacemenbeatpugten one mass and the rail
beam.
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Q,={Q, M, Q, M} are defined by (3.12) in terms of the centre displacements
Y,={Y, ©, Y, ©}7. The additional condition that the difference between the axle-mass
and rail displacements must be equal to the roughness kputy, = A, is required for the five

unknown displacement components to be found. Putting all of this togetlts tyie matrix

equation
—k11 k12 k13 k14 - rqwz | Y1 0
k21 k22 k23 k24§ O @1 O
Ky, Ko Kay Koy 0 Y,r =40 (3.13)
ki Kip K Ky 011051 0
-1 0 0 0 1 ||Y, A

where thek; are the elements of the DSM | of theinfinite track structure with axle masses
but no mass in the middle. A4 [K ], which corresponds to a continuous slab beanmses u
in (3.13); in the discrete-slab case it would B& gince only the rail beams are joined. Note that
the new system of equations is of dimension onatgrehan the original DSNK _ ], because a

new independent displacement componénhas been introduced.

3.3 Transmitted Force

As an initial point of comparison between differarinfigurations of FST, the total force
transmitted into the ground for a given input cancbnsidered. Via its wheels, a train provides
several inputs to the track simultaneously, but ttdase of multiple inputs is best developed by

first considering the transmitted force due torgks input acting on the track.

3.3.1 Transmitted Force for a Single Input

Each infinitesimal elementix of the lower beam of a unit will provide an incremb in
transmitted force oflF, = k,U,dx, as shown in Figure 3.6(a). The force transmitteth the
unit onto the foundation will be the integral oésie increments over the length of the unit, from
x=0 to x=L. The bottom-beam displacemedt, is given by the second row of matrix

equation (3.4), so that
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(a) (b) Q
AV
| ' | A2, AY, Y, AY, A2,
W%’@;W
” dx
dFu ﬁ
L
F=>FR
dF, = k,U,dx

Figure 3.6: (@) Transmitted-force increment for a single double-beam binifrahsmitted force
for the whole structure, showing how an eigenvector displacement prepayaay from the
loading point.

F = kZIOLUZdX
A€ -D-Qe™ -9  BE -9- DE- 3) (3.14)

a, a,

E(e" -)- Fe™ -) , q&*-9- Hé"”*—i)j

a, ia,

= k2V12(

+ kZVZZ(

for a single unit, where the eigenvectors are definedpby{V,, V.3 ' andV, ={V,, V,} .
The coefficientsA can be found using the end displacem&ntd the unit and the matrixM] in
(3.6).

The total force transmitted from the whole track to the foundatiobt&ined by considering
the infinite track model shown in Figure 3.6(b). The response at tdeptwat Y, to applied
input excitationQ, can be found from the infinite model’s DSM (created from two gefimite
models’ DSMs).

The transmitted forcé=, under any unit can be calculated by (3.14) if the end displacements
Y are known. The displacements are a linear combination of the ectgaam?j according to
(3.11), and from (3.10) each eigenvector decays from unit to unit bya fafictt; . |If the
displacement at the excitation point corresponds to one of the founve'cgerst, the end
displacements ar¥ ={Y," A,Y,"}" for the first unit to the right{ A, Y," A,°Y;"} " for the
second {4,°Y," A,°Y,} T for the third and so on. Equation (3.6) then gives the coefficients
for each unit ag\, 4,A, A ].ZA and so on. Hence from (3.14) the transmitted force of one unit

will be that of the previous unit multiplied by;. Denoting the transmitted force for the first
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unit due to thej™ eigenvector asF,, the total transmitted force under the right-hand semi-

uj?

infinite structure, summing over all the units to infinity, is a geometriC$enéaeall‘)l j‘ <1)

_ _ _ _ F
F +AF +A°FE. +A°F. + = Y (3.15)

uj 1oy ;o ;oo 1-A
j

A linear combination of the eigenvector contribngo(3.15) according to the proportio@s
calculated from (3.11), gives the total transmittexte for the right half of the track model for
any inputQ,. The total transmitted forcg, for the whole structure will be twice this valug b

symmetry. Thus

F [E01E1 CZ ﬁu2 + QI_ZU?: + QIT:LMJ (3 16)
' 1-1, 1-4, 1- A, 1- A, '

for the continuous slab model; the discrete slalehwould have only the first two terms. If
the inputQ, is a unit harmonic force acting on the rail, (3.¢&ves the transfer functiof, /F
of total transmitted force to input force.

The concept of total transmitted force adds togetie¢he increments of force without regard
for spatial disposition. This gives a valid piguor an observer at a distance from the track
which is large compared to the length over whiemsmitted force is produced: all transmitted
force increments then appear to act at a singletpdihis is known as St Venant's principle. In
practice, however, track displacement involvesdliang waves, so that an observer can never be
far enough away for the transmitted force to besmm®red as coming from a point source. The
transmitted-force approach is therefore only usefot comparisons between track

configurations.

3.3.2 Transmitted Force for Multiple Inputs

Figure 3.7 shows the case of an infinite seridemie inputs acting on the rail beam, to represent
the passage of a train of infinite length. Theuiispare separated by the unit lengttand have
equal magnitude with a phase differencepdfom one to the next to account for the time delay
between forces from successive wheels of the traiime superposition of an infinite number of

single-load cases, shifted in phase and spaces tieeresult for the transmitted force.
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Figure 3.7: Transmitted force for a single unit in an infinitdl F8odel excited by multiple
phased inputs applied at the unit junctions.

The unit between the loadfsand Fe'? in Figure 3.7 has contributions to its transmitted force
from the loads to its left and the loads to its right. The numbanitd that a particular load is
from the unit under consideration determines the quantity of that loadtsbution as a power
of A,. Adding these two sets of contributions for one eigenvector of the rgvesl a sum of

two geometric series

Fy, + 1,eF, + AR, + A°€¥E + ...
+e7F, + 1,67, + 1Y E + A€ E + (3.17)
F, e’F,
= +

1-1,e"  1-1€°
where Ifqu is an eigenvector contribution to the transmitted force under gteaufiit to the right
of the load when the infinite track model is excited by the silogld F. The transmitted force
F, for the unit is the linear combination of the eigenvector contributions
F, = ( le”l. + CZE‘? + C3f”3. + C“f”“. j
: 1-A,e7 1-A,e7? 1-A.e"” 1-A,e

+ eiw.( c:1ful_ + CZEZ_ + CSﬁuS_ + CAﬁutl_ j
1-A,e” 1-1,€" 1-1,€e¥ 1-A,e”

(3.18)

for the continuous slab model. The discrete slab model result wouldhbvievo eigenvector
components instead of four.

For the next unit to the right of that considered, the series in (& IWltiplied by €'“.
Hence F, in (3.18) is also multiplied b¥'?; for each successive unit to the right, the result is
repeatedly multiplied by this phase-shifting factor. With #ofaof €'? the same is true for the
units to the left. The total transmitted force summed over ak ismithenF, >€" . The total

n=-—co

input force for a series of phased unit harmonic inputsfiei”"’. The transfer function of total

n=-co
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transmitted force to total input force />F is therefore the same as the unit transmitted force

F, given in (3.18).

3.4 Results

The package Matlab was used to investigate the behaviour of irfBfenodels based on the

double beam unit developed in the previous section. The parameters used are given in Table 3.

Rail Beam Slab Beam
m, =100kg/m m, = 3500kg/m
El, =10x 1¢ Pa.nf El, =1430x 16 Pa.nf
k, =40x 10 N/m’ k, =50x 10 N/m?
{,=05x10°s {,=1x10°s

Table 3.1: Parameter values used for the double-beam track model.

The rail beam’s parameters are for two rails together. dahgping is viscous such that the real
stiffnesses written dsin (3.3), the equations of motion in the frequency domain, are replaced by
complex stiffnesse&"” = k(1+ iax) . The parameters above are based on typical values for FST,
but the value of the rail-support stiffneks has been reduced by an order of magnitude to make
the resonance of the rail on the rail pads fall below 200Hz, themmaxifrequency which will

be considered.

With the parameters given, the maximum unit lerigtivhich could be treated was about
14m. This is because the elements Mf] [and [N] of (3.6), upon which the unit DSNK]|
depends, contain exponential terms whose exponents are both positive aive pegdticts of
L and the rootsr, and a, (see Appendix A). Thus asincreases,N1] and [N] start containing
elements both very large and very small. The accuracy ofxmagerses calculated numerically
is adversely affected when the difference in order of magnitueeebptthe largest and smallest
matrix elements becomes too great for the computational preaised. To ensure the
numerical accuracy of the transfer matfiq pf (3.9), which involves inverses of submatrices of

[K], some scheme of row and column normalisation would have to be used for larger values of
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(b)

Figure 3.8: Total transmitted force for (a) a deulnass-spring system compared to that for (b) a
double-beam model. The parameters for (a) are/elguit to one metre of FST.

The first comparison is of total transmitted force for beam nsodath continuous and
discrete slabs to the double-mass-spring system shown in Figurdi@8transfer function of
transmitted force for the double mass can be shown to be

Fo_ k; K,

= - > > 5 (3.19)
F (Mmw* - k)(mw - k) - k mw

where the masses and stiffnessek are given values equivalent to some length oFR8€&, say

one metre.

Figure 3.9 shows the transfer function of totahsraitted force for the double mass and for
FST models of varying slab length including contins slab, calculated from (3.16) and (3.19).
The numerical results are identical for all the eled There is a peak at about 20Hz for the
resonance of the slab on the slab bearings, andaal Ipeak at about 100Hz for the resonance of
the rails on the rail pads. These resonances tharknset of travelling waves in the respective
beams. It seems that slab length has no effectramsmitted force and that FST can be
accurately represented by simple lumped-paramedss+gpring models. It is interesting to note
that calculating the total transmitted force fosiagle Winkler beam, by starting from (3.1) to
determine its displacement and then using integrads in (3.14) to obtain the total force, gives

an identical analytical result as an equivalengleimass-spring system.
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Figure 3.9: Transfer function of total transmitted force due tmglesforce on the rail beam,
calculated using different FST models, and compared to that for a double mass-spring mode
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Figure 3.10: Responses at the loaded joint of (a) the top beam ahd {imttom beam for an
infinite FST model with a unit harmonic load applied to the rail beam.
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A more subtle picture emerges when the displacement responsamsed. Figure 3.10
gives the responses of the top and bottom beams at the loading poirftef@ndislab lengths.
The bottom beam displacement determines the transmitted forseret@islab beams introduce
a larger resonant response of the slab on its bearings at 20Hxantbar of new resonances
after this point compared to the continuous dodtigam model's response, which follows the
same general shape as the total transmitted force curve. &ddesbn the slab beams reflect
travelling waves, preventing energy from propagating away fronfodding point through the
slab. Thus the response at slab resonance is greater and staad@sgcan be set up in the
discrete slabs, resulting in the further resonances seen. Loisgestelislabs allow standing
waves to form at lower frequencies: the 12m slabs result in k& ,esonances below 200Hz,
but the 2m slabs are too short for any standing waves to occur fretjugency range. Discrete
slabs markedly change the response of the slab near the appliednidabus also the local
increment of transmitted force. Because energy is prevented gropagating down the

structure, the responses away from the load will be less th&nceittinuous slab. These

changes in local effects would be important for an observer (or buflolimglation) close to the

20F
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Figure 3.11: Transfer function of total transmitted force for diserand continuous-slab FST
models once 500kg axle masses at 12m spacing are added to themawité the double-beam
result as a reference.



CHAPTER 3. MODELLING TRACKS

40

track, where the concept of total transmitted force breaks down leetteuforce transmitted to

the foundation cannot be construed as acting at a single point.

A train of infinite length running on the track can be representeddmyngl axle masses on

the rail beam, as described in Section 3.2 and shown in Figure 3.3{a wiitgle force input.

Figure 3.11 gives the total transmitted force for the model withcaddesses excited by a force

at one of the masses.

It can be seen that now there is @&mifebetween the results for

continuous and discrete slab beams. The added mass has also reduesuhtre frequency of

the top beam. Figure 3.12 shows the effect on total transmitteddbotenging the value and

spacing of the masses for a continuslab track, so that slab length does not change with mass

spacing. The mass value, not the spacing between masses, changgshbam resonance.

This indicates that each mass interacts with some chasgictéength of the beam, as shown in

Figure 3.13, rather than there being some averaging effect ofanasshe whole beam. The

spacing between masses only has an effect at higher frequaoes,100Hz, after the onset of

(a) L = 12m
20f o '
10+ ANC 250kg masses
— AN ) - = = 500kg masses
Q o~ T TN == 1000kg masseq -
| N
2 -10 T
E 201 ~ >
~_ -30p Tl T~
w - -
-40r \'\-\\_\/\""'--A.
_sol \/\\\“\\\
0 20 40 60 80 100 120 140 160 180 200
frequency [Hz]
(b) ma:500kg
20F N
10k N 3m spacing
— // ~— _ - = = 6m spacing
% o— N N == 12m spacing| 1
= X
S =10 \\
£ -20f g
L 30 T~
- | \‘\-\-{ o
-40 RS FIN
-50t T~ _
0 20 40 60 80 100 120 140 160 180 200

frequency [Hz]

Figure 3.12: Magnitude of the transfer function of total transmittex for the continuous-slab
FST model with axle masses on the rail beam for (a) varyiagsmat 12m spacing and (b)

varying spacing of 500kg masses.
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(@) (b)

N\ o

Figure 3.13: Schematics showing that (a) a smaller axle mi@sacts with the same shaped
“deflection bowl” of rail as (b) a larger axle mass, belowftequency of travelling waves in the
rail beam. The shape is that of the static deflection of a 2@tros of an infinite rail beam on

springs with properties as given in Table 3.1 (vertical scale highly exagg)erat

travelling waves in the top beam itself. For real railpadhsiises an order of magnitude higher
than that used here, the -@rt frequency of travelling waves would be of the order of 300Hz, so
that these higher-frequency effects would not be visible in the frequency range i@ehside

The total transmitted force for phased force inputs at all the-velxeel masses can be
calculated from (3.18). For an axle spacind-@nd a train speed of the time delay between
axles isL/v so that the phase difference is givengsy alL/v. The frequencydetermines the
wavelength of the irregularity in the rail-wheel interface for a given sgad speed.

Figure 3.14 shows the total transmitted force for this model with24m/s. With a
frequency range upto 200Hz, irregularity wavelengths decreasing ifriamte to 0.12m are
being simulated. The transfer function shows a series of resoranttdgep antiresonances at a
spacing of 2Hz from peak to peak. The resonances result when aflags=s move up and
down together in phase. This occurs when a whole multiple of theateitwavelength
corresponds to the axle spacing of 12m, as depicted in Figure 3.15(ajingnfsequency
intervals of 2Hz as observed. Similarly, the antiresonances o¢mir @ach mass is moving in
antiphase compared to its two neighbours, as depicted in Figure 3.15(lghapeetraced by the
peaks of the 2Hz resonances is similar to the curves in Figures 3.11 and 3.12 for a single load.

The more realistic model using a roughness displacement dnipetween one of the axle-
wheel masses and the rail beam, shown in Figure 3.5(b), has dynaraic®ygequation (3.14).
Once the displacementg, of the model are calculated, all the previously developed results for
transmitted force hold. Figure 3.16 gives the response of the model dedptisplacement
inputs at all the axle-wheel masses for the same paranasténe case with phased force inputs.

The series of resonances and anti-resonances at 2Hz intervals aggiaaas expected. Note,
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Figure 3.14: Transfer function of total transmitted force for phagmat forces at 500kg axle
masses with 12m spacing on the continuous-slab FST model. Train speed 24m/s.

(@) (b)
W W\@/

Figure 3.15: Schematics showing the relationship of irregula@tyelengthd and axle-mass
positions for (a) resonances in total transmitted force (maspbésse), and (b) antiresonances in
total transmitted force (alternate masses in antiphase)heatlowest frequencies (largest
wavelengths) these first occur.

however, that displacement inputs give significant transmitted &drtiee highefrequency end
of the FRF of transmitted force, where the FRF for force inphigufe 3.14) is highly
attenuated.

The regular series of resonances seen in Figures 3.14 and 3.16 avexdwedféct known as
wheelbase filtering in the field of vehicle-road interaction. &maried distribution of motor-
vehicle speeds and axle spacings as would be expected on a typjceddulygay, the effect of
wheelbase filtering is smoothed out and is thus unimportant in cahgutae ground-vibration

response near the road by means of random process theory (see Hunt)[9y 81kal railway
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Figure 3.16: Transfer function of total transmitted force for phdsgdacement inputs at 500kg

axle masses with 12m spacing on the continuous-slab FST model. Train speed 24m/s.

vehicletrack system, there will be slight random variations in theisgdeetween the axles,
which means that the sharp resonances in Figures 3.14 and 3.16 will baesinmatt to some
extent, but not as completely as for a busy roadway. However,pgbatireg-unit method does
not lend itself easily to the treatment of varied axle spabecguse the transfer-matrix approach
assumes units of precisely the same length. Thus a differémbaneould be needed to model

axle spacing with some degree of inherent randomness.

3.5 Conclusions

Although at first glance it seems that FST is well modebigda simple double mass-spring
system when transmitted force is considered, closer inspection disuie-beam models of
infinite length reveals otherwise. In particular, the slab leihgit a significant effect on the
displacement response and hence on the local contribution of force ttadswmmto the

foundation. With masses added to the model to represent axle-wbeelbdies of a train, the
total transmitted force for a single force input can be partedplained by the dynamics of an

axle-wheel mass on a characteristic length of rail. Howevieen multiple, phased inputs of
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force or displacement are used to modehwdnkel irregularities, a series of resonances due to
axle spacing appear, which cannot be explained with simpler modeieertheless, the concept
of total transmitted force is limited, despite increasinglyenmymplex models, because of the
way all force increments are summed without regard to sghstlbution. Most importantly,
the models considered so far have assumed a rigid foundation, so nothibg sam about
vibration levels in the soil surrounding the tunnel. The dynamics otitimek and the soil need

to be addressed.



Chapter 4

MODELLING THE TUNNEL

As described at the beginning of Chapter 3, the track in an undergroluelyrigi supported by
the invert of the tunnel, which is surrounded by soil (see Figure 3.1)dyfaenics of the track
were investigated by considering the tunnel as a rigid foundation. ugoweis reasonable to
expect that different tunnel designs and soil conditions will influethee effectiveness of
underground railway tracks designed for vibration isolation, particulathe “stiffness” of the
tunnel invert is not so high as to be effectively rigid in comparisdhe various track elements
between the rail and the invert. In addition to this, the only sursureaf a track design’s
vibratiorrisolation performance is the level of vibration resulting in thé awund the tunnel
when a train runs on that track. For these reasons, a mathematiball of the underground
railway system needs to include the effects of the tunnel and soil dynamics.

Underground railway tunnels can be of rectangular or circular sext®n. Rectangular
cross-sections result from the construction method known as “cut-and;oekere a trench is
excavated, the tunnel lining put in place, then the whole covered to greehd Tdnis method is
used for shallow tunnels (a few metres underground), or as a run-irtlfeosurface for deeper
tunnels. Circular cross-sections result from boring tunnels ategréepths. A tunnel of circular
cross-section will be considered in this chapter.

The tunnel is conceptualised as an infinitely long cylindrical tubeosnded by soil of
infinite radial extent. If the tunnel wall is thin compared sorédius, cylindrical shell theory can

be used to model the tunnel's response. The infinite soil can bedtreatuse of the wave

45
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equations for an elastic continuum, formulated in cylindrical coordinat&se analytical
solutions for these two components of the physical model are coupleldetotigbugh the use of
appropriate stress and displacement boundary conditions. Despite theeabta free soil
surface, useful results concerning the propagation of vibration intootheear the tunnel —
where building foundations are located — can be obtained. The resulke forotion of the
tunnel and surrounding soil can then be combined with a track model (thet afliFhapter 5)
to improve upon the understanding gained from the track models with ogiddétion

considered in Chapter 3.

4.1 Cylindrical Shell Equations

The linear equations of motion for a general thin shell made ofrlielaatic, homogeneous,
isotropic material are given by Volmir [181] and reproduced in Appendi¥®@ the special case
of a thin cylindrical shell, shown in Figure 4.1(a), Volmir's equaticas be substantially
simplified. In this case they are the same as the staiatiens of Fligge [57] with the addition
of inertia terms. Each of the three equations represents dyequilibrium in one of the three

principal directions. Equilibrium in the longitudinal directiwgives

J%u (1-v) J%u (1+v) v ow
a + + - v—
ox? 2a J6° 2  Ox90 X
2 _ 2 3 _ 3
+h_(l 3V)0"‘L;+0"'z30_(1 21/)0"w2 (4.1)
12| 2a° 06 oX 2a° ox0
2 2 2
+a(1 V)X—a(l v)o"zt:
Eh E o
equilibrium in the tangential directigngives
(1+v) Fu N a(l—l/)o"zv N 1700 _ 1ow
2 o8 2 K ade adé
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(@)

Figure 4.1: Coordinate system used for the thin-walled cylindsiwall-theory, showing (a) the
principle directions for a typical element in the shell, (b) theresponding displacement
components and (c) the corresponding surface stress components. To model auaialaghe
length of the cylindrical shell is taken as infinite.

and equilibrium in the radial directiagives

M Lo 1 WP dw 2 dw 17w

X add a 12| &* a o oe’ a 79
h|du  (A-v) Fu L B >Fo 1 20

- LZ¥ . w4 2 43
12{(»(3 2@ 20F * 2a ove T a” "t da (4-3)
(1-v?) (1-v’)dw _
G2Vg - =0
a Eh %~ P2 E a&°

whereu, v andw are the displacement components in directigng and z respectively and
varying with timet, a is the radius of the shell, afdis its thickness. The shell material has
Young's modulusE, Poisson’s ratiav, and density. The effects of material damping can be
included by using complex material parameters in the frequency domBhe net applied
loading is usually represented by stress components acting on thesosiace of the shell: two
shear tractiong), andq,, and one normal stresg. More precisely, these are the net stresses
acting, the differences between the inside and outside values ofrtheesstresses,,, 7,, and
r,, respectively. The displacement and stress components are shown in Figure 4.1(b) and (c).
The terms in (4.1) to (4.3) which are multiplied by the factoy/12 represent the
contribution of bending effects to the displacements, while those wittepresent the
contribution of membrane effects. Use of the simplified stagimdrical shell theory of

Timoshenko and Woinowskrieger [175] results in the loss of the bending terms in (4.1) and
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(4.2), and of the second bracket of bending terms in (4.3). However, wilegizing this
simplified theory, Fligge [57] notes that such gross simplificatiene been made as to make
the resulting equations next to useless.
If the loading applied to an infinitely long cylindrical shell comps stress components
which are harmonic in both space and time, of the form
q,(xt) = Q,cosng .
q,(xt) = Q,sinng. &« (4.4)
q,(x,t) = Q, cosng &«
and hence separable in timespacex and angular positio#, then the equations of motion (4.1)
to (4.3) are satisfied by the similarly harmonic displacement components
u(x,t) = U, cosng €«

o(x,t) = V, sinng.d“* (4.5)

w(x,t) = W cosng .é“*&)
wherewis angular frequency is angular wavenumbem,is a positive integer, while the tilde on
the uppercase coefficient®,,, Q,, Q.. U,, V, and W, indicate that they are in the
wavenumber domain as well as the frequency dom@he spatial exponential terel™ arises
because of the cylindrical shell’s infinite longitnal extent; if it was of finite length, then
these exponentials would be replaced by terms $ikgm7x/ L) or cosmsmx/ L) — with the
choice depending on the end conditions — wiheig a positive integer. The trigonometric terms
represent ring modes of the cylindrical crgsstion and are chosen so that the displacements a
symmetric about = 0, the downward vertical. Figure 4.2 shows thesg modes as they relate
to the three displacement componenisv andw. The modes are composed of an integer
numbern of waves developed around the circumference. eélémcthe in-plane flexural modes
of Figure 4.2(a), which are associated with radiaplacementv, n=0 corresponds to an
expansion or “breathing” modeay=1 corresponds to one full wave or translation of ¢hess-
section,n=2 corresponds to two full waves or a squashed @eston, and so on. The ring
modes for the tangential displacemenare the in-plane extensional modes of Figure #.2(b

while those for the longitudinal displacementare the out-of-plane flexural modes of Figure

4.2(c).
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n=0 n=1 n=2 n=3

(@)

(b)

Figure 4.2: (a) In-plane flexural ring modes, wagyas cosnd and corresponding to radial
displacementv; (b) in-plane extensional ring modes, varyingsasnéd and corresponding to
tangential displacement; and (c) out-of-plane flexural ring modes, varyiag cosngd and
corresponding to displacememnt for different values of circumferential modenumiver The
6=0 points are marked with small crosses on the umdefd ring shapes, while the small
circles in (b) mark the additional nodal pointstba ring’s circumference.

Substitution of the stresses (4.4) and displacements (4.5) into equdtibnso((4.3) and

putting all three equations into matrix form yields

~

Lj-n (1 2) an
~ | _ —a(l-v ~

where A] is a matrix of coefficients whose elements are given in AgpeB. If the stresses
Q={Q., Q, Q" are such that they represent some kind of unilifgacondition, then
the displacementsU={U_, V., W}" represent the displacement frequergsponse
functions (FRFs) in the wavenumber domain for di@aear circumferential mode. The actual

stresses and displacements will in general beric@abinations of the modal quantities.
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4.2 Elastic Continuum Equations

The soil surrounding the tunnel is modelled as a tmeensional, homogeneous, isotropic
elastic solid in the form of a thick-walled cylinder with an inner diamegeal to the diameter of
the tunnel, and an outer diameter of infinite extent, as shown in Fge(@@. The solution for
the motion of this cylinder follows the method employed by Gazis [y@juestigate the modes
of thick-walled cylindrical shells and developed further by Kdpke [110hoadlel the dynamics
of buried undersea pipelines.

The wave equation describing motion within a three-dimensional, homogensatuspic,
elastic, solid medium is derived by Graff [73] and is
Ju
az

whereu is the displacement vectdrthe vector of body forces,is time, A = 2VG/(1- 2v) and

A+oold + g% + of = p 4.7)

U=E/2(v+1) =G are Lamé’s elastic constants (wheBe is shear modulusg Young's
modulus, and’ Poisson’s ratio) for the medium, apds the medium’s density. In this case, the

only body forces acting are due to gravity; but since the desiretiosois for vibration about an

(a) (b) u,

7, )
Tio T,

Figure 4.3: Coordinate system used for the theory of an elastimwaomt with cylindrical
geometry, showing (a) the principle directions with their unit vector a typical element on a
cylindrical surface of radius within the bulk medium, (b) the corresponding displacement
components and (c) the corresponding cylindrical-surface stress congstezdses acting on
the edges of the element are not shown). To model the soil surroundiitigyay tunnel, the
inner radius is set t&} = a to match the cylindrical shell of Figure 4.1, the outer radiusaidem
infinite R, — o, and the length of the cylinder is taken as infinite.
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equilibrium position, they are ignored ahds correspondingly set to zero. The problem has
cylindrical geometry, so the cylindrical coordinate system W&l used. The coordinate,
displacement and stress directions are given in Figure 4.3. Nothithgystem is different from
that used for the analysis of the cylindrical shell in the prewseason, withz now denoting the
longitudinal coordinate.

The wave equation (4.7) can be solved by making use of the scalar amdpagentials —
Lamé’s potentials — which describe the field transformation

u==>0U¢+ UxH

_ (4.8)
with O = F(r,t)
wherer is the position vector( 8, z). The scalar functiori(r,t) is arbitrary, due to thgauge
invariance of the transformation. The property of gauge invariance essgnmatns that the
displacement field is not altered by the choice of the potentiatstosdescribe it (see Morse and
Feshbach [141]). Usually is defined byl LH =0 for convenience, but the arbitrary nature of
F(r,t) will be useful for the current problem.

The displacement equations (4.7) are satisfied if the potentials satisfy

10
|:|2¢: C12 d?
1 om (4.9)
and 0H = E?

wherec, = /(A +2u)/p is the speed of pressure waves in the mediuncard/ /o the speed

of shear waves. Since there are no surfaces enfanes in the bulk medium, only these two

types of waves can exist. For cylindrical coortiisathe Laplacians in (4.9) are given by [73]

idp  Fo 179 ¢

ngoz 2 2 2
< dH rzfj ’ H 2 H (4-10)
O°H = (DZH e 5)e + (DZH - 2+ 5 r)e + O°H
r r2 r2 ae r 4 r2 r2 ae (4 Z%

where €., e, and €, are unit vectors in the principal directions oé ttylindrical coordinate
system, shown in Figure 4.3(a), akid, H, and H, are the components bff.

From (4.8), the displacement components can béanrdut as
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% 1M, M,

u =

" & v &

y = ¥, M A, (4.11)
R

L2 90, 1d(H,) _ 1dH,

7/ r a r 00
The components of stregs, are given by the general strestgain relation of Hooke'’s law, and

are (see Timoshenko and Goodier [174])

~N
1

s = (A+20)¢, + Ag, + AE,
A&, + (A+21)es + Ae,
A, + Agy + (A+20)¢,,
Tpg = 2UEH = Tg

T, = 2UE, = T

rz zr

'\'
1

(4.12)

T, = 2UE, = Ty,

where the standard convention for designating stress directionsdigauséress is considered
positive if its direction and the direction of the normal to the sarfaacts upon are either both
positive or both negative with respect to the coordinate system). lddaweis valid for linear-

elastic materials. If some damping is introduced into the mhteso that it becomes
viscoelastic, the stress-strain relations (4.12) are stildviair low damping and the small
magnitudes of vibration considered here. However, when viscoelastdatsatre subjected to
large loads and displacements, more comprehensive stress-daa@msenvolving strain rates

apply (see Bland [15] or Fllgge [56]). The components of strairare defined in cylindrical
coordinates by [73]

A _lay, | u _a,
Ev = ) Eop . t—, En = )
a r o6 r oz
.- l(lollr L ANy &), e = }(& . E&j, (4.13)
2\r 08 a r 2\ oz r 08

Equations (4.7) to (4.13) supply enough information to solve for the displacanmgstress
components. To solve, solutions for the potentials in the wave equationsép&able in the

three space variablesdandz, and the time variable of the following form are assumed.
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f(r)com@e“*®
H, =g, (r)sinng.¢“
H, = g,(r)cosng g%
H, = g,(r)sinng.¢“*®

S
I

(4.14)

These represent harmonic solutions in the same way as those uted dylindrical shell
analysis, but now there is also variation with radigeverned by the functiorfsg,, g, andg,
(which also vary withay & andn). Substitution of solutions (4.14) into equations (4.9) making

use of definitions (4.10) and considering each component of the equatiomiturn results in

the four differential equations

2
r2fr +rf ' - {52—%}2 + nz}f =0

r2 " T 2_w2 2 2 —

g, + rg, & —r°+n° +1jg + 2ng, = O
2 (4.15)

rzgé' +rg, — Kfz—w—zjrz +n? + lig, + 2ng = O

2
r’g” +rg. - Kfz-c—zlrz + nz}gZ =0
2

where prime denotes differentiation with respect to

The first and fourth of equations (4.15) are medifiBessel equations of ordar(see
Kreyszig [112] for an introduction and Watson [1886f more detail), and thus have solutions
based on modified Bessel functions of ordeHHowever, the second and third equations require
further manipulation before a solution can be faunidere the property of gauge invariance
becomes useful: one of the functiogs, g, or g, can be set arbitrarily without any loss of

generality [70]. Choosing, = —g, and substituting into the second equation of (Agles

r'g + gl - Kfz—g}z + (n+1)2}9r =0 (4.16)

which is a modified Bessel equation of order-1) .

Hence solutions for the functiofisg,, g, and g, can be deduced from equations (4.15) and

(4.16) in the form of linear combinations of maekf Bessel functions as
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f

9
9,

Al (ar) + BK,(ar)
~ G = ALu(Bn + BK..(6) (4.17)
AL(Br) + BK(pr)

where a® = & - w?/c? and £ =& -w?/c,?, and |, and K, are modified Bessel functions of

respectively the first and second kinds, of omleiThe coefficients\, B, A, B., A and B, are
arbitrary, to be determined from boundary conditions.

The displacements and stresses can be found in terms of the fugitensy (4.17) by
substituting the expressions for the potentials (4.14) into equations (4eth)ling that

g =—Q,. This gives the displacements as

u =|f' + ?gz + i{gr}cosne.é“‘“&)

u, = —?f +i&, - g;}sinn@.é‘“’*‘?) (4.18)

_ (n+])
r

u, = _i{f

g - g } cosng .+

The stresses can be determined from (4.12) by using the straintioie$ini4.13) with the
displacements (4.18) above. Of the six components of stress, thevthicbeeact on cylindrical
surfaces of the modelr(, 7., and r,,) are the most important in the current consideration,
because they are involved with the boundary conditions, while the remé#ingggcomponents

(r,, T, andr,,) are internal stresses. The surface stresses are given by
.o AL, n° : n
T, = |(A+2u)f" + ?f - A r—z"'f f+ 2ué0; + 2u—q,
r

- 2,ur£2 gz} cosng g+

(n+1)

n n . .
T = [_Zﬂ?f' tougt iy - =g g (4.19)

2
?/Jg; - ,u?—z gz}sin ng.e“*®

r, = {Zﬂiéf’ e T LA P ﬂifggz}cosne.é‘m&)

=+

r
and similar expressions can be found for the other three stress components.
The functionsf, g and g, are defined in terms of Bessel functions by (4.14), while the

displacements and stresses are functioris@fand g, and their derivatives. Thus to determine
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final expressions for the displacements and stresses, derivatiBsssel functions must be
determined first. The identities)(2)=(v/21,(2+ 1,,,(2, K,(D=(/2K(2- K. (12,
1(@2)=1,,2-Ww/21,(2 andK(2 =-K,_,(2 —(v/ 2 K( 2 [185] can be used to calculate
the required derivatives and thence to find theldement and stress components of (4.18) and
(4.19) in terms of modified Bessel functions oferd and (n+1). The harmonic solutions can

then be written in matrix form as

ur
u=<u,r = [JDY O™
uZ
Trr
Tre
=0 {S O}Eﬂn T (4.20)
T oo 0 S
T@z
TZZ
cond 0 0
with [S]: 0 sinnd O
0 0 cond

The stress vector has been arranged so that gtehiee elements are the surface stresses
r,andr,. C={A B A B A B} is the vector of coefficients, determined from
boundary conditions. Th&x 6 matrix [U] defining displacements, and tlex 6 matrix [T]
defining stresses, are given in full in Appendix Bhe elements of both matrices are in terms of
modified Bessel functions with argumentsanfandSr, and thus are functions of wavenumber
frequencywand circumferential mode numbgras well as radiusand the material properties.

By comparing (4.20) to the solutions (4.4) and X4dr the cylindrical shell, the elastic
continuum’s displacements and stresses can bewiittthe wavenumbdrequency domain in a

way similar to the shell result (4.6). The disglaent and surface stress components are

m

-Frrn
ot = [UIC and {T,} =[T]C (4.21)
-Fan

o B e )

zn

where the3x 6 matrix [T,] is the top half of th& x 6 matrix [T] in (4.20).
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4.3 Solution and Results for Particular Boundary @nditions

Before the displacements of either the cylindrical shell fotuhael or the elastic continuum for
the soil can be determined, the boundary conditions must be specifiecho@f@lting the tunnel
surrounded by soil, the boundary conditions include the applied loads, compatibility
displacements and equilibrium of stresses at the tiswikeinterface, and a radiation condition
for the infinite soil. The equations can of course be used to moddtianic behaviour of
other problems with cylindrical geometry if the appropriate boundamngitons are used, and
this provides a means to check the equations before they are used koh@ddé tunnel-in-soil
case. In general the external loading applied to the tunnel willenbarmonic irspace even if,
as here, steady-state harmonic variatiotinre is of interest. Each general applied stress will
instead be a linear combination of the spatially harmonic componeets igi (4.4) for the shell
or (4.21) for the continuum. The total displacement response can be oliigiaeding the
individual harmonic displacement components which result from each diattmeonic load
terms which make up the total load, calculating the components fra@h ¢4.(4.21) in

combination with the other boundary conditions which apply to a given problem.

4.3.1 Resolution of a Point Load

The most useful result for the tunnel model is its response to painitload, as the response to
a more complicated loading condition can easily be determined by gogsipien of point-load
cases with suitable translations and rotations. The greafiest @h the tunnel from interaction
with a track supported by it is assumed to be via normal reactioasfothe longitudinal and
tangential applied forces are therefore set to zero. The Ispati@tion of such a point load is
shown in Figure 4.4(a). The response to this load is equivalent to ¢lea’'&function of the
tunnel for a time-harmonic point load in space, although the Green’sdiungtmore generally
the same as the impulse response function, that is, the responsenpaitampulsive in both
time and space.

The problem here is to cast the load into a form which can beedtigth the previously
developed results. The cylindrical shell notation will be used fofall@ving argument, but it

holds equally for the elastic continuum as well. The lopdsp, and p, applied to the inside
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Figure 4.4: (a) A unit normal point force acting on the invert ohénitely long tunnel can be
construed as (b) an appropriately scaled uniform normal stresg aeter a small rectangular
area centred ox =0 and =0. This normal stress distribution can be decomposed into (c) the
product of two rectangular pulse functions, ong and one irg.

of the shell (which correspond tq,, g, and g, in (4.4) if there are no loads applied to the
outside of the shell) atresseswhile the proposed normal point load i®ece To ensure that
the normal stress is scaled correctly to be equivalent to doucet, the spatial variation of the
normal loading can be visualised as a thdimeensional rectangular pulse centred on the position
x=0 and =0, of (small) base side-lengthtsx and aA&, and of heightl/aA&Ax (the stress
magnitude), as depicted in Figure 4.4(b). This pulse can be considettesl @®duct of two
separate rectangular pulsesxiand g, given in Figure 4.4(c). The point load is achieved in the

limit as Ax and A@ tend to zero. Thus the state of applied stress for a unit point load is

p, =p, =0
1 i —AX Ax SN, NG
Y for—52<x<58 and—52<0<=2
p, = 1 aA@AX B 2 B B (4.22)
0 otherwise

N ME@”" asAxA@ - 0
a
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where d(x) andd(d) are Dirac delta functions.

The solutions for the cylindrical shell (4.6) and elastic continuum (4uZlexpressed in the
wavenumbeifrequency domain for a particular circumferential mode nunmberWhile the
desired final displacement results will be FRFs — that i$,renhain in the frequency domain —
they will, in general, be linear combinations of the space-harmampanents calculated by
(4.6) or (4.21), due to the fact that the applied loading is in genepabssed as linear
combinations of the space-harmonic stress components, as discussedTdlusvine point load
(4.22) must be decomposed into its space-harmonic components before tleeoispta can be
found.

Around the circumference, the space-harmonic variation is repredgntbeé discrete ring
modes of orden, while the variation of the load is represented by the &#)/a. This part of
the load can be written as a linear combination of the ring modesays of the Fourier Series

(see Kreyszig [112])
a(0)
a

with a, = ij"@.de: 1
27TJ-7r a 278

= a, +i(aﬂ cosng + b, sinrg)
n=1

(4.23)
a, = E @COSH@C{H = _1

JTJ-m  a A
b = EJ'"@sinner.ousr = 0

JTJ-7 QA

on the interval-n<8< n. The series has reduced to a Fourier cosine sdrjes() because
the Dirac deltad(6) is an even function.

The longitudinal variation of the load is described by the té(x). Since the tunnel is
infinitely long, the space-harmonic decomposition of this term is nstridbed by discrete
modes, but rather by a continuous functiorf.ofThe harmonic components are found by taking
the Fourier transform of the terd(x). Conversely, the total longitudinal variation of the load is
described by the inverse Fourier transform of the resulting fun&(e’m; that is, the sum of the

contributions from the harmonics at each incremeudt ofhus,
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5(6) = J'_ma(x).e-ifx.dx =1 forallé
o - (4.24)
- = i & - = &
and 5() = [ 5(.¢%. & 2nj_w1.é &

where the Fourier transform pair used has the factdy @ in the inverse transforim This
definition will prove the most convenient for transformations from {hecs to wavenumber
domain and vicerersa.

Substituting the results fa¥(d)/a and d(x) from (4.23) and (4.24) into (4.22) yields

P, =p, =0
1=( 1 18 | | (4.25)
= — | |—/— + =Y comd| ¥ .&*
P ZHI—w(Zm nanZ:; ) ®

for the state of applied stress. Recalling tha23%is a transform of a sum of modal space-
harmonic stress components and comparing it witteehcomponents in (4.4) allows the

harmonic stresses for a particular circumferemtiatle numben to be deduced as

P,=0

P, =0 (4.26)
5 - {1/273, n=0

o 1Ym, n=1

for all & The harmonic displacementsl { V. W} are calculated for each valuerofrom

(4.6) by applying the harmonic stresses (4.26)e fdtal displacements resulting from a time-
harmonic unit point load are given by the lineambmation of these spatially harmonic
components. In the same way as the load, therlio@abination is achieved by the inverse
Fourier transform of a sum of the modal compondnts,this time there are no scaling factors
explicitly apparent, since the modal displacememésderived from the correctly scaled modal

stresses. Thus the total displacements are given b

T This is the definition of Fourier transform usyalised (though for functions of time) in electriemigineering and
digital signal processing (see Maloney et al [15tkarns [168]). However, the position of the dacif 1/2n can
vary. The convention used in the field of randoitoration has thel/27n in the forward transform (see Newland
[144]), while a definition with al/+/277 in each of the forward and inverse transfornsftisn used in mathematics
and physics (see Kreyszig [112]).
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~

U L l]o _ |YU,cosnb
ot = Jvlga = ZJ 0+ YV sinngl|.e®ar . & (4.27)
W LW, | ™ W, cosng

where the term which would correspond \ is zero because it is properly multiplied by
sinnﬁ]n:O =0, while the other two elements of the same vecter @operly multiplied by
comnd __ =1. In other words, the total wavenumismain displacements) and W are
Fourier cosine series (which start fram* 0), while the displacemerff is a Fourier sine series
(which starts fromn=1). In practice it is not possible to calculate iafinite number of
circumferential modes for the summation, so onlynemny as required to reach satisfactory
convergence are used.

Thus the time-harmonic displacement response igemeral, the inverse Fourier transform
(from the wavenumber to space domain) of a sumhef ¢ircumferential modes in the
wavenumber domain; or, alternatively, a sum ofdineumferential modes in the space domain,
obtained by the inverse Fourier transform of thedesoin the wavenumber domain. The result
(4.27) holds for any type of time-harmonic loadiegndition; the modal displacements
{U, V. W} just have to be calculated for the correct mottalss components, in place of
those given by (4.26) for the normal point loador®general loads that aret harmonic in time
could be treated by introducing a second inversgri€otransform from the frequency to time

domain.

4.3.2 Modelling a Thin-Walled Cylinder with the Elastic Continuum Theory

A useful check on the solutions (4.6) for the agtinal shell and (4.21) for the elastic
continuum, and for the validity of using thin-sheieory for the tunnel, is to make use of the
continuum theory to model a thin-walled cylinder.

For an infinitely long, free cylindrical shell load on the inside surface only, the modal
loading componentfgn of (4.4) will simply be the applied Ioadinén. Thus the modal

displacement components can be calculated fron 4.6
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n

U,
Vi

10O

— _a(l_ V2) [A] -1

= — = (4.28)

n
To obtain an equivalent solution using continuum theory is more complicatedoegin

with, the conventional notations used in shell theory and continuum theory dorrespond

exactly to one another. The relationships between the displaceamehtstresses in the two

different coordinate systems can be found by comparing Figures 4.1 and 4.3. They are

u= uz sz = _Trz
VU, T,=-T, (4.29)
ZUE_UI, TZZE Trr

where the shell quantities have been given first. The shell co@dipstem is more convenient
here, because in this system stresses applied to an insideicglistirface (such as a tunnel

invert) are positive in the same direction as the resulting displacements.

The thinwalled cylinder equivalent to the shell will have an inside radfufie mean shell
radius minus half the shell thickness, and an outside one of the mean rpldisshalf the
thickness. The applied stresses on the inside are the sameoes bafing note of the
differences in directions given by (4.29), and the outside ones arezagainUsing (4.21), these

stress boundary conditions can be written

~

zn O
[Tdi=nz2© = {=Prand [T ], [ =10 (4.30)
0

and are sufficient to solve for the 6x1 vector of coeffici€yts/hich can then be substituted into
the displacement expression of (4.21). For direct comparison to thehtflinresult (4.28), the
displacements should be calculated for the mean radius of the cyiatler Thus the modal

displacement components are given by

|
© o o m_umyY

=}

=}

N [u]r:a[E[Tf]“a‘“/Z} E (4.31)

[Tr]r=a+h/2

Lo R I e
=y

zn
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Either of the solutions (4.28) or (4.31) can be used to determine theigpiaicement due to a
particular set of load stresses by a modal summation then irk@user transform, as given by
equation (4.27). If the cylinder is excited by a normal point load, therstress components

(4.26) are used in (4.28) or (4.31).

4.3.3 Results for the Thin-Walled Cylinder

The numerical results for the thwmalled cylinder were calculated using the unit point load
described by (4.26) to determine the wavenumber-domain modal displacemganents from
(4.28) for the shell theory, or (4.31) for the continuum theory, for a rangeodénumben.
These components were then summed and inverse Fourier transformegd.a3)i to give total
displacements in the space domain. All these operations were @istd numerically in
Matlab, and are described in this section.

The geometry and material parameters were chosen for comptrisuaich those used by
Tuchinda [179], who uses the finite-element (FE) method to model a ifriéaitely long
cylindrical shell. An 88m-long cylindrical unit of 704 8-node thick-sheléments (16
circumferentially by 44 longitudinally) was analysed through the @BIS FE package to
compute its dynamic-stiffness matrix (DSM). The repeating-ongthod (see Chapter 3) was
applied to this DSM to join the cylindrical units at 8 nodes at each giving the DSM of a
semi-infinite cylindrical shell, two of which make an infinite shell.

The numerical values of the parameters used are given in TableThdse for the shell
theory come directly from values given in [179], while those for theticuum theory are
derived from them. The material parameters are for concnetéhe radius and thickness are
typical for an underground railway tunnel, so the infinite cylinder with these phieeepresents
a very long, free tunnel with no surrounding soil.

The material damping used for the FE model was Rayleigh (or piamedjt damping,
governed by the two parametars, and S, in Table 4.1. This form of damping is such that the
FE model is represented by

[MIX +[CIX +[Kx =f

_ (4.32)
with [C] = a[M] + B]K]
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Cylindrical Shell Elastic Continuum
E =50x 10 Pa A=2885x 10 Pa
v=03 1=19.23x 16 Pa
p = 2500kg/ m’ 0 =2500kg/ m’
a, =10s™ c, =5189m/s
Be =40%x10°s c, =2774m/s
a=3125m ag =10s™
h = 0.25m B =40x10°s
r froma andh

Table 4.1: Parameter values used to model a thin-walled cylinder.

where M] is the mass matrix{] the damping matrix,K] the stiffness matrixx the vector of
nodal displacements aridhe vector of forces applied to nodes. In the frequency domain with
x =Xe'“, this is equivalent to using complex mass and stiffness matdtethe form
[M]"=(1+a./i’)[M] and K T = L+iwB, )K ] without a separate damping matr®][ The
Rayleigh damping can thus similarly be accounted for in the contintnalisnsodel (4.28) by
including the masgroportional damping in a complex densigy’=p(1+a./iw) and the
stiffness-proportional damping in a complex Young's moduliis= E(1+ iwB;). The same
complex density can be used in the corresponding elastic-continuum(#e3)t while Lamé’s
constantsA and y are proportional toE and so can be replaced by the complex values
AP=A1+iwBy) and y”=pull+iwB,). Rayleigh damping is only used here to allow
comparison to the FE results. Loss-factor damping as useddaterfectly adequate for most
purposes.

Once the modal wavenumber-domain displacements are calculated&8ndr (4.31), the
total solution is obtained by substituting them into (4.27). This involvesofverations: a sum
of circumferential modes and an inverse Fourier transform fromf-the x-domain. Theé-
domain displacements are calculated numerically by matrix opesaton the analytical
solutions, so the transform must also be done numerically, using theendiscrete Fourier
transform (DFT) described in standard texts such as Newland [143pr1&4¢arns [168]. The

DFT pair which corresponds to the definition of Fourier transform usedsolve the load in

(4.24) and to obtain the solution (4.27) is
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=z

-1

DFT: Y, = > Y, e®™,  k=0,12..,(N-1)
m=0
1 N-1
IDFT: Y, = N Y é®F N m=0,1,2,...,(N-1) (4.33)
k=0
_ 27K
‘7 N

whereN is the number of discrete points at a spacingyofin the sampler of Y(x) and hence
in the sampleY, of Y(&) at wavenumberg, . The exponentiat @*™™ corresponds to the'®
in the continuous Fourier transform. The DNT¢) is related to the continuous Fourier
transform\?(f) by [168]
- 18 ~( 271()
Y& = — Yyl -2 4.34
($) A DY ¢ A (4.34)

k=—oo
that is, the DFT is a superposition of an infinite number of shifeedi€r transforms. While the
Fourier transform is not periodic, (4.34) shows that the DFT is, s¢4l3®) represents just one
period of the DFT. For this DFT period to be a close approximatidaheoFourier transform,
Ax must be small enough to give sufficient separation between the Fouriéorras the sum
of (4.34), otherwise they will overlap and addéawhere they contain significant energy. This
condition can be met by satisfying the Nyquist criterion (or samgpiheorem): the sampling
frequency27/Ax in thex-domain must be at leastice the larges¢-component of the signal to
correctly capture allé-components. If it is not satisfied, aliasing will occur, wherghhi
wavenumber components will be falsely mapped to lower wavenumberss,tioaerlap will
occur in (4.34). It follows from this that the highéastomponent extracted by a DFT is half the
sampling wavenumber, known as the Nyquist wavenumber. Similar considsrapply to the
inverse DFT. In practice, therefore, the DFT can be considered kmiva the Fourier
transform if both the sample and its transform decay to zero at their respgtiéveiiges.

The inverse DFT was carried out by the inverse fast Fouriesftnan (FFT) algorithm
provided in Matlab. This FFT computes the transform (4.33), which reypseaeDFT period
from zero to2¢,,, rather than one centred ¢rn=0. The analytical displacement expressions
(4.28) or (4.31) give an exact Fourier transformaolhs centred orf =0 by definition. Thus a
sample set calculated using (4.28) or (4.31) mastdaled byl/Ax from (4.34) and rearranged
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by transposing the negatiedata to comefter the positiveé data, so that the discrete sample
resembles the correct DFT period and the inverse DFT of (4.33) can be applied.

The inverse DFT of (4.33) can be used to transform individual modal cispdet
components into the space domain to check that the Nyquist critesatisBed and to examine
modal behaviour. Figure 4.5 shows the radial modal displacement #@& in both the
wavenumber and space domains, calculated from the shell theory. Theadbdmeters used
were Ax=05m and N =2048. Figure 4.5(a) shows this displacement at a frequency of 30Hz.
The displacement is a sharp localised pulsexa0 and this follows from the broad
wavenumber content shown in thelomain. Thus at this frequency, the sniatl is required to
give a maximum wavenumber 7gzhere) large enough to capture all the broad wavenumber

information and ensure the Nyquist criterion is met. Figure 4.5(b) skimsvdisplacement at a

(a) f = 30Hz < 10° f=30Hz
— 0.2 T T - T 3 . .
—
L~
£ 2t
o —
c 0.1t Z
= g1
g A FFT E
g O
S |
~—0.1 04
== Ll
i
-0.24 : : : : : : -3 : : : :
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(b) f = 50Hz < 10° f= 50Hz
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Figure 4.5: The real part of the radial modal displacement compo\ﬂ:m and W, (x), for
n=3, for an infinitely long, thin cylindrical shell wh properties as given in Table 4.1 and
loaded by a unit point force at=0, at a frequency (a) below the natural frequencyttie ring
mode and (b) above the natural frequency. Thepaalin thex-domain represents a “snapshot”
for time t=0. The imaginary parts are of similar form. Thedrse FFT is done with
Ax=0.5m and N =2048 and is performed on the complete complex displargrmomponents
W, (&), not just the real parts illustrated. LoadingRyf=P,, =0 andP, =1.
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frequency of 50Hz. In th&domain there is now a propagating wave rather than a localised
displacement pulse. In thedomain the displacement is concentrated around a single value of
wavenumber of aboud.3rad m corresponding to the 21m wavelength of the travelling wave.
This time the largé\ is needed to capture all of the displacement response iadbain. It
can be seen that the chosen valuell ahd Ax result in all the functions shown in Figure 4.5
decaying to zero at the ends of their sample sets, so the ilMefseto thex-domain can be
trusted as good representations of the actual inverse Fourier transforms.

The transition from localised to propagating modal displacementiséggure 4.5 occurs at
the natural frequency of tha=3 circumferential ring mode. The radial displacemanis
associated with in-plane flexural modes of the circular crossese Figure 4.2(a). The natural
frequency f_ of the n" in-plane flexural ring mode for a slender ring is (see Dendgd#5] or

Blevins [17])

2_1) [EI 2 _ 2
- 12 n(zn 1)2 x _ 12 n(zn 1)2 Eh n=123. (4.35)
2’ (N +1DY?\ m 2ma’ (n* +1)¥2\ 120

where |, is the second moment of area andhe mass per unit length of the beam forming the
circular ring. The right-hand side of (4.35) can be applied to the teifiniong thin-walled
cylinder. The first in-plane mode associated witls, however, the expansion mode witk 0.
This is really a type of in-plane extensional ring mode, the higlaars of which correspond to
tangential displacement The natural frequency, of the " in-plane extensional ring mode

for a slender ring is [17]

2\12
f o= &\E, nN=012,... (4.36)

27m

The values of the natural frequencies for the radial in-plane riodgeshof the thin-walled
cylinder can be calculated from (4.35) and (4.36) and are given in Taldfler 4t first eleven
values ofn. For then=3 mode f, =39.9Hz, which accords with the localised displacenae

30Hz and propagating displacement at 50Hz appardéngure 4.5.
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n f. [Hz] n f. [Hz]
0 227.8 6 181.6
1 0 7 249.9
2 14.1 8 328.8
3 39.9 9 418.2
4 76.5 10 518.2
5 123.8

Table 4.2: Natural frequencies for in-plane ring modes associated with radial
displacement of the thin-walled cylinder with properties given in Table 4.1.

Having established the spacing and the number of points required fonvénse DFT, there
remains the question of how many modal displacement terms havertcumed in the Fourier
series sum of the solution (4.27) to give satisfactory convergenaeh rmaodal displacement
behaves like then =3 one discussed above, with a localised displacement below thenoide
natural frequency, and a propagating displacement above. At a givemgdiregquency, the
response at a point some distance from the driving point will only dependanodal
displacements which have begun to propagate, that is, have natural fregliet@w the driving
frequency. From Table 4.2 it can be deduced that only the modesnup4ovould have to be
included to achieve convergence at a remote point along the cylinddnivioig frequencies up
to 100Hz. However, the total driving point response& at0 has significant contributions from
both propagating and localised modal displacements. Neverthelesspctised modal
displacements decrease in maximum magnitude with increasing mdoenothat is, the
further their natural frequencies lie above the driving frequencwastfound that convergence
at x=0, both longitudinally and circumferentially, was reached with a suthemodes up to
n=10 for frequencies up to 100Hz. Thus all calculations were done usinfygheleven
modes.

The general procedure adopted to calculate numerical values of the totaledispitseccan be
summarised as follows:

1. Calculate an array of modal displacement values from (4.28) or (4.3Lyfa of 20485

points by 10Qwpoints, for eaci from 0O to 10;
2. Multiply each array by the appropriatesné or sinng term and add them together to

effect the Fourier-series part of (4.27), giving total displacements ifidbenain;
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3. Apply the inverse FFT over the columns of the summed array tot effe Fourier
transform part of (4.27), giving total displacements intdemain.

The frequency range started at 1Hz because zero frequency tteuserices of coefficients to
become singular. Each row of the final array corresponds to the FRF at a particidafxa

Figure 4.6 gives the driving point response of the thin-walled cylingleulated from the
shell theory, the continuum theory and from Tuchinda’s FE plus repeatingiattiod. These
three results are also compared to a free bending beam of inéngéh, which models the
translation of the cross-sectiom£1 ring mode) only. Starting from the equation of motion
(3.1) for an Euler beam it is easy to show that the displacemegnteincy respons¥(x «) of
such a beam excited by a unit point harmonic force=a0 is given by

maw?

Y(xw) = e’ +ie”), witha* = (4.37)
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Figure 4.6: The radial driving point response Xat 0, =0) for an infinitely long, free thin-
walled cylinder with properties as given in Table 4.1, showing resaltsilated from the shell
theory, continuum theory and Tuchinda’s [179] FE plus repeating-unit approach, comphaeed to t
driving point response of an infinitely long, free Euler beam with etgnvanaterial and cross-
sectional properties. The resonant peaks are marked with thesmaonding modenumber

their frequencies can be compared to those given in Table 4.2.
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wherem is the mass per unit length of the beam Bhds bending stiffness. The rootused is

the secondjuadrant one, so that bathandia have negative real parts and the two exponentials
in (4.37) decay af — «. The beam parameters equivalent to the thin-walled cylinder define
by Table 4.1 aran=12.27x 10 kg/m andEl =1200x 16°Pa.nf .

Figure 4.6 shows that the infinite free beam gives a good approaimtihe driving-point
response until the@ =2 ring mode of the cylinder starts to resonate. The resonancespand
well with the calculated ring-mode natural frequencies given bleT4.2, but are a little higher
because the different types of modes are coupled in the cylinder but aatng. Figure 4.7
gives the response at 88m along the infinite cylinder. This tadénding beam gives a good
approximation all the way up to 15Hz, above which frequencyrntke€ ring mode begins
propagating fromx =0 and reachex=88m. Both the driving-point and remote responses
show very good agreement between the shell, continuum and FE resus#tsorsistency means
firstly that the shell and continuum equations are working corranttysecondly that the use of

the shell equations is justified to model the thin-walled cylindeh@ftunnel. The tunnel could
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Figure 4.7: The radial response of an infinitely long, free cyliadirshell at a point remote
(x=88m, 8=0) from the normal point load (at=0, =0), calculated by the same methods
and for the same shell properties (Table 4.1) as Figure 4.6.
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just as well be modelled by the continuum method, but the shell solution (@v28)es one
3x 3 matrix instead of the thre8x 6 matrices of the continuum solution (4.31), so saving
computation time. There are also great advantages over the fiBdmeTo calculate the
response of one unit at 61 frequency points (40Hz to 100Hz), the ABAQUISOEE& required a
total of 18 hours run time and 7320MB disk space [179]. In contrast, thadViiell model
required 6 hours of ruime on the same computer system to calculate the el2948x 100
arrays (1Hz to 100Hz) of radial modal displacement, using a to88MB disk space. This run
time could be considerably reduced by use of compiled program codedirdtédatlab’s
interpreted-code environment. The shell theory therefore gives isanmif savings in

computation time and storage requirements over FE methods.

4.3.4 Modelling a Tunnel in Soill

For the complete tunnel-in-soil system, the tunnel is modelled piraical shell and the soll
by an elastic continuum of infinite extent surrounding the tunnel. Téeee of boundary
conditions are needed to solve this system completely:
1. The stresses on the inside of the tunnel shell are equal to the applied loading;
2. The displacements must be compatible and the stresses in aquildirthe interface of
the tunnel shell and the soil continuum;
3. The displacements of the soil continuum must decay to zero aslthe from the centre
of the tunnel increases towards infinity (the radiation condition).
This time the stresses on the outside of the shell are not pettwatsthe first condition can be

used with the shell results (4.6) to write

Eh Jn (an 5)([1 -FZXH
[AdU, = —— ANV, b = {Q, b = (Pt = 1T (4.38)
- S 2 K

outside

The third condition can be used to reduce the dimensions of the equationbirtpshe
response of the continuum. It will be recalled that the displacemeand stresses for the
continuum are expressed in (4.20) as linear combinations of modified! Basstions|  (ar),

K,(ar), 1. (&), K, (&), |...(&d) andK_,,(F), originally found as solutions for the functions



CHAPTER 4. MODELLING THE TUNNEL 71

f, 9,, g, of (4.17) which specify the radial variation of the potentials deisgsi the
displacements. Only the modified Bessel functions of the secondldleday for all arguments
asr increases. Thus the coefficients of the modified Bessel funatiathe first kindl in (4.20)
must be set to zero for the radiation condition to be satisfied, so that

A=A =A=0
= c:{g BAO B 0 B}T (4.39)
Correspondingly, this means that the terms containing Bessel funtiiotise matrices)] and
[T] (that is, the first, third and fifth elements of each row) dropafuhe equation. Hence the
radiation condition reduces the size of the problem for the continuum by half.

The condition of compatibility can be used with the radiation conditioneegpd by (4.39),

remembering the differences in the shell and continuum coordinagnsygiven by (4.29), to

write the displacements at the tunsell interface as

Jn Gzn U32 u34 u36 B
Vo =1 Ya | Uz U Usp B¢ =I[U.]-.[B (4.40)
an -U m U, ~—Uy, —Ug rza BZ

while equilibrium means that the stresses at the interface are given by

-szn _Irzn “ty Tty Tl B
-l:_zyn = __:rreh = |ty Tty Tty B ¢ = [T.],-a B (4.41)
Tzzn outside rm r=a t12 tl4 t 16 lr=a Bz

where theu, andt, are the remaining elements d&f][and [T ] of (4.21). By substituting
(4.41) into (4.38) to eliminate the stresses acting on the outside shdéfietunnel and using

(4.40), the unknown displacements and coefficients can be found, after samagement,

0. _ A [TJ.-. '[P
{B} - { ] Hu.] } {o} (4.42)

where | ] is a 3x 3 identity matrix. The displacement’.ziin :{ljn \7n VT/n}T at the interface

from

result directly from (4.42), but the displacemeaittsome radiuR elsewhere in the soil have to

be calculated using the coefficiegrom

U,  =1[U.]® (4.43)
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Of course, the foregoing argument determines the modal displacememionents in the
wavenumber domain. Once a sufficient number of these have been obtaingdndduzv) can

be used to obtain the total displacements in the space domain.

4.3.5 Results for the Tunnel in Soil

Table 4.3 gives the parameter values used to model the tunnel surroursted Barameters
not used directly in each particular theory (shell or continuumhewvertheless given to allow
direct comparison between the properties of the tunnel and those a@ilth€requencies up to

200Hz are of interest for grourvibration propagation here.

Tunnel (Cylindrical Shell)]  Soil (Elastic Continuum
E =50x 10 Pa E =550x 10 Pa
v=0.3 v=044
©=2500kg/ m® 0 =2000kg/ m®
c, =5189m/s A =1400x 16 Pa
c, =2774m/s H#=G=191x 10 Pa
a=30m K =1528x 10 Pa
h=025m ¢, = 944m/s
zero damping c, = 309m/s

ne =0.06
N =0

Table 4.3: Parameter values used to model a tunnel surrounded by soil.

The tunnel parameters are for concrete. The material dampthg obncrete is assumed to be
negligible compared to that of the soil, so is taken as zero. uhineltis the same as the thin-
walled cylinder described by Table 4.1, except for a slightly lsmeddius and zero damping.
The soil parameters are based on the averages of the valuebyient [89] for Oxford Clay

and Middle Chalk. As in [89], all energy dissipation due to mateiaahping in the soil is
assumed to occur through shear motion, characterised by the shear n@&aduitlsno losses in
volumetric expansion, characterised by the bulk modulus E/3(1- 2v). The constant
hysteretic loss facton is derived from the frequency-dependent viscous damping factor in [89]

at 100Hz. The soil damping is included in the model by using the commalstial parameters
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G"=G@+in,) and K"=K(@+in,)=K in the frequency domain. The other damped Lamé
constantA” required can most simply be obtained via the elastic relations (whichadtiltiue to
the correspondence principle, see Bland [15]) and a complex Poissam's tatAlthough the
normal practice is to take as the purely real parameter, there is no good reason why this has
be so. A complex Poisson’s ratio merely implies a phase differbetween the transverse and
axial strains in a piece of the material subjected to uniak&monic loading. Thus
v?=2(3K"=2G")/(3K" - G"), " =G" and A" =2G"/(1- ")

Calculation of the total tunnel and soil displacatsewas done with a sum of modal
displacement components and an inverse DFT inahme svay described in Section 4.3.3 for the
thin-walled cylinder. However, the modal displacemerd® depend on (4.42), the tunnel ones
directly and the soil ones via the coefficiel@sand (4.43). The inverse matrix in (4.42)
comprises four submatrices of vastly different osdef magnitude: the elements p&_] are
typically of order10", those of[T_],., 10", those of [ 110° and those of ), /1, 1077, for
the parameters of Table 4.3 and for frequenciegpofo 200Hz. This span of 18 orders of
magnitude means the assembled matrix is so badlgdsthat a numerical solution to (4.42) is
inaccurate or even impossible. Row and column absation was therefore used to reduce the
elements of the assembled matrix to magnitudes degtweero and unity, before numerical
solution. This process is described in more detalppendix C.

As for the thin-walled cylinder, the inverse DFTsa@alculated by FFT, usiny = 2048 and
Ax=05m. The individual modal displacements can be exathias done before. Figure 4.8
shows the tunnel’sy=3 modal displacements in all three directions, &equency of 50Hz so
that the radial displacement of the tunnel surredniy soil, Figure 4.8(c), can be compared to
the radial displacement of the free tunnel at #raesfrequency, Figure 4.5(b). The free tunnel,
even with significant material damping, has relavhigh radial displacement away from the
load, due to the propagating waves above the riademresonance; but the tunnel in soil has a
rapidly decaying response, despite the tunnel'® mamping. The tunnel in soil is still

exhibiting propagating waves at 50Hz, as can be bgé¢he peaks in the wavenumber domain at
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Figure 4.8: The real part of the tunnelts{3m) modal displacement components, for 3,

for a tunnelin-soil model with properties as given in Table 4.3, showing (a) lodigial, (b)
tangential and (c) radial components in bétrandx-domains. Inverse FFT as for Figure 4.5,
with Ax=0.5m and N =2048. Loading of P, =P, =0 andP, =1. Note that the full range
of x from -512m to 512m is not shown, and that the velitical range of W,(X) in (c) is
-2.5%x 10" to 7.0x 10* kN/mm .

about0.7rad m Indeed, the net effect of adding soil of about the same density asnel but

about 100 times less stiff should be to lower the frequency at wiingitudinal propagation
begins for each circumferential mode. However, apart from a clapgepagation frequencies,
the soil greatly modifies the tunnel response by allowing energydpagate away from the

tunnel radially. Because the soil is infinite in extent, thigggneannot come back: the effect is
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“radiation damping” and the much reduced responses of Figure 4.8. Th#goradamping is
much more important here than the relatively low material dangditige soil. All three modal
displacement components for the tunnel show similar behaviour.

Figure 4.9 shows the three corresponding modal displacement componentsail titea
radius of 20m. The behaviour is somewhat different from that seka ainnel, but still shows
maximum activity neax =0 with rapidly decaying response on either side. Figures 4.8 and 4.9
both exhibit sufficient decay of the displacements at the exsreofiethe signals in both
wavenumber and space domains, indicating that the requirements fothesiD§T have been
met. It could be argued that although the smll is near optimal to capture all the
wavenumber (smallvavelength) information, the number of poirliscould be substantially
reduced since the current resolution in the wavenumber domain is noedegprirequivalently,
the responses in the space domain decay to zero long before tlse dinthie x-range are
reached). However, the addition of a track mounted on slab bearings (see Chaptezéy) thet
applied load and the tunnel invert gives rise to larger displaceraeatg from x =0 because
energy can travel along the track before being transmitted toutimel and soil. For this
N =2048is required.

Figures 4.8 and 4.9 also show the symmetry of the displacementsusBelsa two halves of
the tunnel either side of = 0 are identical, a radial load applied»at O as here should produce
displacements which are mirrored in the 0 plane, which is the case. Componeris parallel
to thex-axis, so is amdd function ofx, while V. andW are orthogonal to the-axis, so areven
functions ofx. The same is true of the displacement components in the wavenumlzn.dom
This symmetry is useful in the computation of the individual modal atgphents, since only
values for positivef need to be calculated, as the values for negdtoan be generated by the
correct reflection when needed at the inverse DFT stage. &wcubnly half the values halves
the computation time and disk storage space required, and reduces the amoumdryfmeeded

to hold modal components during the summation stage to obtain total displacements.
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Figure 4.9: The real part of the soil's modal displacement commoaent 20m, for n=3,

for a tunnelin-soil model with properties as given in Table 4.3, showing (a) lodigial, (b)
tangential and (c) radial components in bétrandx-domains. Inverse FFT as for Figure 4.5,
with Ax=0.5m and N =2048. Loading ofP, =P, =0 andP,, =1. Note that the full range
of x from —=512m to 512m is not shown.

The same procedure as before was used, summing the modal displazam@onents — this
time calculated from (4.42) and (4.43) — then using the inverse DFTvi the total
displacements of the tunnel or the soil by (4.27). As for the freeliunoéal displacements
from n=0 to n=10 were found to give sufficient convergence for frequencies from dHz t

200Hz with the model parameters of Table 4.3. Figure 4.10 illustifatetypes of responses
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(i)

Figure 4.10: The non-zero displacement components of the tunnel-in-soil (jodelthe
driving point (x=0, r=3m, =0) on the tunnel invert, (ii) at a point on the tunnel invert
(x=20m, r =3m, €=0) away from the load, (iii) at a point a distance horizontakyQ,

r =20m, €=90) out into the soil, opposite the load, and (iv) at a distance horizootalinto
the soil and a distance longitudinally parallel to the tunred 20m, r =20m, =90°).

which can be calculated. It is convenient to look at response§=dl in the tunnel
(corresponding to the tunnel invert upon which a track rests), and respo#se80° in the soll
(corresponding to the horizontal plane likely to contain building foundatiossih both cases
the cylindrical coordinate system then coincides with the absoluteohtal, vertical and
longitudinal directions. Because of the symmetry aboat0 and §=0, some displacements
are zero at some of the positions shown. However, alkeomdisplacements include the effects
of several modal contributions. The tunnel-invert displacememtisdW at (ii) are simple sums
of all their modal contributions, becausesnéd=1 for all n when §=0; while at (iv) with
8=90°, the soil displacements andW include only the even-numbered modal contributions as
cos@k +1Y =0 for odd n=2k+1, andV includes only the odd-numbered modal contributions
assin k@ = 0 for evenn = 2k.

Figure 4.11 shows the driving-point response of the tunnel invert. Only thieale
displacementV is non-zero. This does not show any ring-mode resonances like thaifree
walled cylinder’'s driving-point response in Figure 4.6, but is insteagdodmand decreases
slightly in magnitude as frequency increases. The loss of noliceasonances is due to the

radiation damping of the infinite soil now surrounding the tunnel.
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Figure 4.11: The driving point response of the tunnel in the tunnel-in-soil model withgbaram
given in Table 4.3, under a normal unit point force, corresponding to positionHigure 4.10.
The longitudinal component) is zero becausex=0, while the horizontal (tangential)
componenV is zero becausé=0.

Figure 4.12 shows the response of the tunnel invert at a distance ofd20rthé load. The
vertical responsV has troughs at about 51Hz, 119Hz and 184Hz. The spacing between these is
68Hz and 65Hz respectively. If a standing wave is set up betwseuwree at one point and a
node at a second, then their separatiomust correspond to an odd multiple of quarter
wavelength. Thus the possible wavelengths 4k¢(2k -1 with k=123... and with a
wavespeed, the corresponding frequencies a@k—1)/4L. In other words, each successive
standing wave represents an increase in frequency2af. Standing waves with an antinode at
each end have frequencies that fall between these but which aeztehised by the same
frequency step. Although the infinitely long tunnel has no suitable bousdarget up standing
waves longitudinally, the shape W in Figure 4.12 suggests some kind of correspondence of
wavelength with the distance from the load to observation point. Fastande of 20m, the
speed of shear (transverse) waves in the tunnel concreie=dt774m/s gives a standingvave

frequency step of 69Hz, which matches the observed spacing betwemughes tin the vertical
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Figure 4.12: The response of the tunnel invert at a distatre@0m from the load,
corresponding to position (ii) in Figure 4.10, for tunnel-in-soil paramefeen in Table 4.3.
The horizontal (tangential) componahis zero becausé=0.

(transverse) displacemem. The longitudinal displacemeritl exhibits less pronounced
variation, with changing frequency intervals between troughs, none of ségch to correspond
to the shearor pressure-wave speeds in either the tunnel concrete or theTheilvariation is
probably due to the behaviour of the interface between the tunnel and the soil.

Figure 4.13 shows the soil response 20m horizontally opposite the posititre ddaid
applied to the tunnel. The horizontal displacem@&hshows clear undulations with a step of
about 20Hz between troughs (or peaks), while the vertical displacamsamiws similar, but
very slight, undulation. This is probably due to interference effettis,points along the tunnel
acting as sources transmitting energy propagated from the ldagach “source”, some energy
radiates into the soil and the remainder continues along the tunnelexabedistribution of
“sources” will depend on which parts of the tunnel show maximum actvi given frequency.
However, the load ak =0 will always act as one of the sources. The distance betwsen a
source and an observation point has to be a multiple of half the wave(emgive antinodes at

each end) for an interference node or antinode to be observed. Thusaheedistween the
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Figure 4.13: The response in the soikat 0, r =20m, 8=90°, horizontally opposite the point
load acting on the tunnel invert, corresponding to position (iii) in Figur®@, for tunnel-in-soil
parameters given in Table 4.3. The longitudinal compodei#t zero becausg =0.

load and the observation point can be used to estimate the frequenbgtstepn the peaks or
the troughs in Figure 4.13. As for standing waves, the frequency ste@pebesuccessive
interference patterns ig’2L. The direct distance from the bottom of the tunnel (of radius 3m),
where the load is applied, to the point 20m horizontally out into the s&@0.2m, although this
line cuts through the tunnel cressction. For a distande of 20.2m, soil pressure waves of
speedc, =944m/s give a frequency step of 23.3Hz, while shear waves of speed09m/s
give a step of 7.6Hz. Thus the undulating response of Figure 4.13 appéarsite to the
interference of pressure waves propagating through the soil froerediff points along the
tunnel. Hence the greatest influence isVdn which lies nearly along the line of propagation
which is also the direction of oscillation of the pressure (longialgiwaves; there is little
influence onV, which lies nearly perpendicular to the line of propagation.

The dominance of pressure-wave effects in the soil raises thgoguest the influence of
shear waves. The answer lies in the material damping. Reductieagnitude due to material

damping depends on the number of cycles of vibration the material hashgongh, the more
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cycles, the more reduction. Since the speed of pressure wavesail ikeabout three times the
speed of shear waves, a propagating shear wave will go throughirtiieseas many cycles as a
propagating pressure wave over the same distance, for any giveménequiethe reduction per
cycle due to material damping were the same for all typesotibn, then it would be expected
that sheawave magnitudes would be reduced by the cube of the factor that pressie
magnitudes are. However, the original assumption was that atiadatamping losses in the
soil are due to shear motion. Therefore material damping hashabigger effect on the decay
of shear waves than of pressure waves, even without considering nundyetesf and after
some distance of propagation, pressure waves are predominant.

Figure 4.14 shows the response of the soil at a radius of 20m horizérdailyhe centre of
the tunnel and 20m longitudinally from the load on the invert. This mbearsbiservation point
Is a direct distance of 28.4m from the load. This distance gittesj@ency step of 16.6Hz for
pressure waves involved in interference. Undulations of about this sgacifge clearly seen in
the horizontal and longitudinal displacemevtandU (each with a significant component in the
direction of the line of propagation) above 60Hz, and in the vertical despkentV (which is
nearer orthogonal to the line of propagation) above 120Hz. On a laayer dips inV can be
observed at 43Hz and 123Hz. These correspond quite closely to the dsptatement of the
tunnel invert at 20m from the load (Figure 4.12), the part of the tunoséstl to the soil
observation point here. In the casé/pthe adjacent vertical tunnel displacement is transmitted
by shear waves. Above 120Hz, the shear waves complete eight or yole® aver 20m, so
have decayed sufficiently that the pressure-wave effects aglpady inV. Thus it appears that
at lower frequencies the local displacement of the tunnel has gigesbieffect on the soil

displacement, while at higher frequencies interference effects dominate.



CHAPTER 4. MODELLING THE TUNNEL 82

x=20m,r =20m,0 = 9C

_ -100f. — ‘r/]ef!- (V)NV)
b4 - - - oriz.
-110f "7 ==\ ==
% s long. V)
€ -120¢/
o®
B, -—-130f
)
I — -
g 140 _
-150¢ ’ ‘ |
0 20 40 60 80 100 120 140 160 180 200
frequency [Hz]
180R
= 90t
()
k=3
@ 0
@
ey
o
_90-
-180t ) X ) ) ) ) ) X ) ]
0 20 40 60 80 100 120 140 160 180 200

frequency [Hz]

Figure 4.14: The response in the soilxat 20m, r =20m, €=90°, horizontally out from the
load then parallel to the tunnel, corresponding to position (iv) in Figure #ritynnel-in-soil
parameters given in Table 4.3.

4.4 Conclusions

A tunnel surrounded by soil can be modelled by considering the tunnel @@aely long, thin
cylindrical shell and the soil as an infinite homogeneous isotropiéncom. An analytical
solution for the timeéharmonic displacements of the tunnel and soil can be found in the form of
the spatial inverse Fourier transform of an infinite sum of companersesenting ring modes

of the tunnel cross-section, which are harmonic in both space and Tineemodal harmonic
displacement components are calculated from the modal harmonic compafngrgtotal load
applied to the tunnel. Numerical computation of results from thisytael solution is
straightforward for typical values of tunnel and soil parameféhe infinite sum converges with

the first eleven terms, and the inverse Fourier transform is satisfipcepresented by an inverse

DFT of 2048 sample points, of which symmetry requires only 1025 to balateld. The
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computation time and disk storage space required for the analsticaion are much more
modest than those for an FE model of the same system.

Numerical results for the case of a normal unit point load appididet tunnel invert reveal
several aspects of the system’s behaviour. A tunnel surrounded lbpssihot show the ring
mode resonances apparent in the driving-point response of a free tunnt, tdaeradiation-
damping effect of the infinite soil. The response of the tunnel &waythe load is influenced
by the propagation of shear waves in the tunnel material and imaragth the soil interface.
The soil response seems to be influenced in large measure legplo@se of the closest part of
the tunnel, with strong interference patterns based on soil presswes \wropagating from
different parts of the tunnel appearing particularly in the higher gfathe frequency range,
where shear-wave effects are reduced by soil damping. The tarsal-model can be used as
a realistic track foundation so that the true effectivenesatirfig-slab track can be evaluated

by looking at soil responses directly.



Chapter 5

MODELLING TRACKS IN TUNNELS

The results obtained for the tunieisoil model of Chapter 4 and the general ideas from Chapter
3 regarding the modelling of floating-slab track with infinite beam elastic foundations can be
combined to produce a complete model of an underground railway. Muchdssgssments of
the vibration-isolation effectiveness of a given track structume loa obtained from this
combined model than if a rigid foundation is used for the track addwm@es in Chapter 3. In
particular, vibration levels in the surrounding soil due to a train runomghe track can be

calculated, providing a direct measure of the track’s effectiveness.

5.1 A Simple Track Slab

The simplest track model that can be combined with the tunnel ifiaitely long, continuous
slab beam, as shown in Figure 5.1. The approach used is similar to that enbyldige[146] to
join an infinite beam directly to an elastic halfspace to modelrace railway. The slab beam
and tunnel are joined along a single continuous line running longitudinatlyg dhe bottom of
the tunnel invert. The coupling is achieved through the interaction @fge which acts on the

tunnel and its equal and opposite counterp&(x) which acts on the beam.

5.1.1 Coupling Equations for the Simple Slab Beam and Tunnel

Figure 5.2 shows a general continuous distribution of time-harmonic gercanit lengthQ(x)

acting along a line such as the joining line on the slab beam or tinweel. The distributed

84
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tunnel
invert

Figure 5.1: Joining a simple slab beam of infingegth to the tunnel, showing the equal and
opposite interaction forces acting on the beamthedunnel.

Y(X)

QX

° = o>

dy

Figure 5.2: General force distribution per uniidth Q(X) acting along a single line of joining.
The displacement respon¥€x) is obtained by the convolution in space of thedoincrements
Q(y).dx with the frequency-response function to a poiatilo

force can be considered as a train of point loads represented byqgiutgestesimal widthdy

and magnitude( x) , so that the increment of the tisharmonic displacement responggx) to
one of these point loads BY(X = H x— ) @x) ¢, where H(x) is the frequency-response
function (FRF) forY(x) to a point load acting at=0. Thus the total displacement response is

the sum of these increments over the whole length of the infinite joining line, givingegeal

Y() = [ Hx- )@ o (5.1)
which is a convolution (or Duhamel) integral (semaiand [144]) in space, rather than in time as
familiar from signal-processing applications. This equivalent to a Green’s function
formulation for the response, whekyx — x) is the Green’s function. If the Fourier transform
of both sides of (5.1) is taken using the firsegral of the transform pair

Y = [ (R e* dx
1 oo (5.2)
Y = [ MO&d
2

where £ is angular wavenumber, then (5.1) becomes

Y& = HOQA (5.3)
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so that the convolution in space has been reduced to a simple muitiplicathe wavenumber
domain. Applying (5.3) to the coupled slab beam and tunnel invert in turn yields
?1 = |:]11(_(-"""1)

~

Y, = H,,G

(5.4)

for the displacementg’; along the beam anﬁz along the invert, when a unit point load acts on
the slab atx=0. The applied point load, additional to the interaction force, is equiviaemnt
force per unit length of = 4(x), which giveslE =1 when transformed; hence the tofalomain
force (-G +1) acting on the slab beam. The functidﬁﬁ and I—~|22 are the FRFH,, (for the
response of the free beam to a point load at0) and H,, (for the response of the uncoupled
tunnel invert to a point load at=0) in the wavenumber domain.

The slab beam can either be joined directly to the tunnel invert, sardperted on the invert
via resilient slab bearings. For direct joining, the displacenantse slab and invert must be

equal, so that in the wavenumber domain

Y=Y, (5.5)
Using (5.5) with equations (5.4) to elimina@e gives
v H11H22

Vl = Y2 - = (56)
Hll+H22

for the displacements in the direct-joining case.

When the slab is joined to the invert via resilishdb bearings, the interaction force is
determined by the extension of the bearings and shi#finess. If the bearings are modelled as a
continuous resilient layer of stiffnekger unit length (like a Winkler foundation but haut the
rigid base), then the joining condition becomes

G = KY-Y) (57
Using this new condition (5.7) with (5.4) yields

Hy,(1+KH,,)
1+ kH11 + kH22

l

- (5.8)
kljllHZZ _
1+kH, + kH,,

<1
1
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for the displacements when the slab is joined to the tunnel via stic éégyer. Damping can be
included by using a complex stiffndsgo model a viscelastic layer.

The response along a line in the soil parallel to the joining bee Eigure 5.1) can be
determined, once the displaceméétis known, by using the second of equations (5.4) to find

the interaction forces which acts on the tunnel invert. The soil displaent is then

~ -~ Y
Y, = H,G = H,=*
H22

(5.9)
for either joining method, wherel,, is the FRF of a particular soil-displacement conmgd Y,
to a point force acting on the uncoupled tunneérat x = 0.

Any of the displacements found from (5.6), (5.8 %®) can be inverse Fourier-transformed
from the wavenumber to the space domain by meatiseo§econd transform of the pair (5.2).
With the unit point-load condition assumed, the gl displacements in the space domain
represent the FRFs of the combined system forra pad acting atk =0 on the slab beam.

It is worth noting that if the alternative defimiti of the Fourier transform pair is adopted,
with the factor ofl/27n in the forward transform rather than the inverse as in (5.2), then a
factor of 211 appears on the right-hand side of gadomain multiplication (5.3). This is then

also true for equations (5.4), with the end rethdt every term containingkain equations (5.8)

Is also multiplied by272. This extra complication is avoided by using dieéinition (5.2).

5.1.2 Calculation of FRFs for Simple Coupling

The only quantities left to determine are the FRFthe wavenumber domain for the tunnel-in-
soil model and the slab beam before joining. Thié di'splacementsD :{U v \MT at a
particular radiug and angular positio which result from a spatial unit point load actiog

the invert are the sum

U JO _ |U,cosné
Vi =40} + >V sinng (5.10)
W W, "W, cosnd

r r r

of the modal displacement components calculatea {#42) and (4.43) using the modal stress

components for a unit load given by (4.26) . Tamss of the same form as (4.27) but without
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the integral for the inverse Fourier transform from wavenumbepdaoesdomain. The tunnel
invert FRF I:'|22 is thusW for r=a and =0, while the soil FRFﬁ32 can be whichever
displacement component is of interest for any Imehe soil defined by constamt=R and

6= . These can be expressed as

H22

I
=

T
i1l
oL

(5.11)

<1

H, = U,

Oer:R
0=p2

Note that the Fourier transform used in (4.24)remdform the unit point load acting on the
tunnel into theé-domain must be the same as the Fourier transf@fmetl by (5.2) if thef-
domain FRFs of (5.11) are to be compatible withdbepling equations (5.3) to (5.9). This is
because the transformation used for the input fatse determines the transformation for the
FRFs, since the input force is the only quantitie@ed by the Fourier-transform definition
during the solution for tunnel and soil displaceiserThus the Fourier transforms in (4.24) were
chosen to match those defined by (5.2), which theesimplest coupling equations.

The FRF for the free beam can be determined frametfuation of motion for its vertical
displacementy(x, t). This is (see Meirovitch [136])

2 4
Y s m%Y -t (5.12)

m aA? ox*

wherem is mass per unit lengtlgl is bending stiffnessH Young’s modulus andl the second
moment of area), and(x,t) is applied force per unit length. Substitutingaamonic solution
y= Y@ with a force f = Fe'“*% of the same form vields

~ 5 1
Ao = Ve, = EI&* — mw? (513)

Using harmonic solutions in this way is equivalémttaking the Fourier transform of (5.12)
twice, once for time to frequency domain, and diocespace to wavenumber domain. The force

~

F =1 represents a unit spatial point load acting at0 as discussed above. Thus the free-beam

FRF I:|11 is simply

~

H,, =H,, (5.14)
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5.1.3 Results for the Tunnel with a Simple Slab Beam

As mentioned earlier, the slab beam can be joined either ditedthe tunnel invert or via slab
bearings, represented by springs. Either case can be compareiMioklex beam model often
used for track design, as shown in Figure 5.3. To allow comparisonuifsyate Winkler
frequency respons¥(x,«) must be determined. This is easily obtained by applying (5.12) to a

beam on an elastic foundation, giving

2 -—
(e +ie”™), witha* _Mw ~ky (5.15)

Y(xw) = B

4a°El
wherek,, is the stiffness per unit length of the elastic foundation. Thearosed is the second
quadrant one, so that bothandia have negative real parts and the two exponentials in (5.15)
decay agx — «. To make the Winkler beam “equivalent” to the slab beam on the tutsnel,
static displacement at=0 is equated to the numerical value for the static displacemehe of
directly joined slab beam, resulting ky, being the effective Winkler stiffneds,, of the tunnel
invert, as depicted in Figures 5.3(a) and (b). If the slab is then seghor bearings of stiffness

k per unit length, Figure 5.3(c), the equivalent Winkler beam has théoaddlstiffness added in
series, Figure 5.3(d), givink, =1/(Yk +1K). The Winkler beam has a resonance at
w, =+/ky,/m as can be seen from (5.15),ksoan be selected to give specific Winkler “natural
frequencies”. Classic vibration-isolation theory using a massspmiag predicts that isolation
should be achieved at frequencies greater tj@wn ; this assumption can now be tested.

(a) (b)

=

]

sz T s s T ST ST

> T

U
(

Figure 5.3: A simple slab beam joined (a) directly to the tumari and compared to (b) an
“equivalent” Winkler beam on the effective stiffness of the turmegiit. The slab beam (c) with
resilient bearings between it and the tunnel can then be compadddttie {equivalent” Winkler
beam with the extra foundation stiffness of the bearings added in series.
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The displacements (5.6), (5.8) or (5.9) of the twphe$-slab model were calculated using
Matlab. The inverse Fourier transforms were carried out wittlalffa inverse FFT function.
The values of the parameters for the slab beam and its supdodsstiare given in Table 5.1,
the slab beam having the same properties as that used in the delk of Chapter 3 (see Table
3.1). The tunnel FRFs were calculated as described in Chapter 4thesipgrameters in Table
4.3. In conjunction with the slab properties, these determine theieffatiffnessk,, of the
tunnel invert for use with the equivalent Winkler beam. Once thectiefée stiffness is
calculated, the slab-support stiffnesses can be determined for vanmider natural
frequencies. Three stiffnesses are given in Table 5.1 for imwgéasofter support, with the
30Hz frequency representative of actual floating-slab tracks.

Damping in the springs is hysteretic, described by a constantalctes such that complex
stiffnessesk(1+i7) are substituted for real stiffnesdesThe calculated loss factay,, is very
close to the shear loss factor given in Table 4.3 for the soil.loBsdactor ofr7, =05 for the
slab-support stiffness is relatively high but not unreasonable for rubtiehigh damping (see
data in Nashif et al [142] for instance). Its value is alsouémfted by the numerical
considerations arising from the Nyquist criterion for the inverS€, Rvhich are discussed in
Section 4.3.3. For frequencies up to 200Hz, a spacingxef 0.5m, as used for the tunnel
model, was found sufficient to capture all the wavenumber informatidineo$lab-plus-tunnel
model, and withN =204¢ points and the given loss factor, the response of the slab beam
decayed sufficiently at the sample ends in bfgtAndx-domains for the FFT to be considered an
accurate representation of the Fourier transform. The symmetry oSpganses in both domains
means that alf-domain calculations could be done for the 1025 points of the samplé& with

and the portion fo€ <0 created by a suitable reflection just prior te ithverse FFT.
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Simple Slab Beam

El =1430x 16 Pa.nf

m=3500kg/ m
Ky =8212x 10 N/m?
N =00643

k=1262x 10 N/m® when f, = 60Hz
k=424.4x 16 N/m® whenf, = 45Hz
k=1466x 10 N/m*> whenf = 30Hz
n, =05

Table 5.1: The simple slab beam’s properties, the effectivimestsf of the tunnel invert
described by the parameters of Table 4.3, and three resulting slab-support siiffnesse

Figure 5.4 shows the driviAgpint response of the slab beam for the various slab-support
stiffnesses, compared to that of an “equivalent” Winkler beam im e@ge. The directly joined
slab shows a flat response very like the uncoupled tunnel’s driving-gspbmse shown in
Figure 4.11, while the corresponding Winkler response shows a clear resarsthetgw 80Hz.

The energy of the slab beam is radiated into the soil quitetigélscwhen the slab is closely
coupled to the tunnel, whereas this radiation damping effect is notrged for in the loss
factors of the elastic foundation of the Winkler beam. As theslaport stiffness is reduced,
the slab response gets closer to the Winkler response, until thealtwast coincide for

f, =30Hz. With lower values ok, the slab beam is less strongly coupled to the tunnel, or in
other words, the tunnel becomes more like a rigid foundation (compaveltles ofk with the
value of k, in Table 5.1). At this point it might be assumed that for réalisoft bearings, the
Winkler theory adequately describes the behaviour of a floating dtiiwever, a glance at
Figure 5.5, which gives responses at 20m from the load, shows thatnbisthe case. The slab
beam supported by the tunnel has significant response (about —100dB) atdoenties no
matter what valu& has, while the equivalent Winkler beams do not show much response below
the Winkler natural frequencies, at which travelling waves occupesmhgate energy along the
beam. This illustrates how the tunnel can transmit energy tootlf@ed slab beam even when

there are no travelling waves in the slab itself.
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Figure 5.4: Vertical drivingroint displacement response of a simple slab beam on the tunnel
(blue) compared to the “equivalent” Winkler beam (red) for directigi and various support
stiffnesses for different Winkler “natural frequencies”.
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Figure 5.5: Vertical displacement response of the simple slab Bém from the load (blue),
compared to the “equivalent” Winkler beam (red) with various slab support stiffnesses
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Even if the Winkler theory were adequate for describing the slaih,hieaannot predict the
response of the tunnel invert and the soil surrounding the tunnel. Figureo@$ the vertical
response of the invert directly beneath the load applied to the skab@t Small circles mark
the /2 f, frequencies above which, according to simple theory, vibration isolatisapiposed
to occur. It can be seen in this case that the responses #iy ansbearings drop below the
response of the directly joined slab well before thes®fifyioints, so simple vibration-isolation
theory holds so far. However, the response 20m along the tunnel invert, ishielgare 5.7, is
actually madehigher by the insertion of rubber between the slab and the invert, with only the
softest bearings f(, = 30 Hz) eventually giving a lower response at about 145Hz. The higher
responses are to be expected since the bearings decouple therslgbhefrtunnel and hence
allow energy to propagate further along the beam before being ttetsto the invert. This is
not necessarily a problem: it could indeed be beneficial if itnsi¢hat vibrational energy is
confined to the slab beam and the tunnel and is not radiated into the soil.

The most important measure of the isolation effectiveness atla is the vibration level in

the soil. As for the results in Chapter 4, soil responses hegivare for the horizontal plane

x=0

_60 T
Z 7ol -
§ 0= \o\ \\o\ EG)
e -80 >~ T~
oF - Tt~
= -90 R *\\\\\\
o _ | —— direct Tom e~ T T =4
E 100 | — ggnz ————

_ _ _ 7 -

SN =110F | . . 30Hz

-120 . . : . . . . . .

0 20 40 60 80 100 120 140 160 180 200

frequency [Hz]

Y2 phase [deg]

frequency [Hz]

Figure 5.6: Vertical displacement response of the tunnel invedtlgtirender the load on the
slab beam for various slab-support stiffnesses, with circles markinpthepoints.
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Figure 5.7: Vertical displacement response of the tunnel invert Rfing the tunnel from the
load applied to the slab beam, for various slab-support stiffnesséscivdtes marking the

J2 £ points.

6=90, so that the displacement componafandV coincide with the horizontal and vertical
directions (see Figure 4.10). Figure 5.8 shows the horizontal soil cispdat at a radius of
20m horizontally out into the soil, opposite the load on the slab. The respotskit the peaks
and troughs of the pressumave interference pattern observed and discussed in Chapter 4 for the
uncoupled tunnel. At this position in the soil, increasingly softer slab suppdaltsresreduction
starting at frequencies near thézfn points, again marked with circles, obeying simple
vibration-isolation theory just as the tunnel invert did directly unkerstab load . Figure 5.9
shows similar behaviour for the horizontal responsex at2Cm, although now isolation is
delayed somewhat (the “isolated” responses cross the directigdjoiesponse at higher
frequencies than before), because at frequencies near the resdmarstabt on bearings is

propagating energy further along the tunnel before it enters the soil.
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Figure 5.8: Horizontal soil displacement response 20m horizontallptouthie soil opposite the
load on the slab for various skshpport stiffnesses, with circles marking 2 f., points.
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Figure 5.9: Horizontal soil displacement response 20m horizontallyhtwthe soil and 20m

longitudinally parallel to the tunnel from the slab load, for varioab-support stiffnesses, with

circles marking the/2 f, points.
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The vertical soil response at 20m radius opposite the load, Figure SaGhaws classic
vibration isolation, this time very clearly because the pressawe effects are subdued. But as
the observation point is shifted longitudinally, this behaviour changesreFagl1 shows that, at
x =20m, the insertion of the stiffer rubber bearindgs € 60Hz and f, = 45Hz) has almost no
effect on the vertical soil displacement, while for the softesdrings ¢, = 30Hz) only a
modest, roughly constant reduction of 5-10dB is achieved, rather than amareasing
reduction with frequency as exhibited in Figure 5.10 (and expected from sgolaligon theory).
At x=40m, Figure 5.12, adding any slab bearings at all increases the hdisiglacement for
all frequencies between 40Hz and 200Hz. This can again be explainied tsgnsmission of
energy along the slab on bearings, giving higher response at the pdiientunnel nearest the
observation point. The longitudinal soil responsexat2Cm, given in Figure 5.13, is very
similar to the horizontal response given in Figure 5.9, showing the sgmeeof delayed
isolation, for the same reason (the longitudinal displacemert=d1 is zero because it is an

asymmetric function).
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Figure 5.10: Vertical soil displacement response 20m horizontallyntuthe soil from the
load, for various slab-support stiffnesses, with circles marking/ﬁlén points.
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Figure 5.11: Vertical soil displacement response 20m horizontallyntutthe soil and 20m
longitudinally parallel to the tunnel from the slab load, for varioab-slipport stiffnesses, with

circles marking the/2 f. points.
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Figure 5.12: Vertical soil displacement response 20m horizontallyntutthe soil and 40m
longitudinally parallel to the tunnel from the slab load, for varioab-support stiffnesses, with
circles marking the/2 f. points.
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Figure 5.13: Longitudinal soil displacement 20m horizontally out into tik and 40m
longitudinally parallel to the tunnel from the slab load, for varioab-support stiffnesses, with

circles marking the/2 f. points.

The results discussed above have considered the responses to aathglgihg on the slab
beam. In reality a train provides a series of simultaneous itgpthe track. This means that the
total response at an observation point in the soil will be some kingnofo$ the responses for
the various loads applied at different points along the track. Takengdrtical displacement
component as an example, this would be the sum of the responses (ams)gephesented by
Figures 5.10 to 5.12. The magnitudes of these separate responskefafeaame order (near
—120dB), but with slab bearings sometimes reducing response and sometineesing it.
Whether floating the slab gives a beneficial reduction in soil tidradepends on how these

various responses add up.

5.2 A Track Slab with Bending and Torsion

A real track has two rails, whose inputs will not necessarilgdseelated, so it is reasonable to
assume that the motion of the slab will not be pure, laterallyngtric bending, but that there

will be some torsional motion as well. Such a tkaeeensional slab beam can be joined to the
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(o

Figure 5.14: Tunnel cross-section showing how a torsional slab bejmmead to the tunnel
invert along two longitudinal lines between the beam at 1 and 2 and the invert at 3 and 4.

tunnel along two lines of support as shown in cEssgion in Figure 5.14, instead of just one

line as for the simple slab beam.

5.2.1 Coupling Equations for the Torsional Slab Beam and Tunnel

Figure 5.15 shows the general case of a body loaded by two paradkeloli distributed force.
Because there are now two lines of lo@d x) and Q,(X), the equations describing the time-
harmonic displacement respons&§(x) and Y,(Xx) are coupled. However, the idea of

convolution in space can still be used, to give
Y9 = [T HOENQM & + [ HLxx) QU &
V(9 = [ Hu(x= Q0 o + [ Hu( %) QU0 o

where the FRFH,,(x), H,,(x), H,,(X) and H,,(x) are for point-load inputs at =0, with,

(5.16)

for example,H,,(x) denoting the FRF along line 1 to an input on line 2. Fourier transfiormat
of both equations of (5.16) into the wavenumber domain allows the coupled sydtenwritten

in the matrix form
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Figure 5.15: General force distributions acting along two linesioing. The displacement
responses along the lines are obtained by coupled convolutions in space.

{zl} _ [H HHQ} (5.17)
Y2 |_|21 H 22 QZ

The joining of the torsional slab beam to the tunnel is complicatéaeliact that the lines of
motion of the tunnel and those of the slab are not coincident, as caenbieose Figure 5.14. It
will be assumed that interaction forces can only be transmiwed &nes normal to the tunnel,
and that the absolute displacements also lie in these directiamss tfe vertical slabeam
displacementsy;, and Y, at the small angle to the tunnel normals are really just the vertical
components of the motion of the slab’s edges; the lateral dynamitseoflab beam are

neglected as having only a small effect on total response. Apglihg) to both the slab and

{5 Kol eef2)

and {Y} s Ha {G}
Y4 L' 143 H44_ Gz

where Gl and 52 are the normal interaction forces impinging on the tunnel invénieatontact

the tunnel therefore gives

1T

r_/;\
<t =<1
%/—J

|
I I
N B
I, I
N

N

(5.18)

1]
I, I

lines 3 and 4 (i.e. coincident with, andY,), and IE'l and IE'2 are the external forces acting
vertically on the slab at lines 1 and 2 (see Figure 5.14).

As for the simple slab beam, the torsional slab can either beljdirectly or be supported
on springs. For the directly joined case, the absolute displaceofahts slab and the tunnel

must be the same, that is
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! {1&} - {\E} (5.19)
cosa |Y, Y,

Using the joining condition (5.19) with (5.18) allows the displacements to be found as

Vo = (004A H o07) H LF
_ L - (5.20)
Y34 = Y12

cosa

where Y, ={Y, Y37, Y, ={Y, Y}7, F={F, F}", and the FRF matricefH,,] and
[ﬁ34] are those in respectively the first and seconétaoys of (5.18).

For the case of support by springs, the interadoces are dependent on the differences in
the absolute displacements of the slab and turamel,the stiffness of the springs. Assuming
equal slabsupport stiffness ok per unit length acting normally to the tunnel tmth lines of

joining, the coupling condition becomes

{G} _ {L{Y} _ {Y}] 5.21)
G, cosa |Y, Y,

Substituting (5.21) into (5.18) results in expreasifor the displacements of

Voo = [0+ Ml — 00+ ) B0 B
Voo = — (1A 0) oY

cosa

(5.22)

Once the tunnel displacemerff’g4 are calculated from (5.20) or (5.22), the intamacforces
can be calculated from the second of equation8)%auid thus the respon§7§ along a line in the

soil at some constant radiuss R and angled = 8 (see Figure 5.14) is

~

~ ~

-~ (G ~ o~
Yy = {Hg; Hsj{él} = {Hy; Hg[Hg,l lY34 (5.23)

2

where ﬁsg and ﬁ54 are the FRFs for the response at line 5 to inglises 3 and 4 respectively
on the uncoupled tunnel invert. As before, thpoeses in the space domain are obtained by the

inverse Fourier transforms of tifedomain responses calculated above.
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5.2.2 Calculation of FRFs for Torsional Coupling

The various FRFs for the uncoupled tunnel and slab have to be calculatesl &r@f of the
foregoing results can be utilised. The tunnel FRFs can be detdrfname (5.10) as they were
for the simple slab case. Referring to Figure 5.14 and using symmetry (notth; g W are

even functions oBwhile V is an odd function of), they are given by

Hy; = Hyy = Wi-a
6=0
H34 = H43 = W¢r9:=a20
- - -~ (5.24)
H, = U,V OrME;iFf;-a

H, = U,V orvv},;%m
The bending respons&? of the slab beam is governed by the FﬁEF of (5.13). The
torsional response is determined from the equaifamotion for the angle of twis$(x,t) of a
shaft in torsion, which is (see Meirovitch [136])

2 2
¢ _ k9

) A’ oX?

= 1(X,1) (5.25)

whereJ is the polar moment of inertia per unit leng8K is the torsional rigidity& the shear

modulus,K the torsional constant of the cresection), andr(x,t) the applied torque per unit
length. To put (5.25) into the wavenumber domdmarmonic solutions of the form
¢ =Pe @ ¥ andr =Te' ™% are substituted to give

_ 1
T ok (520

where T =1 represents the unit spatial torque (acting at0) given by a torque per unit length
of T=4J(x) in the space domain. With only the two linesaté IEl and IE2 acting on the slab
beam, the torque per unit Iength:l:s: Izl.c— EZ. c in the wavenumber domain, wheres the
distance of the edge loading lines from the ceiniedf the slab, as indicated in Figure 5.14.
Thus the vertical displacements of the two edgabetlab under combined bending and torsion

are given by

l

= Y+op = T_l(F(TE-'- T__z) + CT—«LT(TE' c- ~E' ¢

He(E+B) - cH (R o K&

[y

- (5.27)
- o

<1

<
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By applying a unit spatial point load to each edge in turn, that edqyer unit length oﬁ =1
and IE'2 =0, then IE'l =0 and IE'2 =1, the freebeam FRFs can be deduced from (5.27) as

(5.28)

I, I
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<
m
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m
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(@]
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5.2.3 Results for the Tunnel with a Torsional Slab Beam

As for the simple-slab model, the tunnel and s&FE were calculated as described in Chapter 4
for the parameters of Table 4.3. Table 5.2 givesdther parameters required. The bending
stiffnessEl and the mass per unit lengthof the torsional slab are taken to be the sanfierdke
simple slab, but this still leaves the torsiongidity GK and the moment of inertia per unit
length J to be determined. If the cross-section of thd starectangular, then the torsional
constanK is given to an accuracy of 4% by (see Young [202])

4
K = bd? 1—0.219(1—0'—4) (5.29)
3 bl™ 120

for the slab of widtlb and height depicted in Figure 5.14. Taking the slab to b@d0m wide
and 700mm deep, (5.29) together with the bendingeaties (assuming a Poisson’s ratio for the

slab concrete of 0.2) results in the value&BfandJ given in Table 5.2.

Torsional Slab Beam

El =1430x 16 Pa.nf

m=3500kg/ m
b =2000mm c= 750 mm
d =700mm a=147

GK =1857x 10 Pa.nf

J =1310kg.m?/m

k=6308x 16 N/m* when f = 60Hz
k=2122x 160 N/m* when f = 45Hz
k=733x 10 N/m? whenf = 30Hz
N =05

Table 5.2: The torsional slab beam’s properti€be slab-support stiffnesses are half those of
used for the simple slab (see Table 5.1), sinae ttie now two lines of support.
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The joining geometry shown in Table 5.2 is determined by the gaude ohits, taken as
1500mm. Half the gauge gives the distao{see Figure 5.14). The angieof the normals to
the tunnel invert at the joining lines 3 and 4 is calculated by asguanclearance between the
slab and invert of 50mm along the normals — enough space to inseds et — and recalling
that the tunnel radiua is 3m. Although this 50mm clearance would result in interference
between the ends of the assumed rectangular slab and the tunnel veall, slab would be
shaped to fit the wall's curve and would only be approximately regkano crosssection. To
allow direct comparison with the simple-slab model, the threeréiffevalues of slab-support
stiffnessk shown in Table 5.2 were chosen to give a bending response equivalensitoyilee
slab. Since there are now two lines of joining, theyrai the values given in Table 5.1; a
spring has the same apparent vertical stiffness for any inohnahich remains constant, as was
assumed in formulating the torsional-slab equations.

The &domain displacements were calculated from (5.20), (5.22) and (5.23) using Matlab, and
then the physicak-domain displacements were obtained by an inverse FFT Nith204¢
points and a sampling interval @x =05m, as done for the simple-slab model. To examine
bending effects only, the applied forces per unit length are sfelt:aD.S and IE2 =0.5 (which
gives a net unit vertical force applied»t O in the space domain); to examine torsional effects
only, the forces are set E~; =05and IE2 =-0.5 (which gives a net unit torque appliedxat 0).

The response to a single off-centre unit force is given by theo§timese two cases, that is, with
F,=1andF, =0.

Figure 5.16 shows the vertical driving-point response of the torsiomabskm, which can
be compared to Figure 5.4 for the simple slab. Figure 5.16(a) showssfense of the slab
beam in pure bending, where the two edges of the slab are moving invpilagbe same
magnitude. While the response for the directly joined slab is figiitas before, the peaks of the
responses with slab bearings inserted have shifted upwards in freqoemgsred to the simple
slab, most apparent in thk, = 45Hz case where the peak actually occurs at 53Hz rather than
45Hz as in Figure 5.4, despite choosing support stiffndsdesmake the two slab models
apparently equivalent. This indicates that the tunnel as a foundagffedsvely stiffer when it

supports the slab beam along two lines instead of one: two lines of force would tend to deform th
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Figure 5.16: Vertical responsé$ (blue) andY, (red) of a torsional slab beam supported on a
tunnel, at the applied loads of (& =0.5, F, =05 (b) F,=0.5,F, =-0.5 and (c) F, =1,

F, =0. Slab-support stiffnesses giving various natural frequencies asatiedi (Magenta
indicates overlap of the blue and red curves).

tunnel crosssection in ways which involve greater contributions from the morebcated (and

hence “stiffer”) circumferential modeshapes than those for desinge of force. How the
floating slab is supported on the tunnel is therefore an important factor e Bid@(b) shows the
motion of the slab beam in pure torsion, where the two edges are nexdatly out of phase
with the same magnitude. The resonance peaks are higher than fbepdirey, indicating that,

for the parameters used here, torsional waves start propagating #ile slab at higher
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frequencies than bending waves. This means that even if a siolpteis theory were valid for
floating-slab track, a Winkler-oeam model — which only considers bending — would-under
predict the natural frequencies and hence would predict vibration dsokttifrequencies lower
than would actually be the case. Figure 5.16(c) illustrates thet @f combined bending and
torsion, as might be expected from a pair of unbalanced train-wdeetd.| There is a difference

of about 10dB between the motion of the two edges, so the greater moWpmwitifhave more
influence on the forces transmitted to the tunnel invert and then the soil.

The normal response of the tunnel invert directly under the appliedikadsen in Figure
5.17. The displacements of the two joining lines under pure bending oathd-gjure 5.17(a),
are in phase and of the same magnitude, with behaviour very simifagure 5.6, the tunnel
response for a simple-slab model. Slab bearings of any stifiedisse the response because the
decoupling effect allows energy to propagate further along the slabd®hthus away from this
part of the tunnel invert. The performance is apparently betterthahclassic theory would
predict, as the reduced response occurs below\/ﬁuén points, despite the two-line joining
arrangement being “stiffer” than the single-line one upon which theratafrequencies are
based. The purely torsional response (Witrand Y, out of phase), Figure 5.17(b), suggests that
mounting the slab on springs allows torsional energy to propagateeffextvely down the slab
than bending energy, since the responses with bearings are all sigyificaet! than that for the
directly joined slab, foall frequencies. The combination of bending and torsion due to an off-
centre load, Figure 5.17(c), shows two different behaviours for the twoeadjlines along the
bottom of the tunnel. Insertion of rubber bearings redigdsr all frequencies, whereas for the
smaller displacement,, it results in a more familiar response with reduction in vibrati
delayed to frequencies slightly above e f., points.

Examination of the responses 20m along the tunnel from the applied loafisne that
torsional motion of the slab on bearings transmits proportionally nmengyye down the tunnel.
Figure 5.18(a) shows that the tunnel response to pure bending of the slabsisnanto Figure
5.7 for the simple slab, with slab bearings giving higher responseifttiad slab is directly
joined, for most of the frequency range. However, Figure 5.18(b) showsutteatorsion of the

slab results in much higher response with slab bearings than withdatertheless, the
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Figure 5.17: Normal respons&s (blue) andyY, (red) of the tunnel invert under a torsional slab
beam directly under applied loads of (8)=0.5, F, =05 (b) F, =0.5,F, =-0.5 and (c)

F, =1, F, =0. Slab-support stiffnesses giving various natural frequencies astedi Circles
mark the/2 f. points. (Magenta indicates overlap of the blue and red curves).

combined response, Figure 5.18(c), is dominated by the highgnitude bending component,
although the introduction of torsion does dramatically reduce the leVeteo of the Y,
responses at 105Hz and 160Hz respectively.

To allow comparison with soil displacements previously discussed,respbnses were
calculated for the line given bly=20m and =90 (which correspond t& and in equations

(5.24) and Figure 5.14), resulting W andV coinciding with horizontal and vertical
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Figure 5.18: Normal respons&s (blue) andY, (red) of the tunnel invert under a torsional slab
beam 20m along the tunnel from applied loads ofR&; 0.5, F, =0.5 (b) F, =0.5,F, =-0.5
and (c)F, =1, F, =0. Slab-support stiffnesses giving various natural frequencies asitiedli
Circles mark they/2 f. points. (Magenta indicates overlap of the blue and red curves).

displacement components. Figure 5.19 gives the horizontal soil resposséy dipposite the
loads on the slab. The response to pure slab bending, Figure 5.19(a),likkevérgt in Figure
5.8, although “isolation” is delayed to higher frequencies than for thglesislab, because of the
stiffer mounting of the torsional slab, and the undulations due to presaueseffects are more
pronounced. The response to pure torsion, Figure 5.19(b), is not particuli@rgrdifrom that

to pure bending, giving a combined response in Figure 5.19(c) that showantbetype of
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Figure 5.19: Horizontal soil displacement response with a torsitaiabeam, 20m horizontally
out into the soil opposite applied loads of @&)=0.5, F, =0.5 (b) F, =0.5,F, =-0.5 and (c)
F, =1, F, =0. Slab-support stiffnesses giving various natural frequencies astedi Circles
mark the+/2 f_ points.

classic isolation as the simple slab, albeit slightly delaydie horizontal displacement at 20m
away longitudinally, Figure 5.20, shows a bending response like that ireFdguand a torsional
response different in shape but generally of lower magnitude, soaglaat the combined
response is most like the bendiogly response. Only the softest bearings with= 30Hz give

significant vibration reduction at this point.
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Figure 5.20: Horizontal soil displacement response with a torsitaiabeam, 20m horizontally
out into the soil and 20m longitudinally parallel to the tunnel from aghpiiads of (a)F, = 0.5,
F,=05 (b) F, =05,F,=-05 and (c)F, =1, F, =0. Slab-support stiffnesses giving various
natural frequencies as indicated. Circles mark\iﬁe‘n points.

Slab torsion has a greater effect on the vertical vibration oddhe Figure 5.21 shows this
displacement component directly opposite the slab loads. Like the hatizesponse to
bending in Figure 5.19(a), the bending response in Figure 5.21(a) is liKerttia# simple slab,
Figure 5.10, conforming to classic isolation theory more or less (lihtisolation at higher
frequencies than predicted because of the stiffer foundation) and vate pronounced

undulations from pressumave effects. At frequencies below about 40Hz, the torsion-only
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Figure 5.21: Vertical soil displacement response with a torsglablbeam, 20m horizontally
out into the soil opposite applied loads of @&)=0.5, F, =0.5 (b) F, =0.5,F, =-0.5 and (c)
F, =1, F,=0. Slab-support stiffnesses giving various natural frequencies aatedi Circles
mark the+/2 f_ points.

response of Figure 5.21(b) is less than the beruointg one, but above 40Hz its magnitude
becomes comparable or greater than the bending-only magnitude, sbethatsion effects
predominate above 40Hz in the combined response of Figure 5.21(c). Thewdeyél of the
torsional response below 10Hz can be attributed to cancellation e¥dHeés of input 3 and 4
on the tunnel invert. Th¥ component of soil displacement at 2Cm and =90 is largely

dependent on the propagation of shear waves, while the two lines 3 angrddareing out-of-
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phase vertical shear motion when the slab is in pure torsion. At low frequérecgeparation of
these two lines is small compared to the shear wavelength, ameh $e& construed as a single
source; but they are out of phase, so the “single source” isiedlgciotionless. At higher
frequencies the separation is great enough that cancellation doesconotat source. It is
interesting to observe that the torsional response shows littleema# from pressuwave
interference, so that the combined response of Figure 5.21(c) is nsschni@ulating than the
bending response, and hence actually more like Figure 5.10 for the siaipl¢han Figure
5.21(a) is. This raises the question of whether it is necessangltide torsional effects at all,
beyond the effects that different slab-mounting arrangements have on supporsstiffnes

Figure 5.22 gives the vertical displacement at a longitudinal posifior=20m. This time
the torsional response, Figure 5.22(b), is again of significant magniudef very different
shape to the bending-only response in Figure 5.22(a), with addition of rubbbagbaereasing
the response above th&2 f., points andeducingit below. The bending-only response is very
like that for the simple slab in Figure 5.11 (although there is soore undulation at the high-
frequency end and the trough at 45Hz is deeper), with slab bearingsgntigtke difference
except for thef =30Hz case, which gives a modest reduction. However, the combined
response, Figure 5.22(c), is not very like Figure 5.11 at all, the torsiomgponent resulting in
slab bearings giving generally larger vertical soil displaa@s) This demonstrates that the
effects of slab torsioare significant for some observation points in the soil.

The longitudinal soil displacement at=2Cm is given in Figure 5.23 (as explained for the
simple-slab case, longitudinal displacemenkatO is zero becausd is an odd function ox).
All three types of motion are very similar to the horizontal ortior the same position (see
Figure 5.20), because both longitudinal and horizontal motion here areylalgelto the
propagation of pressure waves from the tunnel. The bending-only respanse, 3:20(a),
resembles the simple-slab case of Figure 5.9, with slab beaangg little effect below 100Hz.
The effect of slab torsion is not very great — the combined respdrfagure 5.20(c) is quite
similar to the bending-only one, with an adverse effect over the \iteojeency range with the
f, = 60Hz bearings. This illustrates the recurring theme that a béadeditect is only achieved

with the softest slab bearings, if it is possible at all.
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Figure 5.22: Vertical soil displacement response with a torsglablbeam, 20m horizontally
out into the soil and 20m longitudinally parallel to the tunnel from aghphiads of (a)F, = 0.5,
F,=05 (b) F, =05,F, =-05 and (c)F, =1, F, =0. Slabsupport stiffnesses giving various
natural frequencies as indicated. Circles mark\iﬁe‘n points.

All the responses discussed above are for one pair of loads applredttadk slab. As for
the simple slab, the responses at different longitudinal positiorts ecgnparable magnitude, so
it is difficult to estimate the exact effect of adding up ¢hessponses to give the response to a
train which provides many simultaneous inputs. It is not simple togbridi effect of torsional
motion of the slab on the vibration levels in the soil: sometimissnibt very significant, so that

the response to combined bending and torsion is approximately the sambessling alone;
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Figure 5.23: Longitudinal soil displacement response with a torsidabl lseam, 20m
horizontally out into the soil and 20m longitudinally parallel to the tufmoeh applied loads of
(@) F, =05, F,=05 (b) FF=05,F, =-05 and (c)F, =1, F, =0. Slabsupport stiffnesses
giving various natural frequencies as indicated. Circles marld??nf&‘h points.

sometimes it affects the combined response very significantlihet extent that it makes the
insertion of slab bearings unfavourable, when soft bearings would sdewesome benefit if

only slab bending was considered.
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5.3 A Full Track with Axle Masses

As well as the effects of the track slab, a track model shak&lthe dynamics of the rail and the
train interacting with it into account. An improved track model igicted in Figure 5.24. It
consists of a simple slab beam supporting a rail beam (represémti two rails together) with
masses placed at intervals to represent thevelxéel assemblies of a train. The slab and rail
beams are infinitely long. The form is similar to the tracddeis described in Chapter 3, with
resilient layers to model the slab bearings and rail pads, butheofeundation of the track is a
tunnel instead of a rigid base. The axle masses are agpsdximation train model which only
considers the unsprung mass of the train, assuming that the pruspension isolates the rest
of each vehicle in the train. Real train vehicles have pairsle$ attached to bogies, which also
contribute to the low-frequency interaction with the rail (below anourad the primary
suspension’s natural frequency, that is, below about 20Hz). However,gbgant frequencies
for ground-borne vibration from underground railways are well above thisnréfor example,
Cryer [38] gives acceleration spectra of a pile cap due to tsaga of London Underground
trains, showing most activity between 40Hz and 100Hz). Therefore tlhe dygamics are not
significant for the current problem. Also neglected is a Hantziontact spring between each

wheel and the rail, because this only plays a role at frequdngtesr than those of interest (for

Figure 5.24: Full track model supported on the tunnel invert, with masislesl to represent
axles of a train. The centre mass is excited by a roughrggdaadiment inpud. The tunnel's
infinite length means the responses at one point in the soil to ®acimut (paths with dashed
lines) are equivalent to the line of separate responses to the isiogt shown (paths with solid
lines) for an infinite number of masses at regular spacing.
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example, Clark et al [35] conclude that the Hertzian contact dodgweta significant effect on
rail response below 750Hz).

The aim is to find the response at a single representative potheisoil when there is a
series of input loads along the rails due to a train running on ttle tfeor just one input load,
the infinite length of the tunnel means that the load and the obserpaiioincan beshifted
longitudinally while maintaining their separation, and the respongesaibservation point will
not change. In other words, the response in the soil=a@ to a load on the rail ak=L is
always identical to the responseat —L to the same load at=0. (For tangential and radial
soil-response components, which are even functions tfis also identical to the response at
x=L to the load atx=0, so that only the magnitude of the separation matters.) Hence, the
problem of finding the set of FRFs for the soil responsa& a0 to a set of loads at various
positions on the rail can be recast into the problem of finding thes F&tRhe soil at those
various longitudinal positions to a single loadxat 0. The shifting principle for a tunnel and
track model with axle masses is depicted in Figure 5.24. Not@tki@s case it only works for
an infinite number of axle masses at regular spacing, so thavéhnall model remains infinite
and the longitudinal symmetry is maintained with any amount of rshiftiNevertheless, when
the shifting principle is invoked so that only an input at the middle @x& 0) is used, a finite
number of axles is sufficient if there are enough of them thateg@onses of the model do not
change with more axles added at the ends, that is, a convergence has been reached.

The total soil response due to all the axle loads acting simalialyecan be calculated by
adding up all the FRFs for an inputat 0, after scaling and phasing each one appropriately. If
the train is infinitely long and the inputs random, the sum represents the response @aajoviger
the soil line and thus condenses the three-dimensional problem repielserites individual
FRFs to a two-dimensional problem of the vibration level at a péatigoint in the cross-

section of the tunnel and soil.

5.3.1 Joining a Rail Beam to the Slab-Plus-Tunnel Model

The easiest way to construct the basic track model is to aaitleeam to the combined slab-

plus-tunnel model of Section 5.1, using the principle of convolution in spactough the
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repeatingunit method of Chapter 3 could be used to construct a track model comjiletxle
masses (but minus slab bearings), there is the difficulty ofrobg¢athe displacement function
for the whole structure between unit junctions. In addition, the disptadefunction would
have to be transformed into the wavenumber domain in order to join thedr#te tunnel via
the slab-supporting stiffness. Since this function would not be a simple aaladyjcession, the

transformation would have to be done numerically by FFT with it@dte condition of

sufficient decay of the function (see Section 4.3.3), which is unlikebetmet for a free double
beam track model without excessive internal material damping.

To join the rail beam to the model, therefore, the coupling equationsa®g.8pplied to the
rail beam and slab-plus-tunnel as the two entities being joined.vdid eonfusion with the
numerals already used in Section 5.1 to denote the lines along th{&)sldd® tunnel invert (2)
and the soil (3), the line along the rail beam will be denoted bgr@)(z Thus the vertical rail
and slab response%a and \Za of the new combined system to a vertical unitigp@bint load
acting on the rail beam at=0 are
7 Hoga (1+ k, Hyy,)

1+Kk Hy +k Hyy

v krl_IOOa Hl]a~
® 14k Hog + K Hyg,

(5.30)

where ﬁOOa is the &domain FRF for the unjoined rail bearﬁw is the -domain FRF of the
slab beam to a load on the slab before the raifided, and, is the stiffness per unit length of
the resilient layer between the rail and slab beainsthe same way as (5.9), responses along
lines not involved in the joining can be determimsdmeans of the coupling interaction force.
In this case the interaction force acts on the bdm and is given by the slab’s response in the
new combined model divided by it's pre-rail-beamM;fhat is,\?la/ ﬁlh . Hence the responses

\7251 along the tunnel invert an@a in the soil are

Y2a = HZla |’_‘|‘1a
e (5.31)
’Y~3a = ﬁ3151 2
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where H,,, and H,,, are the&domain FRFs of the tunnel invert and the soil toax on the
pre-rail-beam slab. The physical displacementtfans in thex-domain can be obtained by the
inverse Fourier transform of the results (5.30) gndl) according to (5.2).

The FRFs of the slab, tunnel and soil displacemestiish appear in equations (5.30) and
(5.31) are just the displacements determined I8) @nd (5.9) for the slab-plus-tunnel model.
The FRF for the rail beam is that given by (5.18)d free beam, but now with the properties of

the two rails instead of the slab. Thus

I
3
I

QD

._‘
)

(5.32)
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5.3.2 Adding Axle Masses to the Rail Beam
Adding axle masses to the model constructed sesfarost simply done in the space domain.
Since the axles interact with the rail, the couplaitls x-domain FRFH(x) is required. This

can be obtained by the inverse Fourier transforth@§-domain result from (5.30), that is,
o) = =] V(&) €% (5.33)
2o

which represents the FRF of the rail to a pointllaating atx =0 on the rail, at a particular
frequencyaw To find the final response in the soil, the 'soitdomain FRFH,(x) to the same
load on the rail is required. This latter FRF Idaoned in the same way &, (x) , but from the

result (5.31), so that
_1le-g &
Hi) = [ Yu(@eé* o (5:34)

whereia(f) can be ther, v, orw component of soil displacement.
As the first step in the addition of axle massks, il responses at the positions where the
masses are to be added must be formed into an R 1fH,] which satisfies
Y, = [H,]F, (5.35)
where Y, is the vector of rail displacements at the statishere masses will be added, d@rd

is the vector of forces acting at those positiongh® rail (once masses are added, these will be
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the interaction forces between the masses and the rail). Kebmng mind, it is interesting to
note that (5.35) is exactly analogous to the convolutions in space piesambier. While
convolution was used to find thanction of responses along a line tacantinuousinteraction
force acting along that line, the matrix multiplication herassd to find therectorof responses
along a line to a set afiscreteinteraction forces acting on the line. The elements of thexmatr
[H,] are determined by the ralisplacement FRMH,(x) of (5.33) as described below.

The case of adding only five masses will be comsuidere as an example of the general
approach. It can easily be extended to more addess$es to give the convergence necessary to
model an infinitely long train. The infinite ledgand the symmetry of the track and tunnel mean
that a given rail FRF is only dependent on the ntada of the separation between the
displacement and load involved, as discussed ailmotlee context of soil displacements. Thus

the rail FRF matrix is

Ho(0) Ho(Ly) Ho(Li+L) H{L,+L,+L) H{L#+L#L#L)
Ho(Ly) H,(0) Ho(L,) Ho(L,+ L) HfL+Lg+L) (5.36)
[Ho] = Ho(Ly + L) Ho(L,) H0) H{L) HdLo+L)
Ho(L + L, + L) Ho(L,+ Ly H{L) H {0) HL)
Ho(Li+ Lo+ L+ L) Ho(Ly+ L+ L) Hy(L,+L) H{L) H {0)

whereL,, L,, L, and L, are the consecutive spacings between the fivagpuaihere axles will
be added. If the spacing is regular sothat L, =L,=L, =L, (5.36) can be simplified to

| Ho(0)  Ho(L) Hg(2L) Hy(3L) H(A)]
Ho(L)  Ho(0)  Ho(L) Ho(2L) H(3)
[Hol = |Ho(2L) Ho(L)  Ho(0)  Hg(L) He(2L) (5.37)
Ho(BL) Ho(2L) Ho(L)  Ho(Q  H(L)
[ Ho(4L) Ho(3L) Ho(2L) Ho(L)  H(O |

To facilitate the process of adding axles, the FRatrix [H,] of (5.36) or (5.37) should be
inverted, allowing the dynamic-stiffness matrix (@Bexpression

F, = [H]Y, = [K Y, (5.38)
to be written. Axles are then added to the modetancentrated masses, by adding inertia
terms of the form-m,w®Y, whereY is the displacement at the axle’s station, toajeropriate
diagonal elements of the DSMK| , ]eaving the centre station free. In the same asyn
Section 3.3.2, an axle mass is added to this cestagon via a roughness displacement

J0=NMAe"“, as shown in Figure 5.24. The overall matrix ¢igmethen becomes
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—k11 - maw2 k_z k_s k14 k15 0 Yl 0
k21 k22 - rrsz @3 |$4 ISs 0 Y2 0
Ky Ks, Kss Ky , Ks - n;wz Y - 0 (5.39)
Ky Kyz Kig Kyy— M Ks : 0 Ys 0

........ ko ke ks ke kgm0 %) |0

i 0 0 -1 0 0 1 | Y, A

where thek; are the elements ¢K ;] . Equation (5.39) is of order one greater thanotihginal
DSM because of the extra displacement compohgmtroduced by the independent axle mass
at the centre. As mentioned earlier, if a modehwain input at the middle, such as (5.39), is to
be used in conjunction with the shifting principtecalculate the responses to several different
inputs, the axle spacing must be regular.

After the displacements of the rail at the axle seashave been calculated from (5.39), the
corresponding interaction forcdg acting on the rail at the mass stations can berméted by
substituting the vector of displacemems={Y, Y, Y Y ¥' (thatis, omittingY,) back
into (5.38). Knowing the interaction forces whiatt on the rail, the soil displacements can
be found from the FRF functioHl,(x) given by (5.34). In matrix form this can be esgsed as

Y, = [H,]F, (5.40)
where H, ] is the FRF matrix for the soil line to input foscacting on the rail (with no axle
masses added). For the tangential and radial coemp® of soil displacement,andW, [H.] is
of the same form adH], ¢iven by (5.36) or, for constant axle spacing3{}. but with H,(x)
replacingH,(x). This is because these componentseasnfunctions ofx for a vertical load
applied atx=0, just like the vertical displacements of the ratHowever, the longitudinal
componentU is anodd function of x for such a load, so that the sign of the longiadi

separation between a given load and displaceménpisrtant. The soil FRF matrix is then

H,"(0) SHA(L)  HE(L+L) —HI(L+L,+L) —Hi(LFL#Lg#L)
Ha“(Ly) H2(0) SHA(L)  -H(L,+L)  -HiL,+LgzL) | (5.41)
[HT=|  HML+L) Hy (L) H4(0) —H (L) “Hi(L+L)
H3“(L1+L2+L3) H3M(L2+L3) H;(L; Hau(o) _H3u(L4)
Ho(L+ L+ Lo+ L) HI(L+L,+L) Hi(L+L) HuL) H %(0)

where similar simplifications of the kind exhibitedgoing from (5.36) to (5.37) can be made if

the spacing between axles is a constant value
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5.3.3 Random Process Theory Applied to the Full-Track Model

The roughness and other irregularities of real rail and wheealcsugrofiles will be randomly
distributed, so the roughnedsplacement inputs at the wheels of a train travelling on & tr
will be random processes. The calculation of the resultant spibmees therefore requires the
use of the theory of random vibration, which is dealt with by Newland [1dddse approach
will be used here.

A random process is stationary if its mean, mean square and stadelation are
independent of time. Consider a system WNtistationary random inputg; (such as the axle
inputs provided by a train) and one (stationary random) ouwtpgsuch as the displacement
response of a particular point in the soil). The power-spectral deRSIB)( or spectrumS, («.)

of the output processis then given by
N N
(@ = 22 H(@H@S,, @) (5.42)
p=1 9=

where H («) and H,(«) are the FRFs of to the inputsx, and x, respectively (with star
denoting the complex conjugate), aSgI)Xq («) is the cross-spectral density, or cross-spectrum,
between the two inputs. If two input processes have the samécstapsoperties, that is, have
the same spectrung, («), but one lags the other such that(t) = x,(t— T), then the cross-
spectra are given by

S, (@) = §(w) €

Sor (@) = S(w) &

which also satisfies the general relationship t8af («) is always the complex conjugate of

(5.43)

S, (&). Equation (5.43) can readily be shown to be byeonsidering the cross-correlation
R.x (7) :J: X (1) %,(t— 1) dt, the Fourier transform of which (including a factd 1/272) gives
the cross-spectrur§, , («).

If the train’s wheels are assumed to be perfeathosh, so that all irregularities are
contained in the rail surface, the axle inputs lmamssumed to differ by a time delay only, giving
cross-spectra between inputs of the type in (5.43) time delay between two adjacent axles is
T =L/v, whereL is the axle spacing (assumed to be constantpasdhe train’s speed. If the

axles are not adjacent, this time delay is mu#gblby the integer differende — p) between the
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indices of the two axles concerned. Thus the general formula (5.4Refoutput spectrum can
be written
N N
S(@ = D> H(w) H(w). S(w). €4 (5.44)
p=10=1
assuming that an axle with a higher index is further to the back of the train.
The FRFsH  («) and H («) in (5.44) can be obtained from the appropriate elements of the
soil-response vectoY, in (5.40) — which is for an input at the centre axle mass only —€layisn
of the shifting principle. The model should, of course, then indludele masses instead of just
five, andN should be sufficiently large for convergence of the soil responstmsthe shifting
principle is valid. Strictly, because of the way the FRFslareved and because the time delays
between axles are taken as all the same, the result (5.44)lggvstatistical response of a point
which moves longitudinally through the soil at the train speed and g® Gp@osite the axle
mass placed ak=0; but it is the vibration level at a stationary observation point texhe
tunnel which is of interest. The response of a stationary pointoeilhfluenced by Doppler
effects, because the wheels at the front of the train and ahéaal @dint will be moving away
from it, while those at the rear of the train and behind the poihtb&ilmoving towards it,
altering the effective time delays. However, Doppler effamtsnot very significant in this case,
because the train speeds (bel8@nys) are much less than the speeds of pressure and shear
waves in the soil944 ny sand 309 ny s respectively for the soil parameters given in Table 4.3),
so can be ignored. A further consideration despite this is whethttaheesponse varies much
with the actual longitudinal position of the observation point, next to & @xsomewhere
between two axles. In the soil around an actual underground railgtgnsya hypothetical
observer close to the tunnel will “hear” individual axles as theg,pahereas an observer further
away will only detect a continuous “rumble” as the train goes by. Thus if thevabearpoint is
at a distance from the tunnel larger than the axle spacing, th€spmlative longitudinal
position should not have much bearing on the total vibration response percEivesh these
two considerations, the result (5.44) provides a reasonable estintlagevifration spectrum at a

stationaryobservation point in the soil.
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The actual input between wheel and rail is a roughness displacémhbith varies along the
rail. The spectrum for this would normally be given as a functiomasenumbely (with units
of radians per unit length). The roughness spectrum as a functicegoéfrcy depends on the

speedv of a vehicle traversing the rough surface, and is given by

s(@ = = 5(y=%) (5.45)

An important property of the spectrum of a random progggsis that integrating it over all

frequencieswvgives the expected value gf , or mearsquare (MS) value of the process, that is

MS = Hy’] = [ §(0) dw (5.46)
The widely used root-mean-square (RMS) value ofpttoeess is obtained by taking the square
root of the MS value (5.46).

The spectra discussed above are all even (syminéinctions of angular frequency (or
wavenumber), defined for frequencies frofe to +co. However, practical spectra are usually
single-sided functions defined for positive freqcies only, with the frequencies themselves in
cycles (rather than radians) per unit time (or yeit length). If such single-sided spectra are
used, they must still give the MS value when iragepl over all frequencies for which they are
defined, that is, over O taoo with a frequency instead of the angular frequenayin (5.46).
Thus a factor of 2 arises from their being singtked and a factor o7z from the change to

cyclical frequency, giving the single-sided spewtr§ ( f) as

S(f) = 4n§(a=2n) (5.47)
and similarly for a single-sided spectrusn(1/4) of roughness
1 ( 277)
S| =] =4 = 5.48
(3] = ans(y=2 (5.49

where A is wavelength. All the relationships given forutite-sided spectra still hold #il of
them are replaced by the equivalent single-sidedtsp.

Note also that the units of a spectrum éueits ofy)®/( units of frequengy so it is often

more convenient to plot graphs of root spectruniwitits of (units ofy)/ \/ units of frequency
to reduce the range of values of the spectrum. r€hkalts from the full-track model will be

plotted as root spectra.
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5.3.4 Results for the Tunnel with a Full Track Model

As for the two previous track models, the tunnel and soil FRFs vadgelated as described in
Chapter 4, using the parameters in Table 4.3. The parameter \alties full track are given in
Table 5.3. The slab properties used are the same as those fonghestab model given in
Table 5.1, including the three different slab-support stiffnesses asdfdo®r. The beam
representing the two rails has the same sectional propertibesgsgiven in Table 3.1, but the
railpad stiffness has a higher, more realistic value givirgsarrance of the rail on the rail pads
of 318Hz (instead of 100Hz as in Chapter 3), which is above the 200Hz umaxirequency
considered here. Results were calculated in Matlab, with theseweourier transforms
computed by inverse FFT using 2048 points with a sampling intervadixef 0.5m, as for
previous results. This gives a maximugvalue of 512m, so the maximum longitudinal
separation which can be used with the shifting principle to createRRenatrices such as (5.37)
is also 512m; all the axle masses must therefore fit withendistance. With a regular spacing
of L =20m, the maximum odd number of axles (odd to retain symmetry abe) which can
be added is thu®\ =25. This number of axles gave converged soil responses for a roughness

input at thex =0 axle mass.

Slab Beam Rail Beam Axle Masse$
El =1430x 10 Pa.nf El, =10x 1¢ Pa.nf m, =500kg
m=3500kg/m m, =100kg/m N =25
k=1262x 16 N/m* (6Hz) k, =400x 10 N/m? L =20m

k=4244x 16 N/m*> (4%Hz) ny, =03
k=1466x 16 N/m* (30Hz)
n., =05

Table 5.3: Parameter values for the various parts of the fck. trehe three different slab-
support stiffnesses are the same as those given in Table 5.1 for the simple slab.

Due to the cylindrical geometry of the tunnel-in-soil model, the digrhent is expressed as
longitudinal, tangential and radial componedts/ andW (see Figure 4.1). However, horizontal
and vertical components are more meaningful when considering inputsdim¢pddundations,

so an absolute coordinate systeivZ needs to be defined. The longitudinal directdn
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coincides with the longitudinad-axis of the tunnel, the horizontal directi¥nwith the 8 =90°
radius, and the vertical directighwith the =180 radius. Thus the relationships of the new
longitudinal, horizontal and vertical displacement componeéhts U, andU, to the original
componentd), V andW are

U, =U
U, =V cosf—-W sirg (5.49)
U, =V sind+ W cod

The FRFs can be calculated for theV andW components of soil displacement, then resolved

according to (5.49) before being used in the PSD equation (5.44).

A useful way to evaluate the effect of floating the track sdatm take the ratio of the soil
responses with and without resilient bearings inserted betweenatharsl tunnel invert. A
common measure of this ratio is the “Insertion Loss” in dB, whigcasgihe amount afduction
in vibration provided by the bearings, so Insertion Losses greater ¢hannzlicate vibration
isolation. However, this notion is opposite to all the results preseatdar, where a higher
(absolute) response is worse. To maintain consistency, the concépdestion Gain” in dB,
indicating theincreasein vibration levels caused by the bearings (hence the negativeedidns
Loss), will be used here; it is increasingly being used in industeyGseer and Manning [77] for

example). The definition of Insertion Gain for the current results is

Insertion Gain [dB]= 20log,, or (5.50)

that is, the ratio of the soil-displacement root spectrum for a slthral frequency” off , to the
root spectrum for a model with a directly joined slab. InsertiomsGkess than zero indicate
vibration isolation.

The computation procedure for calculating the PSDs of soil displaxteforethe full-track
model can be summarised as follows:

1. Join the slab beam to the tunnel by (5.6) or (5.8) for each slab-sujffreessk, join the

rail beam to the slab by (5.30), and obtain the rail FRF (5.33) by inverse FFT,;
2. Obtain the rail DSM via the FRF matrix (5.37), add axle massssrding to (5.39), and

use the resulting displacement vector to calculate the rail interactios fovoe (5.38);
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3. For each radiusand angular positiofin the soil,
(i) Calculate the soil FRFs for the uncoupled tunnel by summingpii@ariate modes
for nfrom 1 to 10 according to (5.10);
(i) Add the effect of the slab beam by (5.9) and that of thebeam by (5.31), then
obtain the soil FRF (5.34) for a tunnel with a floatslgb track by inverse FFT;
(iif) Form the soil FRF matrix and obtain the soil displacenvector from (5.40) and the
interaction forces calculated above;
(iv) Calculate the soil PSDs for this position from (5.44) for each train spesslired.
The PSDs for different slab-support stiffnesses can then be used to cataddaien Gains from
(5.50) or RMS levels via the MS (5.46).
Computation time can be reduced by the use of symmetry. The longitsyhmaetry means
that &domain displacements need only be calculated at the 1025 pointé @h with the rest
of the sample being created by a suitable reflegtist prior to the inverse FFT; and symmetry
about the vertical centreline of the tunnel crasstisn means that only soil positions within the
range0< < 180 need to be considered. Computation speed in diaMenvironment can be
increased by maximising the use of matrix or amagrations (vectorised code) in place of
looping procedures where possible. Even so, pnogneecution can be severely slowed by large
memory requirements. Eadhdomain tunnel or soil mode was represented asray af 1025
space points by 200 frequency points for a giveliussr and modenumbaen, filling 3.1MB (16
bytes per double-precision complex number); thus ¢leven modes foone displacement
component abneradius fill 34.4MB. All 132 soil modes, requir@dstep 3(i) at various stages
to calculate the PSDs for all three displacememhpmments at four radii, therefore did not
physically fit within the 256MB of memory of the Bnworkstation used, even leaving aside the
memory needed by the operating system and Matlabs&if and intermediate calculations. This
necessitated heavy use of time-consuming swappetgeen memory and the hard disk.
Leaving this swapping largely to Matlab and therapag system resulted in a program still
running after three days. Thus the program wasittew to explicitly load only one set of eleven
modes from the hard disk at a time, which stillalwed the same set being loaded and unloaded

many times, but gave a full set of PSDs after 1 0f computation.
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Spectra were computed for a “white” (uniform) input roughness speafusy=1mm?/Hz
in (5.44). This gives equal weighting to all frequencies. Although a uniform roughnessrspec
IS unrealistic, it does show the fundamental transmission behavioure dfreicktunnel-soil
system. ltis clear from (5.44) that the output PSD for a non-unifgoot is obtained simply by
multiplying the uniform result by the actual inpu#,(«), which is independent of the
summation. This also means that the Insertion Gain (5.50) is indepehdeatdetails of input,
as §,(a) will cancel in the ratio of the two output spectra.

Figures 5.25, 5.26 and 5.27 give contour plots of the longitudinal, horizontal andlvertic
PSDs respectively, at a radius of 20m and a train speéd@ lafy h, on axes of frequency versus
angular position. Graph (a) in each figure shows the soil displatespectrum for a white
input when the slab is joined directly to the tunnel invert, while grgphdo (d) show the
Insertion Gains for the three slab-support stiffnesses given ire TaBl Thus the absolute
displacement spectrum for a given stiffness is the sum (beaalBescale is used) of graph (b),
(c) or (d) with graph (a). The contour intervals are 10dB, with rethat’ colours indicating
higher levels than blue or “cold” colours. Instead of one 10dB band for thde®dBin the
Insertion Gains, there are two 5dB band€dB (up to 5dB) and< 0dB (down to —5dB). This
is to clearly show the cross-over between worsened performance and reduceshvifitaas the
yellow < 0dB areas denote marginal improvement over a directly joined slabh rBaginal
reduction may not be worth the cost of floating the track slab.

The three spectra (a) in Figures (5.25) to (5.27) for a directiggoslab beam have some
common features. The soil vibration levels for frequencies below Hdelzll very small
compared to the rest of the frequency range, and because the InGaitisn(b) to (d) in each
figure are all near 0dB below 10Hz, this can also be said forldhs supported on varying
stiffness. Since all input frequencies have equal weighting, libisssthat very low frequencies
are highly attenuated by the track-tunnel-soil system; therdfegeassumption that these
frequencies are relatively insignificant is justified. Maximactivity occurs between 100Hz and
160Hz, but longitudinal levels seem to be lower than horizontal and Veniea. The highest
levels occur mainly for angular positions less tH#€(", underneath and to the sides of the

tunnel, resulting in a “vibration shadow” in the soil above the tunnel. The vibration shadow is
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LONGITUDINAL, r = 20m,v = 40km/h

(a) \/SX [dB mmA Hz], direct joining (b) Insertion Gain [dB]f = 60Hz
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Figure 5.25: (a) Longitudinal soil displacement spectrum for aradk model joined directly to

the tunnel invert and (K)) Insertion Gains relative to (a) with increasingly sofiab-support
stiffnesses, at a radius of 20m with a train speedGiny h. =0 is directly underneath the
tunnel invert andd=180 is directly above the tunnel. White (uniform) input roughness
spectrum ofl mm // Hz between rail and wheel. The contour intervals are 10dB, centred on the
values given in the legends, except for the <0dB and >0dB bands whickerdp+8dB to 0dB

and 0dB to 5dB respectively.
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HORIZONTAL, r = 20m,v = 40km/h

(a) \/SY [dB mmA Hz], direct joining (b) Insertion Gain [dB]f = 60Hz
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Figure 5.26: (a) Horizontal soil displacement spectrum for aradk model joined directly to
the tunnel invert and (K)) Insertion Gains relative to (a) with increasingly sofiab-support
stiffnesses, at a radius of 20m with a train speed0dmy h. Otherwise as for Figure 5.25.
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VERTICAL, r = 20m,v = 40km/h
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Figure 5.27: (a) Vertical soil displacement spectrum for atfadk model joined directly to the
tunnel invert and (bjd) Insertion Gains relative to (a) with increasingly softkb-support
stiffnesses, at a radius of 20m with a train speed0dmy h. Otherwise as for Figure 5.25.
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probably beneficial, if a high proportion of energy propagated downwardssnpgapagation
away from nearby building foundations. The Insertion Gain plots (b)ar{d) (d) are for
increasingly softer resilient bearings with designed natugglLfncies of 60Hz, 45Hz and 30Hz.
This gives+/2 f., frequencies, above which isolation is supposed to occur, of 84.9Hz, 63.6Hz
and 42.4Hz respectively. Insertion Gains are generally positivetnatiﬁ f. frequencies, but

do not become uniformly negative above these — there are many pocdkereased response at
higher frequencies. Clearly, simple vibratisolation theory is not applicable in the current
situation.

Each displacement component has some individual characteristicare Big5(a) for the
longitudinal PSD has a series of white horizontal strips at Btézvials. White areas mean that
the level is below the minimum of the scale, so these stripgseqr troughs of very low
magnitude in the PSD surface plotted. It is not clear how thegeaigiresonances arise. The
antisymmetric nature of the FRF for longitudinal displacement doefundamentally alter the
way the terms in the PSD summation (5.44) add up compared to the synirRes for the
horizontal and vertical displacement components. The antiresonances lmaciuet to standard
wheelbase filtering, because they were found to appear at theSs&matervals regardless of
train speed. Further investigation is required to determine thhamisen responsible for this
regular attenuation. The many small, round contours in Figures 5.25(@iAf a “dotted”
appearance are most probably due to numerical fluctuation in thednggsin ratio of the very
small magnitudes at the trough frequencies, so should be ignored. He&sst Figures 5.25(b)
and (c) show that insertion of only a small amount of resiliemeesgonly marginal vibration
reduction over the whole frequency range, with some positions showinglapgéeincreases
right up to 200Hz when the slab is floated. The softest mounting, Fipa&gd), gives
worthwhile reductions (green and blue areas) for many soil positlomgea’OHz, but this is
much higher than the correspondii@ f., value of 42.4Hz and there are still significant areas of
increased response.

The spectrum of horizontal displacement, Figure 5.26(a), has a vevhial line atd=0
and atd=180, since the horizontal displacement at these two positions, as gi &by, is

wholly made up of the tangential compon&ftwhich is zero directly above and below the
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tunnel. There are high levels of vibration (red areas) for a wréguency range than the
longitudinal displacement. Clearly discernible are horizontal fsngd colour, indicating
undulation in the surface represented by the contour plot. The most obequsricy spacing
from crest to crest is about 5Hz, though closer inspection revealtes spacing on some parts
of the surface. This undulation arises from wheelbase filteringtada@incidence of roughness
wavelength with the axle spacing on the track: crests occur whtre aaxle masses move up
and down in phase, troughs when they move out of phase, as explained atah€leapter 3.

For the train speed ofiOknm' h (111nf 9 and axle spacing of 20m, the expected frequency
interval between peaks of-phase force transmitted to the tunnel invert is 0.556Hz. This is not
discernible in Figure 5.26(a) for two reasons. Firstly, the contoenvaitof 10dB will not show
many surface undulations of smaller magnitude. Secondly, the speesults were computed
for a frequency step of 1Hz, which is a resolution too coarse to shuativa at a period of
0.556Hz. Thus the variation can only be seen at a multiple of the funddnrecuency
interval. The Insertion Gains, Figures 5.26(b)-(d), show the same kipehaliour as Figure
5.25 when the slab bearings become softer, but there are now more padsitbrisave
significantly reduced vibration levels. The positions above\/[_léiefn frequencies with increased
vibration are concentrated aroufid- 90°, the horizontal plane bisecting the tunnel. Once again,
largely beneficial results are only achieved with the softest slab bedfiggse 5.26(d).

The spectrum of vertical displacement, Figure 5.27(a), is sinaldhe horizontal one in
Figure 5.26(a), showing the same surface undulation due to wheelbasegfiltHowever, the
highest levels of vibration extend further around the tunnel, from direntlerneath to more
than 9C". The Insertion Gains follow a similar pattern too, although Fi§u2é(d) shows that
the softest bearings reduce vertical vibration more than the horizontalonbo&Figure 5.26(d).
The positions with increased vibration above {f@f_ frequencies are now concentrated near
6 =0, underneath the tunnel.

PSDs can be calculated for other soil radii and train speedsdonds the effects these
parameters have. The vertical component of displacement will loefosehis purpose, so
comparisons are to Figure 5.27. The response at a radius of 10mhgvittain speed still

40k h) is shown in Figure 5.28. The absolute spectrum, Figure 5.28(a), shows lbigise
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than at 20m. This is to be expected because the cylindrical sanrfagnd the tunnel at 10m is
smaller than at 20m, so even if there was no material damping, eueraly passing through
each surface would mean that the displacements at 20m have te.beH@sever, the tunnel
model includes shear material damping in the soil, so the reseltieqy loss also reduces
displacement levels as radius increases. The spectrum fiiua o 30m, Figure 5.29(a), shows
lower levels than 10m or 20m, consistent with the larger distance tihe tunnel. For both
cases, the undulations due to wheelbase filtering are at thespagieg as before. The general
characteristics of the Insertion Gains are much the sanhe alifterent radii. Nevertheless, at
10m radius, Figures 5.28()), marginal reduction (yellow areas) starts at lower freges
than at 20m, and at 30m radius, Figures 5.29(b)-(d), there is markedBidagicant reduction
(blue areas) than at 20m.

The effect of halving the train speed B®kny h on the levels at 20m radius is shown in
Figure 5.30, while that of doubling the train speed@kny h is shown in Figure 5.31. The
main effect seems to be on the frequency interval of undulations dwbetelbase filtering.
Halving the speed halves the apparent frequency of a given roughnetsngtiveso the spacing
between peaks is halved, as seen in Figure 5.30(a), while doubling tdesspéarly doubles
the spacing, as seen in Figure 5.31(a). Apart from this, the @Evetsch graph correspond with
the 40kny h levels in Figures 5.27(a)-(d) in their overall disposition with respe frequency
and angular position. Halving the speed just splits the differeas ané0 more fingers, while
doubling it causes separate fingers to coalesce into wider ones.

Although it is informative to plot the response of the full-track maded white roughness
input spectrum, ultimately the soil vibration levels induced by aethakl-rail roughness need
to be known. Frederich [62] gives a formula for rail irrequla$Ds based on many
measurements of the track geometry of different surfaceayslw The spatial PSD of track

irregularity is given by the single-sided spectrum

SJGJ = m (5.51)
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VERTICAL, r = 10m,v = 40km/h

(a) \/SZ [dB mmA Hz], direct joining (b) Insertion Gain [dB]f = 60Hz
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Figure 5.28: (@) Vertical soil displacement spectrum for atfadk model joined directly to the
tunnel invert and (bjd) Insertion Gains relative to (a) with increasingly softkb-support
stiffnesses, at a radius of 10m with a train speed0dmy h. Otherwise as for Figure 5.25.
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VERTICAL, r = 30m,v = 40km/h
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Figure 5.29: (@) Vertical soil displacement spectrum for atfadk model joined directly to the
tunnel invert and (bjd) Insertion Gains relative to (a) with increasingly softkb-support
stiffnesses, at a radius of 30m with a train speed0dmy h. Otherwise as for Figure 5.25.
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VERTICAL, r = 20m,v = 20km/h

(a) \/SZ [dB mmA Hz], direct joining (b) Insertion Gain [dB]f = 60Hz
200 —
absolute dB
-40
-50
60| — —_
-0 T T
-80| = -
-0 & 2
-100 8 o
-1100 T o
-1200 2 2
-130
-140
-150
20+
0 . . . . .
0 30 60 90 120 150 180 0 30 60 90 120 150 180
angle0 [deg] angleb [deg]
(© Insertion Gain [dB]f_ = 45Hz (d) Insertion Gain [dB]f_= 30Hz
1.G.dB
40
30
20
10 N N
>0 .E. .E.
<0 Py 3
9 5
-20 > >
30 @ o
-40| ¥ =
-50
-60
-70
20
0 T T T T T 0 T T T T T
0 30 60 90 120 150 180 0 30 60 90 120 150 180
angle0 [deg] angleb [deg]

Figure 5.30: (a) Vertical soil displacement spectrum for atfadk model joined directly to the
tunnel invert and (bjd) Insertion Gains relative to (a) with increasingly softkb-support
stiffnesses, at a radius of 20m with a train speed0dmy h. Otherwise as for Figure 5.25.
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VERTICAL, r = 20m,v = 80km/h
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Figure 5.31: (a) Vertical soil displacement spectrum for atfatlk model joined directly to the
tunnel invert and (bjd) Insertion Gains relative to (a) with increasingly softkb-support
stiffnesses, at a radius of 20m with a train speed0dmy h. Otherwise as for Figure 5.25.
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where A is the irregularity wavelengtlg is an “unevenness” parameter dnés a “waviness”
parameter. The values afandb for irregularity in the vertical height of the rails areean in

Table 5.4, derived by fitting (5.51) to measured data. The parametdradk in “worst” and
“best” condition define the envelope of all measured data. The for(Bl84a) is valid for
wavelengthsd from 0.1m to 200m; smaller wavelengths are due to rail surfacémesg and
larger ones to variations in the topography of the ground surface.umtigoh (5.51) is plotted

in Figure 5.32 for the three track conditions described by the parameters in Table 5.4.

a [mmt.@mf1| b ym

worst 939x10* 689 %1072
average 131x107 2.94x107
best 19C¢x1¢™ 971x 1073

Table 5.4: Values of the unevennessand wavinessd of vertical railway track
irregularity, for three different track conditions. From Frederich [62].

To convert the PSD (5.51) to a function of frequehaglation (5.45) is applied, recalling
that1/A = f /v wherev is the train speed, to give the sinrglded roughness spectrum

1 a

TS

(5.52)

which can be used aS, in (5.44). Function (5.52) is plotted in Figure 5.33 for a track in
average condition, for three different train speeds. The frequdralms 20Hz (corresponding
to long wavelengths) receive a very high weighting. Note thatterdrequencies up to 200Hz,
(5.52) is extrapolated beyond the 0.1m minimum wavelength (frequenceasrgitean 56Hz at
20km' h and 111Hz a®40kny h) for which the function was originally defined. It is arguable
whether rail surface roughness and corrugation has a smallgivéasby the extrapolation in
Figure 5.33) or comparable magnitude to small-wavelength irregularity in tkeggametry.

The actual spectra of soil vibration are obtained by multiplyingptiegiously calculated
spectra for a white input b$; of (5.52) according to the PSD formula (5.44). For a radius of
20m and train speed cfOkny h, this results in the spectra of vertical soil vibration shown in
Figure 5.34. Although Figure 5.33 shows a large bias in the input towavdeeljuencies, these

are not over-emphasised in Figures 5.34(a)-(d). The frequencies below 5Hz remalih of sma
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Figure 5.32: Spectrum of vertical rail irregularity versus wawveber of the irregularity for
railways in worst, average and best condition. Plotted from equétih) (using the parameters

of Table (5.4), based on Frederich [62].
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Figure 5.33: Spectrum of vertical rail irregularity versugjdency for railway in average

condition, calculated for three different train speeds from equation (&Rforresponding to

the “average” curve of Figure 5.32. Note that this is an extrapolah Frederich’s [62] data for

f >56Hz whenv =20kny h and for f >111Hz whenov =40 kny h.
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VERTICAL, r = 20m,v = 40km/h
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Figure 5.34: Realistic spectra of vertical soil displacemathit avfull track model, at a radius of

20m with a train speed o40kny h, for (a) direct joining and (b)d) increasingly softer slab-

support stiffnessesd =0 is directly underneath the tunnel invert afie 180" is directly above

the tunnel. The input roughness spectrum between rail and wheel gvigratin Figure 5.33.

When integrated over frequency, (a)-(d) give the four RMS curves on Figure 5.37(b).
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magnitude, while there are small maxima near the respective naturahitexguef the slab on its
bearings; the overall effect is to flatten out each spectrum theewhole frequency range.
Nevertheless, if the extrapolated +#alghness magnitude above 111Hz s indeed
underestimated, then the spectra could be increased by up to 7dB foghhbst lirequencies
shown.

The RMS levels of soil vibration are obtained by integrating thetisgpéor a realistic input,
such as those in Figure 5.34, over frequency, using the MS (5.46). Eachmepmatface is thus
condensed to a single curve which is a function of angular position.eFAgB shows the effect
of resilient slab bearings on the RMS level of longitudinal soilatibn at various radii for a
train speed of40kny h. Close to the tunnel at 10m radius, the effect of adding resilisrtoe
increase the RMS level at most positions around the tunnel, withhengoftest bearings giving
a reduction for angles greater tha2(", above the tunnel. As the radius is increased, the levels

for angles less tha®Q" drop below the directly joined case, but this is all under the tumadel a
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Figure 5.35: Longitudinal soil displacement RMS levels for a train speéd kify h, around the
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 406+ O is directly underneath the tunnel
invert and #=180" is directly above the tunnel. Calculated with the realistic hnags input
spectrum of Figure 5.33 for varying slab-support stiffnesses givingndibgral frequencies
indicated.
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thus not so important. At angles corresponding to positions above the tuithedy eesilience
generally increases the levels by a few dB, with a margmptovement provided at some
positions again only by the softest bearings. Note that the wariabout the levels for the
directly joined slab are all within abodt5dB, which is not very much compared to the tens of
dB reduction predicted using simple mapsing models.

The RMS levels of horizontal displacement in Figure 5.36 show tha@rat radius, this
component behaves in a way opposite to the longitudinal one. Any amounti@icegeduces
vibration at most positions, with the softest giving up to 7dB reductiont tlds effect is
diminished as the radius increases, with all responses collapstoglat for the directly joined
slab at 40m radius, the vibration for angles greater ®(neven being slightly increased. A
similar picture emerges from the RMS levels of verticdl displacement shown in Figure 5.37.
As for the original PSDs, the horizontal and vertical RMS leastsgenerally higher than the
longitudinal one. Since the longitudinal levels with resiliencea st&higher and end up lower

than the directly joined case as radius increases, and vicefgerse horizontal and vertical
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Figure 5.36: Horizontal soil displacement RMS levels for a spged of40 kny h, around the
tunnel at radii of (a) 20m (b) 20m (c) 30m and (d) 40m. Otherwise as for Figure 5.35.
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levels, it would seem that there is some kind of transfer of grigyg longitudinal motion to
horizontal and vertical motion as waves travel outwards from the tufmaddition, sheawave
motion will manifest itself mainly in the horizontal and verticaimponents of displacement.
Because the soil material damping acts in shear, these two camntgponk be attenuated more
by damping than the longitudinal one. It is perhaps the case thasedyctoupled slab beam
induces more shear motion in the soil than one on softer springs, sbetledfect of material
damping is correspondingly more, eventually reducing responses féalaBigpport stiffnesses
to similar levels at large radius. The situation is comm@atddy the fact that the transmission
paths from the vicinities of the axles to the observation poingatea angular position are not
the same for different radii. The longitudinal position of the observation point relative &xle
stations spaced at 20m could also be significant, especially for smaller radii.

Figure 5.38 shows the effect of doubling the train speed on the RMS lefvelertical
displacement. The graphs are almost identical in shape to thésgune 5.37; they are just
increased uniformly by about 5dB. Similarly, halving the speed was ftoutelcrease all levels
by about 5dB. This is true for the other two displacement componemisllasThis follows
from the similarity of the curves in Figure 5.33 for the input spettat different speeds, and the
observation from Figures 5.27, 5.30 and 5.31 that train speed does not changeethé ge
distribution of vibration level with respect to frequency and angulartiposi Thus the
maximum achievable reduction in RMS levels is of the order of only rédBrdless of train

speed.
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Figure 5.37: Vertical soil displacement RMS levels for antspeed of40 kny h, around the
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 40m. Otherwise as for Figure 5.35.
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5.4 Conclusions

The track slab can be modelled by a bending beam coupled to the turezl deictly or via
resilient bearings, using straightforward algebra in the wavenuddmeain. This simple model
demonstrates that Winkkeream theory is inadequate for the design of floating-slab tradkle W
the driving-point response of a slab on soft bearings is passablynodilled by a Winkler
beam, radiation of energy into the soil heavily attenuates the respicgsiab beams more closely
coupled to the tunnel. The tunnel also transmits energy to the skabab@aints away from the
load at low frequencies, whereas a Winkler beam cannot do this hslomaiural frequency”,
which marks the onset of travelling waves. Mounting the track slabsiient bearings allows
energy to propagate down the slab before being transmitted to the themelbil, so that under
the slab load, the tunnel invert response is decreased compared to ajdirexdislab beam, but
is increased at positions further down the tunnel. This is rafléctthe soil displacements, for
which resilient bearings produce classic vibration isolation foripasinext to the slab load, but
higher levels at other longitudinal positions.

The coupling equations are made only slightly more complex by tralimtion of torsion
into the slab beam to model the laterally unbalanced loads expemtedhie two rails of a real
track. The two longitudinal lines of joining for the torsional slasultein similar bending
responses to the one line for the simple slab, but appear to makédleesivucture “stiffer”,
despite using equivalent support resilience. This shows that the details abth@osinting have
an important influence on the interaction with the tunnel. Travelirgidnal waves in the slab
begin at higher frequencies than travelling bending waves, with iatipls for designing a slab
on its bearings to have a given “natural frequency”. Addition of sleddon to slab bending
complicates the responses in the soil. For some positions, bendictg afie dominant, but for
others, torsional effects lead to increased soil response withemesbearings, when
consideration of bending only would have predicted some reduction. Howedeesitappear
that, with resilient bearings, torsional waves propagate alondaier®re readily than bending
waves, rather than transferring energy to the tunnel in the vidhttye loads. This effect might
be exploited to design a floating-slab track such that input fondesée mainly torsional motion

which remains confined to the slab and is eventually dissipated by damping in the skaisbeari
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A complete track model can be constructed by adding a rail bedme gnpleslab model
using the same original wavenumber-domain coupling equations, then adéimgaessdes via an
FRF matrix for the rail. For a model of infinite length, a tégf principle can be invoked to
calculate the soil response due to inputs at every train axlensydering responses to only one
input at the middle axle. Contour plots of soil displacement PSDwuridorm random
roughness-displacement inputs between the axles and the rail shoilethteack-tunnel-soil
system attenuates frequencies below 10Hz the most and frequergiesrb@00Hz and 160Hz
the least. The highest levels occur under and to the sides of thé tesoling in a vibration
shadow above the tunnel. Longitudinal vibration levels are less ovieaall torizontal and
vertical ones. The differences between these three components phentuiesstion of which
ones are the most important in transmitting vibration into building foiordat The PSD
surfaces have undulations at regular frequency intervals due to wseeéltexing by the axles,
with train speed changing the interval but not the general distribafierbration levels with
frequency and position. Insertion Gain plots for increasingly soldr-ssipport stiffnesses
confirm that isolation is not achieved at frequencies as low ascted by simple theory. Any
reductions are modest and there are some positions around the tunnkicforesilient slab
bearings cause increased response at higher frequencies.

RMS vibration levels can easily be calculated from the PSIhss Was done using a realistic
input spectrum giving higher weighting to longer wavelengths of traegularity. Floating the
track slab increases longitudinal RMS levels near the tunnel, brgades them at greater radii
for some positions under the tunnel. Resilient bearings reduce horizamatalertical RMS
levels close to the tunnel, but make little difference at laagé. This suggests some kind of
energy transfer between the different components, although this coul@heciynfirmed by a
power-flow analysis, requiring calculation of stresses as aglilisplacements. Doubling the
train speed simply increases all RMS levels uniformly by apprately 5dB. Any vibration

reduction achieved is modest, no more than 6dB with the softest slab bearings.



Chapter 6

FIELD MEASUREMENTS

Field measurements were undertaken in February 1997 in order to solieetexperimental
data to compare with the theoretical models described in the prehiapters. The site was an
underground section of London’s Heathrow Express railway line, then undémucting. Since
there were no trains yet running, it was relatively straigivdiod to perform a series of impulse
hammer tests on the track. In the time available (one day of access te)ihiewgas not feasible
to measure vibration responses in the surrounding soil or on the surfacepnbertuseful

observations can still be made from the responses of the track and tunnel alone.

6.1 Site Description

The measurement site was near the Heathrow Airport end of ththrble Express line.
Construction work had progressed to the point where the major struobanglbnents such as
the tunnel wall and the track itself were complete. Most oftrdek was fixed directly to the
tunnel invert, but a 500m-long section was built with a floating slahindmise transmission of
ground vibration to a nearby airport hotel. This meant that measuseowend be performed on
isolated and unisolated track under similar conditions.

The cross-section of the tunnel and isolated track is shown in Féglre The concrete
floating slab rests on a 25mm-thick resilient layer of TrackelC75, a cork-particle filled
rubber material usually used for ballast mats. The space betivessides of the slab and the

tunnel floor is filled by 25mm-thick sound-deadening quilt. Longitudinallysthb is effectively

147
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ID 5675

Figure 6.1: Cross-section showing the construction of the floatibgsslek at the measurement
site. The unisolated track is the same but without the FC75 andagails. A section of tunnel
lining consists of nine pieces held in place by a smaller ke psgftown above the horizontal
centreline at left. All dimensions mm.

continuous, cast isitu with expansion joints every 100m or so. The unisolated track saithe
but without the rubber and quilt layers, resulting in one solid continuurorafrete across the
tunnel floor. In both cases the UIC 54 rails are fastened to dbeeskery 700mm by Pandrol
E2007 clips, with Tiflex FC136 rubber rail pads placed between rail and slab.

The tunnel cross-section is round because it was bored. The comledg cainsists of two
such tunnels, one for each direction of travel, whose centres are aboapagrand 22m below
the ground surface at the measurement site. The tunnel liningtsamisBm-long cylindrical

sections, each comprising nine concrete pieces held in place abeissil by a smaller wedge-
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shaped key piece. It is therefore not a continuous concrete shell. Alxu from the
measurement site in the direction of central London, the two tunneiggerat the surface via
cut-and-cover portions of square cross-section. This distance ielaoggh for the transition to
the surface to have no significant effect on the vibration behaviour of the area ot.interes
The geological survey maps for the Heathrow area [22, 23] showté¢hie ie situated in flat
and relatively low-lying ground covered by river deposits of the Thaanesits tributary the
Colne. The surface (drift) layers of 5-10m total depth are vdyicAlRivium, Brickearth (a
stoneless loam), Flood-Plain Gravel and Taplow Gravel. Going downwhed&solid) layers
underlying this surface cover are 80-100m of London Clay (brown weatlgegglays), about
25m of Reading Beds (unfossiliferous red and green mottled claysgjbaod 150m of Upper-
Middle Chalk (white chalk with some beds containing flints). Thetliteav Express tunnels are
therefore well into the London Clay layer, which is deep enough fdaykes beneath it to have
negligible effect on vibration transmission. However, the surfagerd are sufficiently close to
the tunnels and probably sufficiently different from the London Clay &on to have a

significant effect on the wave-propagation behaviour of the ground in the vicinity of thestunnel

6.2 Equipment Used

The vibration measurements presented in the following sections allembtained using a
transient testing approach with excitation provided by a hand-held imphdsemer.

Measurements were recorded by a computerised data-logging syslieequipment was battery
powered, making the outfit fully self-contained without the need fareigtor. A schematic of
the experimental set-up is shown in Figure 6.2 and details of theunmepequipment are given

in Table 6.1.

6.2.1 Transducers and Amplifiers

Five piezoelectric accelerometers were used to detect the vibregjponse to hammer impulses.
They were fixed in position on the track and the tunnel invert witHl prees of plasticine.
They are convenient because of their small size and wide opeift@ineency range including

low frequencies. Typical accelerometers give a small chargrit proportional to acceleration.
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;l: 7 B&K 2813 [ T
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rubber pad T —

(low-pass filter)

Figure 6.2: Schematic of the experimental set-up for vibration measurement alodjgiatn

Such accelerometers should be used with short;clpacitance cables to minimise charge
leakage. Their charge amplifiers must then be nearby, which dandsevenient. However, the
B&K 8318 accelerometers used have integral charge amplifiersgga current output, which
allows standard coaxial cables up to 1km long to be used without lesgnaf; thus all other
equipment can be located together, away from the accelerombkteaddition, they have a high
sensitivity suitable for the low level of response expected flwmntrtack. The accelerometers
were connected to B&K 2813 line-drive supply current amplifiers, eactvhaéh has two
channels. The resulting voltage signals were passed through plasgiveass filters with a
corner frequency of 1.6Hz to remove any DC offset before sampling.

The excitation force was provided by a hand-held impulse hammer. K &%0 force
transducer was mounted on the hammer head and the blow was deliveaekdaveanylon tip

attached to this transducer. Like the accelerometers, the tfarcgducer is a piezoelectric
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ltem Specification Use

Briel & Kjeer 8318 | 318y A/ ms? measurement of track and

accelerometers tunnel vibration response

Briel & Kjeer 8200 | 4pC/N measurement of force

force transducer applied by impulse hammey

Briel & Kjeer 2813 | 1mV/pA amplifiers for B&K 8318

line-drive supply accelerometers

current amplifiers

Kistler Type 5001 | variable gain, set at amplifier for B&K 8200

charge amplifier 55x 10° pQ V= 0.01818 my/ pC]| force transducer

In-line passive filter§ 1.6Hz high pass removal of any DC offset in
unity gain transducer signals

Rubber pad 9mm-thick Tiflex FC846 (stiff | low-pass filtering by

black rubber with cork particles) | increasing duration of
hammer impulse

National Instrumentg 8-channel 12-bit A/D @nversion | sampling transducer time
DAQCard 1200 1022.5Hz sampling rate and signals

data-acquisition 1024 sample points used

PC Card gain set to 20

Toshiba T2130CT | 75MHz 486 microprocessor control of DAQCard 1200,
notebook computer | 16MB RAM data storage and analysis

500MB hard disk

Table 6.1: Details of the equipment used to determine track and tunnel impulse responses.

device, but its charge output is proportional to force. A Kistler Bl charge amplifier was
used to convert this into a voltage signal, which was also passedrtadu@Hz higfpass filter
before sampling. The gain was chosen by trial and error to gre#tagge level comparable to
that of the greatest accelerometer output. The Kistler aerptbmes as a mains-powered

device, but in this case it was converted to run on two rechargealsiellgedet up as#12V DC

supply.

6.2.2 Anti-Alias Filtering

The measured input force and resulting accelerations were lgiggehpled. The Nyquist
criterion requires that the sampling frequency be greater thae tihe highest frequency

contained in the sampled signal in order to avoid aliasing, wherefregirency components
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appear as lowdrequency ones (see Newland [143, 144] or Stearns [168]). Thus it is standard to
apply a low-pass filter to signals before sampling them, soathabmponents with frequency
greater than the Nyquist frequency (half the sampling rateeareved. The usual way to carry

out this low-pass filtering is with some appropriate electronics.

A different approach was used here. Mathematically, an impufsbec&dealised as a Dirac
delta function of zero width in time and infinite height. Howeverea hammer blow has a
finite duration, which can be increased by applying the blow via a rydaltkas used here. A
longer duration results in reduced higher-frequency content, justifiddllas’s. A smooth
impulse of finite duration can be considered as a half sine wavirdeedistribution expected
from a perfectly elastic impact. Such a puige) of durationt,, magnitudea and centred on

t =0 takes the form

an co{ﬁj s )
2t, Wi, 2

0, [tf>2
2

y(t) = (6.1)

The frequency content of the time signalt) of (6.1) is described by its Fourier transform

Y(«), which is given in tables in Maloney et al [127] as

Y(w)

[ wye dt
%{Sin{‘doz‘ ”) + sin{wtoz+ ”ﬂ o # tﬁ (6.2)

am o
4 |a)|—t0

where sinc (x)= sinfk Y x. Several rubber pads were tested in the labgratdh the hammer

and a digital-storage CRO to assess the smootlofetf®e force impulse and to measure its
duration. The FC846 pad used in the field measenésnwas chosen because it gave a
repeatable smooth impulse like the half sine wa@mnme specimens gave a “double bounce”
effect) with a duration ot, =4ms. Figure 6.3(a) shows a representation ofithpilse. Its

spectrum calculated from (6.2) and given in Fig6t8(b) shows that the impulse has no
significant frequency content above 200Hz. Fig6r@ also shows that halving the duration

doubles the peak force for an impulse of the samagnmude, and increases the frequency
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Figure 6.3: Unit impulses of finite duration represented by (a) siad waves according to
equation (6.1) have the frequency-domain spectra (b) calculated fronbad6a2). The longer
4ms pulse approximates the observed shape of the impulse when using the FC846 rubber pad.

content to 400Hz. This technique of manipulating the impulse duration isadqito lowpass
filtering. The track was only excited by frequencies up to 200HH#,is@s a linear system — a
reasonable assumption for small-magnitude vibration — the responkesntaiin no significant
components of frequency higher than this either. Using the rubber pead of kelectronic low-

pass filtering meant one less piece of equipment to carry to the measurement are

6.2.3 Data-Logging System

The data sampling was performed by a National Instruments DARQEC200, which fits in a
PCMCIA slot in a notebook computer. The DAQCard provides eight chawhel®-bit

analogue to digital conversion, of which six were used for the sifjoatsthe force transducer
and five accelerometers. The maximum sampling rate is 100kHe, ttman sufficient for the
low frequency range considered. Given the Nyquist criterion and the fileffeg of the rubber
pad, a sampling rate of 1kHz was chosen; the DAQCard’s nearest settingkwitlarsnels in use

was 1022.5Hz. Preliminary tests showed that 1s was long enough tedhptaransient track
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responses, so 1024 samples per channel were taken for each measseeméhe DAQCard
provides presampling analogue gain of 1, 2, 5, 10, 20, 50 or 100, the same value applying to al
channels. A gain of 20 was found to be the maximum useable withouatsefuany of the
channels. The DAQCard’'s sampling method is to poll each channehinvitinin one sample
period. This results in a small artificial phase shift from cim@nnel to the next, which must be
corrected at the data analysis stage.

The DAQCard was controlled by a Visual Basic program running off dskiba notebook
computer. This program was used to make all card settingsiatatogging, check for channel
saturation and save sampled data to the computer's hard disk. Themexpar procedure
involved one person operating the computer and providing a countdown to the startptihg
for a second person using the impulse hammer. Some Matlab progemmshen used to
examine the saved raw data, in particular to check that the impatsemooth. Responses for
any given configuration of accelerometers and impulse input weraeasured twice to allow
repeatability to be checked.

Figure 6.4 shows the railway tunnel with accelerometers sebug #ie track slab. The rest
of the measuring equipment can be seen in the background. Figure 6.5 shotire mobber
pad was placed on the concrete surface where the impulse wasl apjle accelerometers
placed across the slab in this case. The rubber pad was steadied wehemédite the hammer

was wielded in the other.

6.3 Data Processing

The aim is to calculate frequency-response functions (FRFs)tfretime records of input force
and acceleration. Since the recorded signals are discretecahepe transformed into the
frequency domain by means of the discrete Fourier transform ((38&€)Newland [143, 144] or
Stearns [168]). DFTs can be calculated using the fast Fowresfarm (FFT) algorithm. The
FRFs are then given by the ratios of each transformed acamiei@the transformed force, with

the appropriate sampling phase correction applied in each case.
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Figure 6.4: Photograph of the tunnel, showing at left the supports forcttraplete traciside
walkway and above them the wedge-shaped keys in the tunnel lining.cddterameters are set
out along the floating-slab track and the rest of the equipment can be seen in the background.

Figure 6.5: Photograph showing the use of the impulse hammer in conjunction whtfeapad
resting on the structure to be excited. Here the accelerometers are setssuthectrack.
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Figure 6.6 gives typical time records for the sampled force aoelemation signals with
accelerometers placed along the track slab. There are sataeefewhich were introduced by
the measuring equipment and must be removed before FRFs are edlcitaich record has a
startup exponential and decays to a non-zero DC offset long after ttsemnahas finished. In
addition, the impulse in Figure 6.6(a) overshoots “zero” after its figak. The records also
contain small-magnitude random noise either side of the transients, partisigaiicant for the
low signal levels from accelerometers far from the impulseh @s those in Figures 6.6(e) and
(. It was found that the noise issuing from accelerometer qyr&i6.6(c), was of greater
amplitude than the others, so this accelerometer was alwayswisad the response was
expected to be large. Some approaches to removing noise in sigmalselectronic
instrumentation are discussed in Wilmhurst [190], on which the followigrgakconditioning
procedures are partly based.

An interactive Matlab program was written to extract the trapulse and acceleration
signals from the recorded ones. This program plotted a given recsate®n at each stage of
conditioning, allowing graphical selection of points when necessary.pifdggam was used to
condition each measurement set of one force record and five atoaleeaords, and to save the
conditioned records in a new data file. The conditioning processebgdmpulse and the

accelerations are slightly different, so will be described separately.

6.3.1 Conditioning the Impulse Signal

The steps in conditioning a typical impulse record are illustristdelgure 6.7. The final DC
offset in the raw signal is apparent in Figure 6.7(a). A pointaftdr the impulse, marked by a
cross, is manually selected and the mean of all points fromahisetend of the sample is
calculated. This end mean is subtracted to give the signal in Figure 6.7(b).

Two points defining the ends of the start-up exponential, marked by €liassgure 6.7(b),
are then manually selected. All sample points between thdeskkends are used to determine

the coefficient®A andb of the function

y,(t) = Ae™ (6.3)
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Figure 6.6: Typical raw time records of (a) a force impufgdied midway across the floating
slab, (b) slab acceleration at the impulse, (c) rail acdelaramext to the impulse, and slab
accelerations (d) 5m, (e) 10m and (f) 20m along the slab from tpalgex After signal
conditioning and transformation by FFT, records({byeferenced to record (a) give the FRFs in
Figure 6.18.
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Figure 6.7: The various stages of conditioning an impulse record thsingf Figure 6.6(a) as
the example) are (a) subtracting the end mean, (b) subtractingtaitap exponential, (c)
eliminating the return overshoot of the impulse caused by the highiparsgd) windowing the

non-zero portion of the signal and (e) calculating the position of thals®'s peak for use in

conditioning the corresponding acceleration records.
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via a linear regression dnand log, y,. The starup exponential (6.3) is then subtracted from
the whole signal to give the signal in Figure 6.7(c).

The overshoot just after the peak of the impulse, still presengurd=6.7(c), is due to the
high-pass filter used (see Cryer [38]). Such a filter commisi first-order resistor-capacitor
network with unit gain at high frequencies is described by the differential equation

df _ dg
= =24 6.4
ot it 09 (6.4)

where f (t) is the input signalg(t) is the output signal and , is the filter's cut-off frequency

(1.6Hz in this case). Integrating (6.4) up to timesults in the equation

f(t) = g(t) + a,[_o(halt (6.5)
for the input signal. Applying the integration(B.5) numerically (by the trapezoidal rule) to the
signal in Figure 6.6(c) taken agt) results in the impulse signal of Figure 6.6(detalasf (t).

The signal in Figure 6.6(d) still contains somed@n noise before and after the impulse.
This noise is not very noticeable here becauséntbpelse is of relatively large peak amplitude,
but it still affects the smoothness of FRFs. Timiglate the noise, the non-zero part of the signal
is windowed. The start and finish of the impulse manually selected (marked with crosses),
and the signal is multiplied by a window of unitgn&ude between these two points and tapered
off to zero over 10 samples on either side. Tiperiag avoids discontinuities which can arise
from the use of a rectangular window; such discuiities introduce spurious frequency content,
known as spectral leakage. This is not as gre@sare for a transient signal such as this (where
windowing is used to remove extraneous noise) aw fperiodic signal (where windowing is
used to make the signal suitable for transformalipidFT). A Hanning window (see Stearns
[168]) might be used in the latter case. The wimdsed here makes the parts of the signal
which are expected to be zero actually zero, awshio Figure 6.7(e).

Conditioning the acceleration records, describeth@next section, requires knowledge of
the precise position of the peak of the impulse gpposed to the maximum magnitude

recorded). Taking the tip of the impulse as apnately parabolic, the equation

y, = at’ + at+ a (6.6)
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is fitted by a leassquares method to the signal maximum and the two samples @iinef &.
These three points are marked with crosses in Figure 6.7(e). cila peak of the impulse is

assumed to occur at the parabola’s turning point, given by

Mg ooz m B 6.7)
dt 2a,

This value ot usually falls between two samples.

6.3.2 Conditioning the Acceleration Signals

The steps in conditioning a typical acceleration record arerdbest in Figure 6.8. The removal
of the DC offset, the start-up exponential and the extraneous noisadiywing, Figures 6.8(a)-
(c), are carried out in the same way as described for the gaen&tions on the recorded impulse
signal. These three steps may seem to be all that is mghireexamination of the velocity
reveals otherwise.

The velocity y(t) is the integral up to timeof the acceleratiory(t) . This integration can be
performed numerically on the discrete acceleration record usingajpezoidal rule. Thus the

discrete sampled velocity, can be written as a summation

Wzimm (6.8)
=

of the discrete sampled acceleratipn whereAt is the sampling period. Applying (6.8) to the
windowed acceleration signal results in the velocity signal gdirféi 6.8(d). This shows a non-
zero final velocity, indicating a non-zero average of the recordeelemation. This does not
tally with the observed behaviour of the tunnel system where respobgesisly decayed to
nothing very quickly. The acceleration record needs to be correctbatsihe final velocity is
zero.

When an impulsive force is applied to a system initially &t thsre is a step in the velocity
and hence an impulse like a Dirac delta function in the acceleratt is postulated that this
initial acceleration impulse was not properly captured with thgbag rate used. This situation
can be remedied by adding a corrective acceleration impulse tnghef the true peak of the

input force, determined in the previous section. The magn#ygef this corrective impulse is

given by
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Figure 6.8: The various stages in conditioning an acceleration r@ming that of Figure 6.6(b)
as the example) are (a) subtracting the end mean, (b) subtrdtirsgartup exponential, (c)
windowing the non-zero portion of the signal, (d) calculating the finakitg step arising when
the windowed acceleration is integrated and (e) using this to apgayrective initial impulse to
the acceleration signal to give (f) a final velocity of zero.
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_ﬂ - _ (Yiinar = Yinit)

6.9
At At (69)

g =
that is, the negative of the (falsely npero) average acceleration, with the velocity sfgp
calculated as the difference in amplitude between the two samphigd with crosses in Figure
6.8(d). The time interval for determining the average acceleratiAt because the correction is
applied across just one sample; if the mean acceleration uetracted from the whole signal,
the total sample time would be used instead.

The peak force position where the correction should be applied in géalkrdletween two
samples, because of both the peak calculation (6.7) and the as#icipling phase shifts. Thus
the acceleration correction (6.9) is implemented as the sum cddparate impulses applied at
the two samples either side of the calculated force peak andhteei¢p have the resultant
impulse centre in the correct position. Figure 6.8(e) shows thectamracceleration with the
two altered samples marked with crosses. Integrating thectaracceleration gives a final
velocity of zero, as shown in Figure 6.8(f).

Figure 6.9 shows FRFs calculated from the time records of Figufeend 6.8 using various
combinations of raw and conditioned impulse and acceleration data. €bd-RFs based on at
least one raw data record all contain periodic variation of 5-10dBitndg with a frequency
interval of 2-3Hz. The small-magnitude random noise apparent on sitleenf the transients in
the time records probably contains frequencies above the Nyquist frggeeme no low-pass
filter was used before sampling. These frequencies will have bkased to lower ones,
resulting in the variation in the FRFs. Nevertheless, this \@riatan be eliminated by
windowing the non-zero portions of both the impulse and acceleration reasrslspwn by the
one smooth FRF. Conditioning the acceleration has a very signiéffact on the calculated
FRF, particularly below 40Hz. This effect is due to the indi@eleration correction applied to
give a zero final velocity. Conditioning the impulse and acceteraticords as described above
results in usable data despite the sampling rate being too lowrextty capture some features

of the sampled signals.
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Figure 6.9: FRF calculated as the ratio of the FFT of thdeaatien in Figure 6.8 to the FFT of
the input force in Figure 6.7, using: the raw unconditioned data in both; dasesully
conditioned impulse and the raw acceleration; the raw impulse andultiieconditioned
acceleration; and the fully conditioned data in both cases.

6.4 Results

Some basic modelling can be considered before examining the metsgiedesponses. In
Section 5.1.3 it was found that the drivipgint response of a continuous simple slab beam on
the tunnel is reasonably well approximated by a Winkler beam maltlebiigh other responses
are not) if the slab bearings are soft compared to the tunnel.inMegtexperimentally measured
driving-point responses of the track can therefore be compared fdargies to the Winkler
responseY(x,a) given by equation (5.15) witkk =0, since the Heathrow Express track has an
effectively continuous slab. The slab-beam parameters given i Bablrepresent design
values which were used for the floating-slab section of the Heathrow Expesis lihe notation

of (5.15), a mass per unit length om=3500kg m, a bending stiffness of

El =1430x 10 Pa.rh and a foundation stiffness &, =50x 10° N'n?. Thus the natural

frequency that the floating slab was designed fofnisiq/kw/mzlgHz. These parameters
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can be used with (5.15) to calculate the expected drpimgt displacement FRF of the track
slab. Since the measured responses are accelerationssd issaful to examine the expected
acceleration FRF, which is simply given bw’Y(0, w).

The driving-point displacement and acceleration FRFs of the Winkéen Imeodel are given
in Figure 6.10 for various values of viscous damping fa¢ts used in Chapter 2. This form of
damping is frequency dependent such that a complex stiffness pemgtith,,” = k(1 + i)
is used in equation (5.15). For small values¢othe displacement, Figure 6.10(a), shows a
distinct resonance at the 19Hz natural frequency, but this peakttendéd and eventually
depressed as the damping is increased. Similar behaviour is shokendnceleration in Figure
6.10(b).

Another way to describe damping is with a constant loss fgcagrused in Chapters 4 and 5.
In this case, a constant complex stiffness per unit lekgth= k,,(1+ i) is used in equation

(5.15). Figure 6.11 shows the driving-point displacement and acceleratiés fBRvarious
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Figure 6.10: The effect of varying viscous slab-bearing damping d)tltésplacement and (b)

acceleration driving-point responses of a Winkler-beam model of aaénty slab. Slab-beam

properties from Table 3.1.
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Figure 6.11: The effect of varying loss-factor slab-bearing dangmntpe (a) displacement and
(b) acceleration driving-point responses of a Winkler-beam model dotiieng slab. The loss-
factors are equivalent to the values of viscous damping in Figure @@ &Vinkler beam’s
natural frequency of 19Hz. Slab-beam properties from Table 3.1.

values of losgactor damping chosen to be equal to the viscous damping of Figure GO at
19Hz natural frequency of the slab on its bearings. The acceferkigure 6.11(b), looks very
similar to that in Figure 6.10(b), with the resonance peak well ang disappearing with
increased damping. However, the displacement response, Figure 6.1fléderighan that in
Figure 6.10(a) below about 40Hz for the two higher damping values, althougbhaeiour for
low damping is very similar with a prominent resonance. The mgklfdamped displacement
response withy =9.562 is reminiscent of the response of the simple slab beam joinexd i
the tunnel invert, shown in Figure 5.4. In Figure 5.4, the Winkler beam rdodslnot agree
well with the slab-plus-tunnel model, but the damping in the “efféctivimkler stiffness of the
tunnel invert does not take into account the radiation of energy intatfeeisding soil in that
case. Figure 6.11 shows that the Winkler-beam driving-point responseprasent that of a

slab beam closely coupled to a tunnel if the Winkler foundation damping is high enough.
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The experimentally determined track FRFs can now be consideregl.w&he obtained from
a given set of conditioned impulsesponse data by taking the ratio of the FFT of each of the five
acceleration records to the FFT of the impulse record for thatGarections were applied for
the calibration factors of the instrumentation and the phase shiftdodtlee sampling by

sequential channel polling. A Matlab program was written to carry out these opgrati

6.4.1 FRFs Measured Across the Track Slab

The accelerations measured across the floating slab witheadppdied at the middle of the slab
are given in Figure 6.12. The driving-point acceleration 2 looks likadbeleration in Figures
6.10(b) or 6.11(b) when the damping is high; the other positions across liheaiasimilar,
with no 19Hz resonance peak apparent. Acceleration 2 is highest brirtg tiee input force,
and the off-slab responses 0 and 4 are significantly lower than teltwmones. Given the
symmetric excitation, the edge accelerations 1 and 3 would betedptc have the same

magnitude and be in phase with 2. However, there is a difference of up to 10dB between 1 and .
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Figure 6.12: Vertical acceleration FRFs across the floatety with a central vertical input

force applied next to accelerometer 2. The cross-section tdt sippws the accelerometer
positions, with the thick line indicating the slab boundary; thus acee&ters 0 and 4 are on the
tunnel invert either side of the slab.
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and 1 is about 180° out of phase with 2 and 3. Although the cause for theusaghiterence
is unclear, it is possible that the recorded 180° phase differeaddisal. The B&K 2813 line
drive supplies have a slider switch for each channel which can e egter “grounded” (only
the AC component of the accelerometer signal is passed) orirfgdogthe whole signal is
passed). It was found that for the same input, “floating” output isfopitase with “grounded”
output. While all these switches were checked to be in the “grounplesition before
commencing measurements in one location, they are very eadtgrtedly knocked into the
other position. Therefore the observed phase difference between 1 and Bas@ubeen caused
by accelerometer 1's channel being in the “floating” position.

The displacementY(«) corresponding to a measured accelerat§n) can be obtained
from the relationY(w) = - Y(w)/w® . Figure 6.13 shows the displacement FRFs corresponding
to the acceleration FRFs of Figure 6.12. The same comments nadbeabout the magnitudes
and the phases: the relative phases are now quite clear. Tdelefinitely no resonance peaks

at 19Hz. The shape of the driving-point displacement magnitude 2 lookdikeerthe most
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Figure 6.13: Vertical displacement FRFs across the floatadg with a central vertical input

force applied next to accelerometer 2. These are derived froactleéeration FRFs shown in
Figure 6.12.
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highly viscously damped response (the chained line) in Figure 6.10¢gr thain any of the
displacements in Figure 6.11(a). This implies that the energylies$o the combined effect of
material damping and radiation into the soil increases with fregu@scdoes that modelled
theoretically by viscous damping. Also, as noted earlier, itsféater damped counterpart in
Figure 6.11(a) resembles the driving-point response of the slab-plus-tnodel with a directly
joined slab, shown in Figure 5.4. These factors suggest that tHerévedixpress floating slab
is more closely coupled to the tunnel than taken into account by theabrigisign calculations,
which assumed a rigid tunnel invert.

Figure 6.14 shows the vertical accelerations across the unisoktkdvith an input force at
the middle. Compared to the corresponding floating-slab results umeF&g12, they are all of
similar magnitude, with accelerations 1, 2 and 3 reduced by about 10dBtheverhole
frequency range, and accelerations 0 and 4 are the same as bamhases are all similar and
there are no out-of-phase discrepancies as discussed above. The obsdnetidns in

magnitude indicate that energy is being propagated more reathly tonnel and soil than when
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Figure 6.14: Vertical acceleration FRFs across the unisolatekl with a central vertical input

force applied next to accelerometer 2. The dotted line in the-sectisn at right indicates
where the slab boundary would be were it a floating slab.
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the slab is floated, demonstrating that the FC75 rubber does alter the track dynamics.

The responses to an aféntre force applied to the floating-slab track are shown in &igur
6.15. As for the central load case of Figure 6.12, the off-slab resporeses 4 are generally
lower than the on-slab ones, but acceleration 0 is higher, being tdoer applied load at 1.
Since the accelerations of both slab edges 1 and 3 are of simadgitude, the higher response
at 0 compared to 4 confirms that the slab is closely coupled tarthelt Stiff coupling results
in direct transfer of energy from the hammer input force atdbsition O rather than an indirect
transfer through the induced motion of the slab. The latter would bedvipt similar levels at
0 and 4 given the similar levels of the respective adjacentdtmsd and 3. Also note that with
this off-centre input, the edges 1 and 3 move more than the centre 2indibates a rocking
motion, that is, torsion of the slab. The phases are not entirgy ahethis, but since this
measurement set was done at the same time as that showars @=L, the same artificial 180°
phase difference could be present in acceleration 1. If so, this weald that the edges 1 and 3
move nearly out-of-phase here, instead of nearly in-phase as recivtidd.the combination of

bending and torsion expected to be induced by an off-centre input would notimgserfectly
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Figure 6.15: Vertical acceleration FRFs across the floataigweith an off-centre vertical input

force applied next to accelerometer 1.
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out-of-phase edge accelerations, a significant phase difference wonddm the presence of
slab torsion. If there is no phase error, then all positions on th€1sl2 and 3) move roughly
together. This could indicate that the pivot point for the rocking magiomot the centre of the
slab, but this would not tally with the observed magnitudes where titiee & moves less than
the two edges. In either case, the important observation is thegldéige phase between the
slab edges idifferentfrom that for a central input as given in Figure 6.11.

The equivalent accelerations for the unisolated track are giveiguneF5.16. Like Figure
6.14, the levels at 1, 2 and 3 are reduced by about 10dB compared to the 8taddingrhe
situation is now one of vibration propagation through the continuous concréte watk slab
and tunnel invert. The magnitudes depend purely on distance from tregierdivrce, with no
rocking motion manifesting itself in the responses. The highestitudg is at 1, closest to the
impulse, and the magnitudes decrease with distance, 3 and 4 beingdaktds\hey are furthest
away. The phases confirm this. The phase of 1 is near zerojtsisi¢he driving point; the
phase becomes more negative (taking phase wrap-around into accouni)rttie the

measurement point is from the input force, indicating longer tige |ahese differences from
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Figure 6.16: Vertical acceleration FRFs across the unisoleteki with an off-centre vertical
input force applied next to accelerometer 1.
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Figure 6.17: Vertical and lateral acceleration FRFs actasdldating slab with an off-centre

vertical input force applied next to accelerometer 1. Accelaemn® and 4 were placed on the
slab on their sides, next to accelerometers 1 and 3.

Figure 6.15 again show that the insertion of the FC75 rubber changes the track dynamics.

Lateral slab acceleration is compared to vertical slab eredEn in Figure 6.17.
Accelerometers 0 and 4 were fixed to the slab on their sidesthsf vertically, placed next to
accelerometers 1 and 3. The lateral motion induced by a verticad fnput is clearly
significant, since the lateral accelerations 0 and 4 are afasimagnitude to the vertical

accelerations 1 and 3 at the same positions.

6.4.2 FRFs Measured Along the Track Slab

Figure 6.18 shows the vertical accelerations along the centre slaiheexcited by a central
force. Like the measurements across the slab, there are ncesle@ance peaks, let alone one at
19Hz. The acceleration 2 of the rail next to the input follows ahdlhe driving point O very
closely. This is because the relatively stiff rail pads give a rdtacpency of the rail on the rail
pads well above the 200Hz maximum frequency considered here, so ttal theves with the
slab when the slab is excited. Acceleration 0 is also similaoth magnitude and phase to the

corresponding slabentre response 2 given in Figure 6.12, confirming the repeatabilttyisof
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Figure 6.18: Vertical acceleration FRFs along the middle offlttaing slab with a central
vertical input force applied next to accelerometer 0. The plan view of tlkeatraght shows the
positions of the accelerometers, with the thick lines again imdicdéhe edges of the slab;
accelerometer 2 is mounted on one of the rails.

driving-point response. The responses 1 at 5m down the slab from the input, 3 ad @nat
20m show more variation than the driving point O, but essentially they 8tadvthe response
decreases with distance from the load. The low levels between &@H220Hz compared to
acceleration 0 indicate that less energy is propagated dowrathenghis range than at higher
frequencies.

The corresponding responses along the unisolated track are shown in &:ifure The
accelerations are smoother than in Figure 6.18. Having the tréckx&d to the tunnel invert
has suppressed some of the floating-slab dynamics. The driving-ponse 0 is significantly
lower for frequencies above 40Hz, and the responses 1, 3 and 4 at incdistsinge from the
input are between 10dB and 15dB lower than those in Figure 6.18, particularly above 80Hz. Thi:

is further confirmation that the FC75 rubber does influence the track response.
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Figure 6.19: Vertical acceleration FRFs along the middle ofitieolated track with a central
vertical input force applied next to accelerometer 0. The dotted in the plan view at right
indicate where the edges of the slab would be were it a floating slab.
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Figure 6.20: Vertical and longitudinal acceleration FRFs alongnikele of the floating slab

with a central vertical input force applied opposite acceleronieteAccelerometers 0 and 4

were placed on their sides next to accelerometers 1 and 3.
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Longitudinal accelerations of the floating slab are compared txalednes in Figure 6.20.
As in obtaining the lateral accelerations given in Figure 6.17|eaoceeters 0 and 4 were fixed
to the slab on their sides next to accelerometers 1 and 3, butteisligned along instead of
across the slab. The vertical accelerations 2, 1 and 3 show goothbdjtgacompared to the
same accelerations in Figure 6.18. The longitudinal acceleratiomsd04 are of similar
magnitude to the vertical accelerations at the same positiongs Idngitudinal motion of the
slab is also significant.

Figure 6.21 gives the vertical acceleration of the tunnel invert toettte floating slab at
various longitudinal distances from a central slab force. Theeslge acceleration O is very like
the rail acceleration 2 from Figure 6.18. This confirms thatdilemoves with the slab in the
frequency range considered. Since in Figure 6.18 the rail motion 2 aoehtinal slab motion O
are comparable, Figure 6.21 shows that the edges and centre obthawdaoughly the same
motion with the symmetric central loading, which accords with Eigbul2. The off-slab
accelerations 2, 1, 3 and 4 look quite like the central acceleratiotefonisolated track, Figure

6.19. The off-slab response decreases with longitudinal distance, altabagé 150Hz the
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Figure 6.21: Vertical acceleration FRFs along the tunnel invetttoghe floating slab with a
central vertical input force applied opposite accelerometers 0 and 2.



CHAPTER 6. FIELD MEASUREMENTS 175

response 4 at 20m distance is greater than the others. This codi be numerical errors
introduced by the low signal levels recorded at large distanaestfre input force, as shown in
Figure 6.6(f). Generally, the eflab accelerations are 10-15dB lower than the corresponding on-

slab results given in 6.18, particularly above 80Hz.

6.5 Conclusions

The experimental results presented in this chapter illusteteral features of the dynamic
behaviour of a real floating-slab railway track. While comparigorsn equivalent unisolated
track show that mounting the track slab on a rubber ballast mat doesabbt alter responses,
no resonance peak corresponding to the theoretical natural frequency chsebeed: all the
responses are relatively smooth with no prominent resonances iatth# frequency range
considered. The measured driving-point response of the floating staimiiar to that of a
Winkler beam with a highly damped foundation, which in turn resemblesetponse of a
simple slab beam joined directly to a tunnel. These factors stutiget the floating-slab track
examined is closely coupled to the tunnel, in contrast to the dessymptions. Other
significant aspects of the floating-slab dynamics observed in tesumed responses include
torsion, lateral motion and longitudinal motion. The measured floataigFRFs show that off-
slab accelerations are lower than on-slab ones for an input foréedagapthe track. This might
be taken as proof of vibration isolation, but as the theoretical resuthapter 5 have shown,

the actual soil response cannot be predicted by track response alone.



Chapter 7

CONCLUSIONS AND FURTHER WORK

This chapter summarises the conclusions reached from the workbedédsani the previous

chapters. Based on these conclusions, suggestions for further work are given.

7.1 Conclusions

The results presented in this dissertation demonstrate that riipbe smassspring models
commonly used in the design of floating-slab track are inadequateisgetiaey ignore the
interacting three-dimensional dynamics of the track, tunnel and Soith simple models give
misleadingly large estimates of vibration reduction. The resoltsomplete track-tunnel-soil
models as developed in this dissertation suggest that insertioprémiistions greater than 6dB
are exaggerated, and that floating the track slab may acinatBase transmission of vibration
unless resilient bearings which are very soft compared to the tunnel and soil are used.

An infinitely long double-beam model of floating-slab track has begteimented by means
of a repeating-unit method utilising a dynamic-stiffness approacton8ept of total transmitted
force has enabled investigation of the effect of slab length,naa¢s and axle spacing on track
performance. Multiple track inputs at train axles have also beesidered. All these
parameters significantly influence track dynamics. However ajywsoach considers the tunnel
invert to be rigid, an assumption which has been shown to have severe limitations.

The objective of creating an analytical model of the three-diraeakitrack-tunnel-soil

system has been realised by combining beam track models with &ituso#é model consisting
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of an infinitely long thin cylindrical shell surrounded by an infinitecaelastic soil medium.
The equations of motion for the tunnel and soil are solved in a modal walverueguency
domain, and the track models are coupled to the tunnel by a spatial canvahethod,
achieved by wavenumber-domain multiplication. Final results are obdthyna spatial inverse
Fourier transform. Three different track models have been considesediple slab beam in
bending only, a slab beam in bending and torsion, and a full track commisagbeam and
slab beam in bending. Random process theory has been used to caleujadever spectral
density of soil vibration around a tunnel with the full track modeljithek inputs due to a train
are represented as roughness displacements between axle anals#®s rail beam. RMS soill
vibration levels can easily be calculated from the spectra.efféet of varying the slab-support
stiffness has been investigated, showing as mentioned above that only modeshvidatction
is achievable and that using a “little bit of rubber” to isolate the slab can haveeachseriés.
Various aspects of the dynamic behaviour of floating-slab track hame dbleserved in
frequency-response functions calculated from impulse-response meastg@made in a railway
tunnel. This data confirms that track response can be highly dampéa icuation of energy
into the surrounding soil and that track torsion is important. Signtfieéeral and longitudinal

slab motion has also been observed.

7.2 Recommendations for Further Work

The track-plus-tunnel models presented in this dissertation have onlgeredsvariation of
slab-support stiffness. A more comprehensive parametric study efffdet of track design,
tunnel geometry and soil type (for instance) on transmitted vibrataarid be useful. In this
context the choice of appropriate material properties for thieerdgsirack elements and the soil
also deserves attention. A calculation of power flow into the smilldvcheck that all energy is
accounted for in the current models and could also form a betterftragisantifying vibration-
isolation effectiveness of different track and tunnel designs. The®ope for more extensive
experimental investigations than those undertaken, including measureofesudg vibration

levels with trains running in a tunnel.
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To make the analytical approach presented more attractive fasusecomparative design
tool, the programs used could be made more efficient. This woulddecinultiple runs with
different parameter values. The programs were run in the interpret&bMavironment, which
is quite efficient for vectorised operations but relatively slowlboping procedures. Despite
extensive use of vectorised code, many looping iterations wergesfilired, to solve matrix
equations at each frequency and wavenumber step for example. Confalmgpgrams would
significantly increase computation speed. While it is possiblseégorecompiled functions with
Matlab, the greatest speed gains would probably be obtained by usiagraldvel language
such as C for all the program code. This would also have the advahtagee subtle memory
management to control the manipulation of large amounts of data subb asnel and soil
modes.

The track-plus-tunnel models could be extended to consider more contpstatgions than
covered in this dissertation. Discrete rail pads and discrsiéen¢ bearings in floating-slab
track models would introduce parametric excitation like the slgegesage effects noted in the
literature on ballasted railways. The effect on soil vibratiorie€rete track slabs could be
investigated. The torsional slab model could be extended to a ftklimadel including rails
and wheels. Lateral slab motion and the resulting tangential tunpug$ could also be added to
the model. The simple train model of equally spaced axle mass&s be extended to bogie
pairs of axle masses; a more complete train model could be wsb@dk the assumption that
only the unsprung mass has a significant effect on ground vibration.

Other factors which could be considered are a second tunnel nearbgetlsaiface of the
soil and inhomogeneity in the soil. Ultimately, the transmissionvibfation from an
underground railway into a nearby building could be modelled. While ar®lytiethods can be
applied to some special cases, a numerical approach such as REM«BHd have to be used
for many situations which take these extra factors into accoumé. traick-plus-tunnel models
described in this dissertation could be used to validate a simplenvefssuch a numerical

model prior to introducing realistic but analytically intractable featuresit.
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Appendix A
BOUNDARY-CONDITION MATRICES FOR DOUBLE-

BEAM UNIT

If the 8x8 matricesN1] and N] of equations (3.6) in Chapter 3 are partitioned as follows
_({My] M ] _{INy] [Ny
] {[Mzﬂ M 2_7]} and N 'LNZJ [Nzg}

then each 4x4 submatrix is as given below. The eigenvector compomentiefaned by

V,={V, Vi T and V, ={V,, V,} T

{1 1 1 1131V,
M,] = {a, ia, —a, —Ha}V,
{1 1 1 11}V,
_{ a, ial -a, - al}V12
{1 1 1 11}V,
M,,] = {a, ia, -a, —a,}V,
{1 1 1 11}V,
_{ a, iaz —-a, - az}vzz
'{ emt é'alL gt éialL }V11
M,] = {a.e™" |a'_1e"’1L —a'_le"’1L —n'__le'”’lL}Vll
{ et dait gt gt 1V,
{ae" iad™t -a,e" -}V,
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{ et @™ et g7t PVy
M) = | (O T e e
{ e™ g e"? e }sz
{a,e™ ia,d" -a,6" -i,6 9%}V,
CEL{ (@) (@) (@) (Ha) IV,
Ny = | B @) G0 (@)t [V
' Elz{ (al)3 (ial)s (_al)s (_ial)s}VlZ
“EL{(a)® (a)® (-a)® (Ha)}IVe,
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Appendix B
SHELL EQUATIONS AND COEFFICIENT MATRICES

FOR CYLINDRICAL SHELL & ELASTIC CONTINUUM

B1. Volmir's Shell Equations

The general dynamic shell equations as presented by Volmir [181]gisen below.
Consideration of dynamic equilibrium in tlkxey andz directions yields equations (B.1), (B.2)
and (B.3) respectively. The nomenclature is the same as in Chapter 4 with tios addif and
k,, the principal curvatures of the shell. For a cylindrical skgh-0 andk, =%/a. Noting
also thatdy = add, (B.1) to (B.3) can be simplified to equationsl{4- (4.3).

e ) 852 s+ 9320 ) 2

Xy
h? Jw B-v) |, (1-v) _ aw
2ae 1—2(kx . K" )(Myz (kx+|/ky)d( (B.1)
N (1- |/2)qX _ (1—|/2)(5'_22¢ 0
Eh E A&
(1+v) -, , M2 Wi
T R e L e s ]
B-v) , (1-v) h? Fw v
+E(ky 2 K )0”58 MY (kkax)o}/ (&2
-v)), _ (1= Fo _
M= T
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R R (LR
kxi_;iy_g (kxwky)% '(kv“’kx)% + (k2 +2vk K+ k2o .
BB o Sk
) %QZ +p(1_—;)% = 0

B2. Coefficients for the Cylindrical Shell

The elements of the matribA] used in equation (4.6) to calculate the displacements of the
cylindrical shell are given below. These coefficients arefuleones derived from the Volmir
[181] or Flugge [57] shell equations. The terms in these whichdaligicamal to those in the
coefficients derived from the simplified shell theory used by Theoko and Woinowsky

Krieger [175] are double-underlined.

8, = pa(lT"’z)af - a8 - (1;a“)n2 - ng;nz
a, = &2 i

a, = —U+ —(lf) 2; (1-v), i’

& = —a;zv)ifn

8y, = 'Oa(lT_Vz)wz - @52 - gnz _ a(lz‘ V);%zgz
a, = e - Lo - 2;(1 Vigr

%2 = in * 1r122a(3 e
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B3. Coefficients for the Elastic Continuum

The elements of the matrikJ] used to determine the displacement components of the continuum

in equations (4.20) are:

n
Uy = Tl(an) + dl(@)

n
U, = ?Kn(m) - aKn+1(ar)

u13 = ian+1(ﬂ)

u14 = iEKn+1(ﬁ)

s = 71 (A)

Ue = K,(A)

U, = _Eln(m)
r

U, = _EKn(m)

r
u23 = ian+1(ﬂ)
u24 = ifKn+1(ﬁ)

Us = = 2,(A) = Aa(B)

Uy = =T K(A) + AK(B)

U, = iél (ar)

u, = iéK(ar)
U = =Bl (5)
U, = BK.(Br)

U, = 0

U = 0
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The elements of the matriX | used to determine the stress components of the continuum in

equations (4.20) are:

t, = (Zu(”zrl D e+ (A+2u)a2]ln(m) = 21 ()

(2u(n2r; D g s (A+2u)a2) Kalar) + 217 Ky, (ar)

o = 244, - 26 £ )

b= -2 EEK(A) - 2% ERK ()
o

ts = 2u (&) + 2/J VB ()

te = 20" ‘”)K () = 2" B, ()
= ~2u 2V ey - 2l (ar)
e =~k o) + 2l o)
b = 4igA,(8) - 2080

b = —piEa,(8) - 240D

K ()

o= (262 - i m) + 2P

o = (26T - i - 2K
ty = 24871, (ar) + 24 & ()
ty = 24EK (1) — 240K, (ar)

ty = ~HTALA) ~ UE+ B ()

u?ﬁkn(ﬂr) - U(E + BIK, . (A)

HEN(A)
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e = AT Ky (A)

t41 - (_Zlu(nzr; n) + A(GZ_{Z)Jln(m) + Zluglnﬂ_(ar)

tu=[4u“:m-+Mf—fﬂ&ww—zw%m4m)
o = 20D

e = 26800 (m)
o=~ ) - 2R A,
to = —20C 2V, ) + 2D B )
ty = ~24&1,(ar)

= ~ 267Ky (an)

= 40 ANA) — W8 ()

by =~ AT A (A) — HEK u(A)

e = ~HENN(B) = AER (B)

e = ~METK(A) + AEK,.(A)

ty = (Aa® - (A+2) &)1 (ar)

to, = (Aa® = (A+2u)&)K, (ar)

tes = —246A(B)

ty = 260 E6, ()

ty = 0

te = O



Appendix C

ROW AND COLUMN NORMALISATION

Kreyszig [112] discusses some of the issues surrounding the nuneérscdlition of systems of
linear equations using matrix methods. A system isoifiditioned if small changes in the
coefficients cause large changes in the computed solution; sudrckarades can be introduced
by round-off errors. The matrix representing the system cannigelar to machine working
precision if it is very ill-conditioned. One way a matrix becenikconditioned is when the
relative scale of its largest to smallest elementsasynorders of magnitude. The condition of a
badly-scaled matrix can be improved by row or column normalisation. Mmowmalisation
divides each row by the magnitude of its maximum element, ensuraigthhe maximum
magnitude in any row of the normalised matrix is then unity, redutiegoverall numerical
range of the elements. Column normalisation does the same thingheveolumns of the

matrix. As an example, consider tBe 3 system of linear equations described by

Ay 8p A% C,
a21 a22 a23 X2 = C2 (C . 1)
a31 aSZ a33 X3 CS

where the object is to solve for the variables x, x}'. If row normalisation is applied to

this system, (C.1) becomes

a, /My a,/ M  ay Mm% C,/m,
/My 8,/ My By M X, = 1C, /M, (C.2)
Qg /My 3,/ My &y My( X Cy/ M,
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where m;, m, and m, are the absolute row maxima of the matrix in (C.1). If column

normalisation is applied to the system, (C.1) becomes

all/nl a12/ n2 a13/ n3 Xlnl Cl
aZl/nl a22/ n2 a23/ n3 X2 n2 C2 (C3)
a31/nl a32/ n2 a33/ n3 X3 n3 C3

wheren;, n, andn, are the absolute column maxima of the matrix iriC

If the row maxima all fall in different columns,eh row normalisation by itself will also
achieve column normalisation, as the m@rmalised matrix of (C.2) will also have a single
element of unit magnitude in each column with @les magnitudes less than unity, so that the
column normalisation of (C.3) will not change amglues. Similarly, column normalisation
alone will also achieve row normalisation if thelwwon maxima all fall in different rows.
Generally, however, these special cases will nougdeaving some columns (or some rows)
unnormalised after only one operation. Thus rownradisation followed by column
normalisation (or vice versa) scales the originakrm as well or better than either procedure
alone.

If the matrix of (C.1) is optimally scaled by panieing row then column normalisation, the
scaling effect of (C.2) then (C.3) must be accodirfte in the solution. The original solution
{x, X, x}' soughtisthus

x] [Yym 0 0][ay/mn a/mn a/mn|"(c/m

X,p = 0 Y¥Yn; 0 |Qa,/mn &,/ mn af mh <c,/m (C.4)
X 0 0 Yny||a,/myt a,/mn af mh (c;/m,

where n;, n, and n; are the absolute column maxima of the row-norredlimatrix in (C.2).
Numerically, Gaussian elimination would be usedaad of the matrix inverse in (C.4).

Matlab has a function RCOND which returns a reaptaondition estimator. RCOND is
near 1.0 for well-conditioned matrices and near fo10ill-conditioned ones. The matrix in
equation (4.42), used to calculate tunnel anddispglacements, typically has RCOND values of
the order ofL0™" (which is singular to working precision) beforeyarormalisation, 10™ after
either row or column normalisation alone, &@i® after both row and column normalisation, for
the parameters of Table 4.3. Thus the matrix sgasicheme of (C.4) is most suitable for

overcoming the numerical difficulties encountenedhis situation.
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