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SUMMARY 

Vibration generated by underground railways is an increasingly significant problem in densely 

populated urban areas.  One popular method used to reduce vibration transmitted into nearby 

buildings is floating-slab track, whereby a concrete slab supporting the two rails is isolated from 

the tunnel invert typically by means of rubber bearings or steel springs.   

This dissertation is concerned with the often disappointing performance of floating-slab track 

in reducing ground vibration propagated from railways in tunnels.  Vibration levels in the soil 

surrounding the tunnel are investigated using analytical models, which allow relatively fast 

computation times to be realised.  The tunnel is considered as a thin cylindrical shell of infinite 

length, surrounded by a viscoelastic continuum of infinite extent to model the soil.  The 

equations of motion for the tunnel and soil are solved in a modal wavenumber-frequency 

domain.  Three different infinitely long track models are considered: a simple slab beam in 

bending only, a slab beam in bending and torsion, and a full track comprising a rail beam and 

slab beam.  These are coupled to the tunnel by a spatial convolution method, the slab bearings 

being represented as an elastic layer.  Excitation by random roughness-displacement inputs 

between a series of train axle masses and the rail beam of the full track model is considered.  A 

separate approach utilises a repeating-unit method to create infinitely long double-beam models 

of the track alone, allowing the effect of various parameters on total force transmitted to the 

foundation to be examined.  Some aspects of the dynamic behaviour of floating-slab track have 

been observed experimentally by means of impulse tests performed in a railway tunnel. 

The various wave-propagation effects in the three-dimensional track-tunnel-soil system give 

results which cannot be predicted with the simple mass-spring models commonly used in the 

design of railway track for isolation of vibration.  These results suggest that insertion-loss 

predictions greater than 6dB are in most cases exaggerated and that the technique of floating the 

track slab may in fact cause increased transmission of vibration under certain conditions. 
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Chapter 1    

INTRODUCTION 

The purpose of this chapter is to describe the reasons for doing research on the Modelling of 

Ground Vibration from Underground Railways, to set out the objectives of such research, and to 

give a brief outline of the chapters following this introduction. 

1.1  Motivation for the Research 

This dissertation investigates the generation of ground vibration from underground railways.  The 

transmission of ground vibration into nearby buildings has become a topic of great importance, 

as many underground railways operate in densely-populated urban areas around the world in both 

residential and commercial zones.  Indeed, traffic-generated vibration and noise is currently a 

European Union priority area for research. 

At a time when people’s tolerance of environmental disturbances such as noise and vibration 

is decreasing, the understanding of the vibration-generation mechanisms in underground railways 

is vital.  The cost of taking vibration-isolation measures means that calculations of their 

effectiveness must be correct.  There is therefore a need for detailed and accurate models of the 

total system comprising the track, tunnel, soil and buildings. 
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1.2  Objectives of the Research 

The scope of this dissertation is the source of the ground vibration, that is, the underground 

railway itself.  In particular, it is concerned with the vibration-isolation performance of floating-

slab track, whereby a concrete slab supporting the two rails is isolated from the tunnel invert by 

means of resilient bearings.  The dissertation focuses on the interactions between systems where 

the vibration wavelengths are comparable to system dimensions.  The frequency range of interest 

for vibration from urban railways is approximately 20Hz to 100Hz; with a speed of about 

200m/s, shear waves in the ground will have a wavelength of 4m at 50Hz, the middle of this 

range.  This wavelength is of the order of the spacing of train axles, the tunnel diameter, and the 

distance from the tunnel to building foundations; modelling is therefore difficult because 

interaction between these entities cannot be ignored. 

There are three objectives for the research undertaken.  The primary objective is to create a 

structurally correct mathematical model of the track, tunnel and soil, which takes into account the 

major dynamic characteristics of the three-dimensional system.  Current design methods are 

based on simplistic lumped-parameter models, whose accuracy is somewhat dubious; better 

design tools are needed.  However, a disadvantage of more detailed models is the computation 

time required to generate results by computer, especially with numerical techniques such as 

finite-element (FE) analysis.  To be useful as a design tool for making informed choices about 

various vibration-isolation options, any mathematical model must be able to be implemented as a 

relatively fast-running program on a standard personal computer.  Thus the aim is to create a 

mathematical model based as much as possible on analytical methods, so that closed-form 

solutions can be used to speed up computation for a particular set of parameters. 

A second objective is to test the hypothesis that floating-slab track is not always an effective 

means of vibration control.  Given that measurement of the performance of floating-slab track is 

almost impossible, the analytical models developed in this dissertation are used to evaluate its 

performance computationally.  The reader is directed to Section 5.3 for a discussion of this issue 

and to Figures 5.35 to 5.38 in particular, which show how poor the vibration-isolation 

performance of floating-slab track can be. 
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A third objective is to provide analytical results which could be used as part of a validation 

process for an FE (or other numerical) model of an underground railway.  Although analytical 

methods can give much insight into a general problem – because the factors contributing to the 

overall behaviour are explicitly apparent – they are usually limited to a small set of soluble cases.  

Thus it can be difficult to apply an analytical approach to a specific situation and a numerical 

method must then be used instead.  Once validated, a numerical model could easily be adapted to 

deal with the complexities of individual sites. 

1.3  Outline of the Dissertation 

This dissertation falls into three sections: a review of previous work, theoretical modelling of the 

underground railway, and field vibration measurements.   

Chapter 2 gives a literature review of previous research on the dynamics of different types of 

railway track, the prediction of ground vibration from surface and underground railways, and 

experimental measurements of railway-induced noise and vibration.  This allows the 

identification of new areas which can be addressed by the current work, thus providing a starting 

point for the theoretical modelling. 

Chapter 3 considers the modelling of floating-slab railway track, based on the theory of 

beams on elastic foundations.  A repeating-unit method is used to construct track models, and the 

effects of various parameters are investigated.  Chapter 4 looks at modelling a tunnel surrounded 

by soil, using cylindrical shell theory for the tunnel and elastic continuum theory for the soil.  

The solution is developed in a modal wavenumber-frequency domain, the familiar time-harmonic 

response being obtained by a sum of modes and inverse Fourier transformation from the 

wavenumber to space domain.  Chapter 5 considers the problem of joining tunnel and track 

models together, to give a complete model of the underground railway.  The joining is 

formulated as a convolution of frequency-response functions in space, which is implemented by 

multiplication in the wavenumber domain.  The complete model allows the calculation of power 

spectral densities and RMS levels of soil vibration around the tunnel when a train is running 

through it. 
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Chapter 6 describes some field measurements carried out using impulse-hammer tests inside 

an underground railway tunnel.  Although no measurements could be made in the soil or on its 

surface, several useful observations regarding the dynamic behaviour of the track and tunnel can 

be made.  These are compared qualitatively to results from the combined models of Chapter 5, 

allowing some degree of validation. 

Overall conclusions and suggestions for further development of the work presented in this 

dissertation are given in Chapter 7. 
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Chapter 2    

LITERATURE REVIEW  

This chapter reviews previous work relevant to the current problem.  This includes the impact of 

train-induced ground vibration, the design and analysis of railway tracks, methods for predicting 

the propagation of ground vibration, and measurements of ground vibration. 

2.1  Impact of Ground Vibration 

The effects of vibrations on buildings and their occupants have been summarised by many 

researchers, for example Kraemer [111], Hunt [89], Cryer [38] and Ng [146].  People experience 

vibration transmitted into buildings as both vibratory motion and re-radiated noise caused by 

vibrating surfaces.  Grootenhuis [78] states that the problem frequency range for groundborne 

vibration transmitted from underground railways is 15Hz to 200Hz.  Similar figures are given by 

Greer and Manning [77]: 30Hz to 250Hz for re-radiated sound and 1Hz to 80Hz for perceptible 

vibration.  Data in Heckl et al [82] shows that peak levels occur in the range 40Hz to 80Hz.  The 

levels induced in buildings by transmitted ground vibration are nevertheless relatively low 

(slamming a door can cause higher levels).   

The ORE review [152] notes that structural damage is only likely above vibration levels at 

which people feel unsafe (the “coefficient of human safety” principle).  Such levels occur during 

earthquakes and are much higher than those due to traffic-induced ground vibration; occasionally 

building damage has been attributed to ground vibration due to sources such as nearby pile 

driving.  The effect is thus one of discomfort and annoyance for a building’s occupants rather 
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than of structural damage.  However, people often overestimate the levels of vibration 

subjectively, thinking damage is occurring because they are being annoyed [152].  Vibration in 

buildings can also upset sensitive equipment [89]. 

A survey of surface railway noise and vibration by Knall [107] found that people’s reactions 

to noise correlate closely to sound pressure level, but vary widely for a given vibration level, and 

that perceived annoyance and discomfort depend on the number of statistical events exceeding 

threshold levels, rather than how often trains run.  Öhrström [154] found that people living near 

railway lines have a 10dB(A) lower tolerance to noise when there is simultaneous strong 

transmitted vibration exceeding 2 mm/s.  Howarth and Griffin conducted tests of simulated 

railway noise and vibration on human subjects, to quantify how more trains per hour at lower 

vibration levels result in equal annoyance [87], and to quantify the equivalence between sound 

exposure level and vibration dose level to determine equal annoyance with differing proportions 

of simultaneous noise and vibration [88]. 

Zach and Rutishauser [204] give acceptable vibration limits ranging from 0.2 mm s (for 

quiet residential buildings at night) to 0.4 mm s (for noisy residential buildings in the day), with 

corresponding limits in sound pressure levels from 25dB(A) to 40dB(A).  Acceptable sinusoidal 

vibration levels for various living and working areas are codified in standards such as BS 

6472:1992 [24], and depend on many factors, including the duration and frequency of transient 

vibrations, the usage of the buildings and the time of day.  Tolerance to early morning and 

evening trains is less [152].  However, there are no standards as yet on assessing the source, 

although an ISO committee (ISO/TC 108/SC 2/WG 8) is currently considering the prediction of 

groundborne vibration from underground railways. 

2.2  Railway Track 

The design of railway track is enormously varied.  There are also many approaches to modelling 

its dynamic behaviour. 
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2.2.1  Track Designs 

Many aspects of the design of railway track are discussed in the book by Esveld [50]. Surface 

railway track is usually “ballasted”, the traditional form with rails which rest on a bed of coarse 

crushed rock, the ballast.  However, due to settlement and degradation with use, ballasted track 

requires much maintenance, an operation carried out less easily underground than above.  This 

led in the 1960s to the introduction of non-ballasted tracks mounted directly onto concrete slabs.  

Slab track is several times more expensive to construct and radiates more sound than ballasted 

track, but requires much less maintenance (Henn [84]). 

Many different track designs have been proposed to reduce the transmission of vibration and 

sound and several are described in the ORE report [151], with vibration-isolation performance 

gauged by a simple mass-on-a-spring argument.  Resilient rubber elements can be used in both 

ballasted and non-ballasted tracks: rail or baseplate pads, sleeper pads, and ballast mats, in order 

of effectiveness.  Special non-ballasted track constructions fall into several groups.  Rail 

mountings based on conical rubber elements include the Clouth system in Hamburg, the Cologne 

Egg (see also Braitsch [21]), and the shear-transmitting element described by Ando et al [5].  

Sleeper-mounting systems include the Paris metro STEDEF system of twin-block concrete 

sleepers mounted in rubber “boots” (see also Duval [47]).   

Floating-slab tracks mount the rail-supporting concrete slab on resilient bearings of rubber, 

glass fibre or steel springs, to give a large isolated mass and hence low natural frequency with 

theoretically large reductions in vibration transmission.  Designs utilising short pre-cast slab 

sections include the Toronto “double-sleeper” (slabs 1.5m long), the Eisenmann track in Munich 

and Frankfurt (3.4m long) and the New York subway (7m long), while the British VIPACT 

system supports a continuous slab.  A very large isolated mass can be achieved with composite 

track consisting of a floating concrete tray containing ballasted track.  Examples include the 

Üderstadt track in Cologne, and the Barbican (two tracks on one deck) and Piccadilly Line 

(single-track deck) systems in London.   

Vibration counter-measures in railways have generally been developed by trial and error, with 

the most effective also the most expensive.  Damping of low frequencies (2 to 30Hz) involves 

considerable expense and is difficult to achieve [151]. 
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Singal [164] discusses the design of non-ballasted track, including structural and electrical 

considerations.  In particular, the goal of using very soft railpads and slab bearings in floating-

slab track to maximise reduction of noise and vibration conflicts with the requirement for the 

track to be rigid enough for safety and stability, as noted also by Grootenhuis [78] and Wilson et 

al [191].  In practice a compromise has to be made between vibration isolation and other track 

requirements. 

2.2.2  Simplified Track Analysis 

As mentioned above, design predictions of track vibration-isolation performance have usually 

been based on a simple lumped mass-spring argument.  Using this approach, Zach and 

Rutishauser [204] claim that a 25dB reduction in transmitted vibration at 50Hz can be achieved 

by using a floating-slab track with an 8-9Hz natural frequency.  Wettschureck and Kurze [188] 

define a decibel “insertion loss” for ballast mats in underground railways using a one-

dimensional impedance model.  This assumes that the ballast mat is a simple spring and the 

tunnel is rigid; with this and  measurements they claim a 20dB reduction of tunnel wall vibration.   

Similarly large reductions are predicted by Wettschureck [186, 187] for ballast mats in 

railway tracks above ground and on bridges, and by Isaksson [95], who uses the impedance 

model of [188] combined with statistical energy analysis for ballast mats on bridges.  Wilson et 

al [191] predict high reductions above 20Hz for a floating-slab track designed for a 14-16Hz 

natural frequency, but their measurements on the surface above the railway tunnel indicate only a 

modest reduction of 7dB above 31.5Hz.  A lumped-parameter approach for underground railway 

track is also advocated by Capponi and Murray [28].   

The pitfalls of this simplistic design approach are highlighted by Greer and Manning [77], 

who note that a lumped-parameter model on a rigid foundation is perhaps sufficient for a tunnel 

in hard-rock ground, but that more sophisticated approaches such as finite-element models are 

required otherwise.  To complicate matters, there is no standard definition of insertion loss – an 

in-specification isolation performance can become out-of-specification with a change of 

definition. 
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2.2.3  Beam Models of Track 

Hetényi [85] states that an Euler beam on a continuous elastic foundation was first analysed by 

Winkler in 1867 in order to investigate railway track behaviour, and discusses several similar 

models.  Variations on the basic Winkler beam have been widely used to model railway track, 

but the context has nearly always been ballasted track with the emphasis on track behaviour 

rather than ground vibration.  Kerr [106] gives design curves for determining an empirical 

stiffness per unit length for use in the Winkler model through rail deflections measured under 

known axle loads. 

Cai et al [26] conduct a free-vibration analysis of a track modelled as a rail beam supported 

via springs on discrete crosswise sleeper beams, which rest on Winkler foundations.  The track is 

composed of a number of single-span units characterised by an exact dynamic-stiffness approach.  

Cai and Raymond [25] extend this model by including an axial rail force to simulate thermal 

forces, and a varying sleeper Winkler stiffness to represent uneven ballast compaction.  The 

transverse response to both deterministic and random loading of an axially pre-loaded,  

Timoshenko beam on an elastic foundation is determined by Chang [30]. 

Mead and Yaman [134] calculate the harmonic response of infinite beams on simple, 

transverse elastic, and general elastic periodic supports.  A propagation constant determines the 

reaction forces under the periodic structure’s two semi-infinite halves lying either side of the 

loaded span.  Nordborg [147, 148] applies the same idea to a rail beam on periodic sleeper-beam 

supports to determine its forced response as a linear combination of the free-vibration solutions.  

Ballast properties are determined by fitting experimental data to the model.  A similar model is 

used by Dalenbring [40] to ascertain the vertical rail motion with different experimentally 

determined railpad stiffnesses. 

A beam model of floating-slab track is used by Samavedam and Cross [163] to evaluate 

vibration isolation.  The model is like a double Winkler beam, comprising an infinite rail beam 

on railpad springs resting on an infinite slab beam on bearing springs.  The tunnel floor is 

assumed to be rigid compared to the slab bearings (however, a halfspace is proposed to represent 

the tunnel floor for non-floating slab).  Infinite double-beam periodic structures are used by 

Forrest [61] to model the rails supported on continuous and discrete floating slabs. 
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To use models like these, appropriate properties for the resilient elements must be specified.  

Melke and Switaiski [139] describe some of the problems in performing tests to determine the 

static and dynamic stiffnesses and loss factor of such elements.  Gade and Wismer [68] 

summarise the various viscoelastic constitutive laws which can be used and describe a “non-

resonant” method for measuring complex stiffness.  Thompson et al [172] describe another 

method and note that the stiffness of viscoelastic materials like railpads depends on the preload, 

temperature, frequency, strain magnitude and strain history.  Based on laboratory measurements 

of elastomeric materials used in railways, Castellani et al [29] propose an interpretative model 

with separate terms for strain-rate dependent stiffness, hysteretic dissipation and viscous 

dissipation.  Dalenbring [40] notes that the stiffness of an individual pad depends on a “form 

factor”, the ratio of loaded surface to free surface.  Fenander [53] uses measurements to propose 

a fractional derivative model of dissipation in railpads; however, the response of a beam track 

model using this law shows no significant differences to that of one using standard viscous 

damping [54]. 

2.2.4  Beams with Moving Loads 

Patil [155] determines the response of a harmonically loaded Winkler beam when a mass is 

applied suddenly.  Duffy [46] extends this to a moving mass, finding that resonance is lowered 

by an increase of velocity as well as increased mass, and examines changes in the waves at and 

above critical speed.  A time-domain finite-element (FE) approach is used by Chang and Liu [31] 

to find the response of a non-linear beam on an elastic foundation to a mass on a spring 

traversing it with constant velocity or acceleration.   

Much work on moving loads has also been done in the context of simply-supported beams 

modelling bridge-type structures.  Blejwas et al [16] use a time-stepping method to treat the two 

cases of a smooth mass traversing a smooth beam and an idealised vehicle (mass-spring-mass) 

traversing a rigid sinusoidal surface.  Esmailzadeh and Ghorashi [49] use an approximate modal 

solution to find the response of a simply supported beam traversed by a partially distributed mass 

moving at constant velocity, showing that very large displacements develop above the critical 

speed.  The midspan response to a sequence of loads with time-varying velocity, whose arrival 
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times are a Poissonian random process, is investigated by Zibdeh and Rackwitz [206].  Yang et al 

[198] provide an analytical solution for a simply supported beam traversed by a train, by 

superimposing the results for two sets of equally spaced loads, one set for the front wheels of 

each bogie assembly, the other for the back wheels.   

A more complicated structure is treated by Wang and Lin [183], who use a modal solution to 

investigate a multispan Timoshenko beam excited by a random load moving at constant velocity.  

Belotserkovskiy [12] examines a harmonic force moving along infinite periodic structures 

representing railway track.  The structures are beams on various continuous or discrete 

foundations, with the periodicity arising from rail joints (low-frequency effects) or sleeper 

spacing (high-frequency effects).  Since urban trains travel at speeds much less than the critical 

speeds of waves in tracks, the movement of loads would only have to be considered explicitly 

when this type of parametric excitation is important. 

2.2.5  Train-Track Interaction 

Detailed treatment of railway vehicle dynamics is given by Garg and Dukkipati [69].  The 

concern is with the vehicle and not the effect on track response; many degrees of freedom are 

considered, in more than one plane, as are trains of more than one vehicle.  Fujimoto et al [67] 

consider the effect of track irregularities on the dynamics of high-speed trains.  Fröhling [64] 

investigates low-frequency vehicle-track interaction by means of track-profile inputs to an eleven 

degree-of-freedom vehicle model, in order to determine forces for use in a settlement law for 

ballasted track.  Zhai and Cai [205] describe a ten degree-of-freedom vehicle model excited by 

wheel-rail irregularities on a track represented by an infinite beam on discrete mass-spring 

supports. 

Research into rail corrugation and other damage has produced many vehicle-track interaction 

models.  Grassie et al [76] model ballasted track with infinite beams on a Winkler foundation, on 

a continuous two-layer support incorporating sleeper mass, and on discrete supports including 

sleeper masses.  Their concern is the effect on track dynamics of a train, modelled as a wheel 

mass on a Hertzian contact spring (see Johnson [98] for Hertzian contact), traversing the short-

pitch (40-80mm wavelength) rail corrugations responsible for “roaring rails”.  The two-layer 
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model is extended by Grassie and Cox [75] to cope with unsupported sleepers by setting a 

section of the ballast layer to have zero stiffness and damping, with parameters determined from 

impulse responses of a test track with hung sleepers.  Grassie [74] generalises the model to treat 

any non-sinusoidal rail-wheel roughness, and compares predicted contact force and rail-seat 

moment (which influences cracking of concrete sleepers) to measurements. 

Lucas [122] uses a rail beam supported on discrete sleeper beams and springs to examine 

ballast settlement due to impulsive forces from rail dips as well as wheels traversing rail 

corrugation.  Clark et al [35] use a similar model, with theoretical and experimental results 

showing that the Hertzian contact does not significantly affect track dynamics below 750Hz.  

Hemplemann et al [83] investigate the wheelset and track modes thought to be responsible for 

corrugation by means of a more complicated rail model comprising a combination of beam, plate 

and rod dynamics and supported on rigid-body sleepers with railpad and ballast springs.  A 

similarly complex rail, with a rail-head beam in bending and torsion and plates for the foot and 

web, resting on uniformly distributed support, is used by Bhaskar et al [13, 14] in conjunction 

with a detailed conformal contact model to understand corrugation generation. 

Minimisation of the dynamic forces causing track damage is investigated by Dahlberg et al 

[39] using measured sleeper and railpad parameters in a model comprising sleeper beams 

supporting a rail beam traversed by a single wheel, with excitation provided by a wheel flat and 

rail joints.  Dalenbring [40] and Nordborg [147, 148] determine the response of their periodic 

track structures to both parametric and  rail-wheel roughness excitation.  A beam on discrete 

supports, excited by a lumped-mass wheelset with Hertzian contact is analysed by Ishida et al 

[96] to determine track behaviour with high-speed trains.  Oscarsson and Dahlberg [153] 

consider a similar structure using FE methods. 

Vehicle-bridge interaction has also been studied.  Courage and van Staalduinen [37] consider 

a multi-vehicle train running on an elevated railway track modelled in nine sections, each 

comprising a rail beam mounted via railpad springs on a viaduct beam.  Rail roughness and out-

of-round wheels provide the excitation.  Bridge response to road vehicles traversing road surface 

roughness has been considered by Wang and Huang [184] for cable-stayed bridges modelled by 

two-dimensional FE beam elements, by Waarts and Courage [182] using a horizontal mesh of FE 
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beams to determine dynamic amplification factors for parts of steel bridges, and by Boudjelal et 

al [19] using a more complicated FE bridge model composed of plate and beam elements to 

determine response with both two- and three-dimensional vehicle models. 

While parametric excitation such as sleeper spacing is easy to define, quantifying rail 

roughness profiles is more difficult.  Frederich [62] defines a formula for the power-spectral 

density (PSD) of track-geometry irregularity, based on fitting curves to measured data from many 

sources.  The PSD is of the same form for irregularity in different track dimensions (height, 

alignment, track width etc), and gives more weight to longer irregularity wavelengths.  Fröhling 

[63] uses this formula to characterise measured South African track geometry.  Ford [60] uses 

measured rail surface profiles directly as input to a simple mass-spring vehicle model to 

determine rail forces.  Some of the problems encountered in measuring track geometry are 

discussed by Yoshimura et al [199], who describe a “restored waveform” method to correct track 

irregularities as they are measured. 

2.2.6  Other Models of Railway Track 

More realistic track models consider the non-rigidity of the underlying soil.  Ono and Yamada 

[150] use a standard infinite rail beam on mass-spring sleepers, but the ballast and roadbed are 

considered elastic with an assumed pressure distribution acting over increasing area with depth.  

Responses to rail-joint and wheel-flat impulses, and to rail-wheel roughness demonstrate that 

waves propagate down into the roadbed, as well as along the track as in a Winkler model. 

Several researchers have investigated track dynamics using finite elements to model beam 

tracks on non-rigid subgrades.  Luo et al [123] simulate the infinite soil under the track with a 

finite FE mesh with rigid boundary conditions; the soil mesh is made large enough that waves 

cannot return from the boundaries within the time considered.  Sadeghi and Kohoutek [162] use 

a plane-strain FE model of the soil with viscous absorbing boundaries to determine the dynamic-

stiffness of the foundation for use in a beam track model.  Esveld et al [51] determine the 

response of a paved-in tramway with a discrete-element model of its different concrete slab, 

asphalt and soil layers.  Triantafyllidis and Prange [176, 177] look at high-speed train energy loss 

associated with train-track interaction through a rail beam on rigid footings resting on a halfspace 
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represented by a boundary-element formulation.  An asymmetric rail deflection line occurs due to 

Doppler effects as the train speed approaches the subsoil’s surface-wave velocity.  Auersch [8] 

uses a similar approach but with a layered soil, to compare predicted and measured dynamic axle 

loads and displacement magnitudes. 

Clearly soil interaction has important effects on track dynamics.  To model the soil 

realistically requires an understanding of wave propagation in solids and the methods available to 

deal with it, which is the subject of the next section. 

2.3  Prediction of Ground Vibration 

The soil through which ground vibration propagates from a railway can be conceptualised as a 

halfspace, a semi-infinite solid bounded only by the plane formed by its surface.  For deeply 

buried vibration sources, such as many underground railways, soil can be conceptualised as an 

infinite solid if only local effects are of interest. 

2.3.1  Wave Propagation in Solids 

Achenbach [1] and Graff [73] give solutions to many problems of wave propagation in elastic 

solids, noting the seminal contributions made between 1880 and 1910 by Rayleigh, Lamb and 

Love.  Achenbach [1] describes the different types of waves that can occur in an elastic solid, and 

Gutowski and Dym [80] also provide a summary applied to ground vibration.  In the bulk 

medium, longitudinal pressure waves (P-waves) and transverse shear waves (S-waves) can exist.  

Other types can arise at interfaces: Rayleigh waves (non-dispersive waves propagating along a 

free surface with in-plane longitudinal and transverse components); Stoneley waves (surface 

waves confined to the neighbourhood of the interface between two halfspaces of different 

materials); and Love waves (dispersive interface waves with motion perpendicular to the 

interface).  Of the three wave types occurring in a uniform halfspace, P-waves travel fastest (so 

are also known as primary waves because they arrive first), S-waves are slower (so are also 

known as secondary waves), and Rayleigh waves are slowest. 

Analytical solutions for the surface motion of an elastic homogeneous isotropic halfspace 

subject to concentrated point and line loads at and below the surface are derived in Lamb [118] 
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in the form of integral equations and summarised in [1, 52, 73, 159].  For a point load, Rayleigh 

waves propagate outwards across the surface with a circular wavefront, while S- and P-waves 

propagate outwards and downwards with a hemispherical wavefront; for a line load, the 

wavefronts are a straight-line and a cylindrical surface respectively.  Thus Rayleigh-wave 

magnitudes are reduced much less by the effects of geometric spreading.  Many books [73, 98, 

159] quote the Miller and Pursey partition of energy between the different wave types in a 

halfspace loaded by a disc as 67% Rayleigh waves, 26% shear waves and 7% pressure waves.  

These two factors suggest that the surface response of a halfspace is always dominated by 

Rayleigh waves at large distances from the load.  However, Wolf [192] shows that a high 

proportion of energy goes into Rayleigh waves only at low dimensionless frequencies (angular 

frequency by disc radius on S-wave speed), that is, for low frequency or small disc area (tending 

to a point load).  At higher dimensionless frequencies, the Rayleigh-wave contribution is no more 

than 10%, with most energy (60% to 80%) going into P-waves and the remainder into S-waves. 

Stresses and displacements induced by various loading conditions in an infinite elastic solid 

are derived by Eason et al [48].  Pekeris and Lifson [156] determine the surface motion of a 

halfspace to a buried pulse.  Energy radiated from a spherical source in an infinite elastic medium 

is considered in Rudnicki [160].  Wave propagation in layered media is treated in Ewing et al 

[52].  Much of the work on wave motion in elastic media has been prompted by foundation 

analysis, a good summary of which is given in Karabalis and Beskos [105].  Analytical 

approaches can be found in Richart et al [159], beginning with oscillations of footings resting on 

a halfspace and finishing with vibrations of rigid foundations supported by piles.  Wolf [192] 

describes cone models (for circular foundations) and wedge models (for strip foundations) which 

spread downwards with an angle determined by wave propagation considerations. 

2.3.2  Absorbing Boundaries for Finite Models of Infinite Media 

The interaction of complex structures with soil which is not necessarily homogeneous is often 

analytically intractable.  An approximate numerical approach such as the finite-element method 

(FEM) or finite-difference method (FDM) must then be used.  Using such a method gives a finite 

model whose boundaries reflect waves rather than transmit them as does the infinite soil.  Thus 
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boundary conditions which absorb incident waves are required.  Lysmer and Kuhlemeyer [124] 

were among the first to propose one, the “standard viscous boundary”, equivalent to arrays of 

normal and tangential dashpots applied to the artificial boundary of a two-dimensional model to 

absorb P- and S-waves.  White et al [189] alter the definition of absorption efficiency to define 

the optimal dashpot coefficients as functions of Poisson’s ratio, giving the “unified viscous 

boundary”. 

Deeks and Randolph [42] extend the viscous boundary to plane-strain axisymmetric FE 

models.  By considering travelling cylindrical waves, they develop boundaries consisting of 

parallel springs and dashpots to absorb S-waves, and springs, dashpots and masses to absorb P-

waves.  Similar mechanical systems as boundaries are proposed by Kallivokas et al [104], using 

the two-dimensional wave equation in the domain exterior to that being modelled as a prototype 

situation.  Sochacki [167] uses the two-dimensional wave equation to find exact boundary 

conditions which absorb S- and P-waves, then derives approximate versions to use in FDM.  

Peng and Toksöz [157] describe optimal absorbing boundaries for modelling three-dimensional 

elastic wave propagation by FDM.  Wolf and Song [196] develop a doubly asymptotic multi-

directional boundary, of which the viscous boundary is a special case.  Degrande and De Roeck 

[43, 44] formulate and demonstrate a frequency-dependent absorbing boundary condition for 

modelling soil as a saturated poroelastic medium.  An absorbing boundary exact in the FE sense 

is determined by Wolf and Song [195] through the geometric similarity of an arbitrary excavation 

in a halfspace with an infinitesimal layer of finite elements of known properties to one without 

the layer. 

Another approach to absorbing boundaries is to use “infinite” elements, such as the two-

dimensional ones of Chow and Smith [33], the axisymmetric and three-dimensional frequency-

domain ones of Medina and Penzien [135] capable of transmitting Rayleigh, shear and pressure 

waves, or the axisymmetric ones of Yun and Kim [203] for a layered halfspace.  Infinite elements 

are the same as normal finite elements except for the infinity of the element domain [203].  The 

shape functions have an exponential term which ensures that they decay to zero at large distances 

[33].  Infinite elements are now included in the standard element libraries of commercial FE 

packages such as ABAQUS. 
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A popular way to represent the unbounded soil medium is the boundary-element method 

(BEM), described in Karabalis and Beskos [105] and Wolf and Darbre [193].  BEM uses 

fundamental solutions (Green’s functions) of the medium’s governing equations to generate 

integral equations relating the boundary displacements and tractions.  These equations can be 

used in a time-integration scheme or to determine a dynamic-stiffness relation for the soil.  Only 

the boundary has to be discretised – the exterior region remains a continuum, automatically 

taking care of the radiation condition.  Other work on soil-structure interaction using the BEM 

approach includes Aubry and Clouteau [6] and Aubry et al [7] (layered soils); Wolf and Darbre 

[194] and Takemiya et al [170] (shallow foundations); and Lo [121] (piled foundations).  A 

variation described in Wolf and Darbre [193] is to determine the dynamic-stiffness matrix of an 

embedded foundation as the difference of those for the halfspace (determined exactly) and the 

excavated part (determined by FEM).  These examples are concerned with determining the 

dynamics of a structure which interacts with soil, rather than investigating ground vibration 

propagation. 

2.3.3  Estimation Methods for Groundborne Vibration Transmission 

Empirical or semi-empirical models are often used in practice to predict ground vibration from 

surface railways, especially when it is difficult to determine appropriate parameters for use in a 

more complex theoretical model.  Considering a road or a railway as a line source, Gutowski and 

Dym [80] propose an exponential law of decay with distance from the line, with the coefficient 

of decay determined from actual measurements.  Melke and Kraemer [138] advocate the use of 

transfer functions measured between various parts of a railway-soil system to formulate more 

informed transmission laws.  Fujikake [65, 66] describes a prediction procedure based on taking 

the track and ballast as single-degree-of-freedom systems and modelling the soil transmission 

path as a band-pass filter approximating the measured transfer function between the railway and 

observation point.  Measured ground transfer functions are also used by Yoshioka and Ashiya 

[201] to examine the effect of changes in the rolling stock on ground vibration.  The model can 

be a simple product of attenuation factors for the various parts of the transmission path, derived 

from large databases of measurements from many sites, as in Madhus, Bessason and Hårvik 
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[125].  A simplified measurement-based propagation law is also described in Ackva and 

Niedermeyer [2]. 

Prediction of ground vibration from underground railways has also often relied on empirical 

means.  An approach based on transmission factors gleaned from a database of over 3000 

measurements from various sites is utilised by Hood et al [86].  Other methods, such as those in 

Kraemer [111] and Melke [137], rely on semi-empirical transmission laws in conjunction with 

impedances derived from simplified lumped-parameter models of the track and the receiving 

building.  Trochides [178] compares laboratory measurements on a scaled-down tunnel-soil-

building system to predictions from approximate impedance models combined with SEA. 

2.3.4  Models for Ground Vibration from Surface Railways 

Analytical methods can be applied to surface ground vibration.  Alabi [3] presents a parametric 

study of train-induced ground vibration based on the motion of a uniform halfspace loaded by an 

oblique moving force.  Jones and Petyt investigate ground vibration from railways through strip 

loads acting on a halfspace [101], on an elastic layer on a rigid foundation [102], and on an 

elastic layer on a halfspace [103].  A detailed analysis of wave propagation in layered soils is 

used by Auersch [9] with measurements to produce a simplified prediction scheme.   

Hunt [90, 91] models the vibration at a distance from a surface roadway by considering the 

vehicle inputs on the road as a series of random point loads and using Lamb’s [118] far-field 

halfspace responses, which assume dominance of Rayleigh waves.  This model fitted vibration 

measured near busy roadways quite well.  The same approach is used by Hao and Ang [81].  Ng 

[146] uses similar ideas in constructing a beam-on-halfspace model of a surface railway track to 

compare to vibration measurements, but in this case an approximate near-field halfspace 

response is needed to couple the infinite track beam to it.  Ford [59] uses a superposition of 

Rayleigh-wave propagation induced by a series of axle loads to show that the ground response is 

dominated by frequencies near the sleeper-passing frequency.  Krylov and Ferguson [117] 

assume that the quasi-static deflected shape of the railway track under an axle load provides a 

point-force input to the halfspace as it passes through a sleeper, and sum the responses due to the 

many simultaneous sleeper inputs of a moving train by a Green’s function approach.  Ground 
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vibration can be reduced by careful selection of sleeper and axle spacings [59, 117].  Krylov 

[114, 115] uses this model to predict a ground-vibration “boom” when trains exceed the soil’s 

Rayleigh-wave speed; trans-Rayleigh conditions of high-speed trains on very soft soils have been 

observed in western Sweden to increase ground vibration levels tenfold [116].  Measurements of 

ground vibration from heavy freight trains are compared to a model comprising an infinite rail 

beam on discrete mass-spring sleepers resting on a three-dimensional layered medium by Jones 

[99] (with other simpler models) and Jones and Block [100]. 

FEM has been much used to model surface railway ground vibration.  Girardi and Recchia 

[72] investigate the influence of sleeper type and ballast depth on ground response by means of a 

detailed FE track and vehicle model supported on a three-dimensional layered medium 

representing the ballast and subsoil, comparing results to under-track measurements.  Yoshioka 

[200] uses a two-dimensional FE model with viscous boundaries to calculate the vibration 

propagation through the cross-section of a railway embankment on layered soil.  Takemiya [169] 

uses a “2.5-dimensional” FE track-embankment cross-section resting on a halfspace represented 

by BEM to quantify the effect of a wave-impeding block (WIB) in the embankment under 

moving track loads.  Takemiya and Goda [171] extend this to a layered halfspace.  Peplow et al 

[158] use BEM to evaluate the performance of a WIB in uniform and layered halfspaces. A 

three-dimensional FEM-BEM treatment of a railway comprising two rail beams on rigid sleeper 

footings on a halfspace is given in Mohammadi and Karabalis [140].  Yang and Hung [197] 

examine the effect of filled and open vibration-screening trenches near a railway line by means of 

a two-dimensional FE model bounded by infinite elements.  Madhus et al [126] use a 

substructuring method to model the response of layered soil under an FE track model, finding 

that stiff tracks give lower ground vibration close to the track but have little effect at large 

distances, where the total load rather than its distribution is important. 

2.3.5  Models for Ground Vibration from Underground Railways 

An analytical methodology for calculating ground-vibration propagation using tunnel and 

building models of infinite length to simplify solution is presented by Hunt [93].  Balendra et al 

[11] use a substructure technique, based on consideration of the two-dimensional wave equation, 
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to create a cross-sectional model of a rigid tunnel and a rigid strip foundation embedded in a 

viscoelastic halfspace.  Kostarev [109] represents an underground tunnel as an acoustic 

waveguide in a halfspace, implemented by defining a variation in wavespeed with depth.  Krylov 

[113] applies earlier work [117] on surface railways by assuming that the tunnel diameter is 

much smaller than the wavelength of low-frequency propagated waves, so that each sleeper in an 

underground track can be construed as a point load buried in a halfspace.  Guan and Moore [79] 

treat the interaction between two deep side-by-side circular tunnels by solving the three-

dimensional wave equations for two cylindrical cavities in an unbounded medium. 

Underground railway tunnels of circular cross-section are analogous to buried pipes.  Singh et 

al [165] model a seismically loaded pipe using the axisymmetric response of an orthotropic 

cylindrical shell buried in an infinite medium subject to an axially travelling pressure wave.  The 

thick-shell theory used in [165] is compared to thin-shell theory in [166].  Köpke [110] applies 

the thick-shell approach of Gazis [70, 71] to a “pipe in a pipe”, the inside pipe representing a 

buried pipeline and the outside one, of infinite outer diameter, representing the surrounding soil.  

The solution is general, but the results only consider the driving-point response of the pipe based 

on the translation mode of the pipe cross-section.  Hunt and May [94] include several 

circumferential modes of Köpke’s solution to calculate soil responses around a simply loaded 

railway tunnel. 

Numerical models include the two-dimensional plane-strain FE model of Balendra et al [10], 

which represents the cross-section of a Singaporean subway-soil-building system and utilises a 

viscous boundary.  The tunnel and soil are modelled with solid elements, the multi-storey 

building as a framework of beam elements.  Chua et al [34] use this model to calculate the 

vibration reduction effected by soft railpads and floating-slab track, construing the train input as 

a line load determined from a lumped-mass model of wheel and track.  Rücker and Said [161] 

use a similar model bounded with boundary elements to determine the effect of an open 

vibration-screening trench between tunnel and building, and of a stiff plate on the ground 

surface.  Thornely-Taylor [173] applies FDM to such a cross-sectional representation to predict 

vibration levels at specific sites.  However, such two-dimensional models ignore the longitudinal 

dynamics of the track and tunnel. 
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2.3.6  Building Vibration and Isolation 

Attempts to shield buildings from groundborne vibration have been made by placing wave 

barriers such as walls or trenches in the ground.  The ORE report [151] states that maximum 

attenuation occurs when the ground cuts are arranged perpendicular to the direction of incidence 

and when the impedance of the ground is significantly smaller than that of the cut.  High 

frequencies are more effectively damped than low frequencies, as wavelengths longer than the 

barrier depth just go around it.  Massarch [129] describes the use of gas cushions to stabilise 

isolating trenches and so allow greater depths. 

Another approach is to mount the building on steel springs or laminated rubber bearings.  

Some case studies of base isolation near or above railways are discussed in Commins et al [36], 

Manning [128], and Anderson [4].  Although it is acknowledged that the actual structural 

dynamics are more complex, all idealise the building as a one-degree-of-freedom mass on a 

spring in order to select bearings to give a low natural frequency and hence theoretically large 

vibration reductions, just as in floating-slab track design.  Manufacturers of base-isolation 

springs also work on the mass-spring assumption (see Jaquet and Heiland [97]).  However, 

Newland and Hunt [145] show that even a simple model of an elastic concrete column mounted 

on a pile via a resilient bearing has many resonances rather than the single one of a mass-spring 

model.  This is borne out by their measurements of transmissibility at a pile cap excited by 

passing underground trains. 

Chouw [32] examines the effect of a WIB placed directly under a frame model of a building 

on rigid footings supported by an FEM-BEM foundation.  Field tests of this WIB are described in 

Forchap and Verbic [58].  Cryer [38] (see also Hunt [92]) constructs a two-dimensional periodic 

building model of infinite horizontal extent by repeating a portal-frame unit of beams.  This 

infinite model was found to predict vibration levels in actual buildings much better than a finite 

model.  The portal-frame units are described by the direct dynamic-stiffness approach given in 

Langley [119], and repeated by Floquet’s theorem as described by Mead [130, 131, 132].  A 

comprehensive summary of analytical methods applicable to periodic structures can be found in 

Mead [133]. 
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2.4  Measurement of Railway-Induced Vibration and Noise 

There have been several studies of vibration and noise produced by actual railways, apart from 

those already mentioned in conjunction with theoretical modelling.  Koch [108] gives some 

measurements taken near a surface high-speed railway line, which show that soil-surface velocity 

has an approximately reciprocal relationship to distance from the track.  Lineside levels due to 

heavy freight trains are discussed by Dawn [41], with a maximum response apparent when the 

sleeper-passage frequency coincides with the resonance of the total vehicle on the track.  

Measurements obtained at three different surface railway sites by Volberg [180] show decay with 

distance from the track following a simple power law.  Capponi [27] presents measurements of 

attenuation between the rail foot and tunnel wall in the Milan underground, which show that 

ballasted tracks achieve the least attenuation and heavy floating-slab tracks the most.  A similar, 

later study is detailed by Bocciolone et al [18].  Bovey [20] describes an impact method using a 

drop hammer to determine the transfer functions between various parts of the track and between 

the tunnel and the soil surface in the London Underground.  Heckl et al [82] discuss the 

mechanisms of railway-induced structural vibration in relation to some typical data.  Okumura 

and Kuno [149] apply statistical analysis to railway noise and vibration data obtained from a 

multitude of sites in an urban area. 

2.5  Conclusions 

Many types of non-ballasted track have been devised for reducing vibration transmission from 

underground railways.  Beams on continuous and discrete foundations developed from the 

original Winkler beam have been widely used to investigate the dynamics of ballasted track, but 

design for vibration isolation using resilient elements has been based on simple mass-spring 

models.  In any case, the ultimately rigid foundations of these models mean that soil vibration 

cannot be determined directly. 

Prediction of ground-vibration transmission from railways is often done in practice with 

estimation procedures based wholly or largely on empirical data.  More sophisticated approaches 

are based on analytical methods for wave propagation in soil, which give direct insight, or 
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numerical methods like FEM-BEM, which can deal with the complexities of specific sites.  

However, there will always be the problem of selecting appropriate parameter values when 

absolute quantitative predictions are desired. 

Ground vibration from surface (generally ballasted) railways has been treated with detailed 

models which often include track dynamics and are sometimes three-dimensional.  However, 

models of underground railways have either not considered tunnel dynamics fully or have only 

been two-dimensional.  None have included detailed track models.  There is thus a need to 

develop a detailed three-dimensional underground-railway model that includes the dynamics of 

the train, the track, the tunnel and the soil.  An analytical approach would give insight into the 

physics involved, as well as allow the comparative effectiveness of vibration-isolation measures 

to be gauged.  In addition, it would be computationally fast compared to an approach such as 

FEM-BEM.  This is a gap this dissertation aims to fill. 
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Chapter 3    

MODELLING TRACKS 

Traditional railway track consists of the two steel rails fastened to sleepers (once wooden, now 

often concrete) laid crosswise at intervals of about 0.6m, the sleepers supported on a bed of 

ballast (crushed stone of large particle diameter).  When the first underground railways were built 

about a century ago, ballasted track was naturally used.  However, ballast shifts and settles due to 

repeated train passage and so needs constant maintenance to keep the track in good repair, an 

activity which is not as easy to carry out on underground railway lines as on surface ones.  Thus 

underground tracks were introduced where the rails are directly fastened to a concrete slab cast in 

the tunnel invert.  Such a track design requires much less maintenance, although it is still 

uneconomic in comparison to ballasted track for the much longer mainline surface routes.  

Nevertheless, a major drawback of directly fixed track is that it leads to higher levels of ground 

vibration and noise generation, since ballast absorbs quite a lot of the energy imparted to it, while 

concrete is much less damped.  This has led, beginning in the 1960s, to the popularity of a design 

known as floating-slab track for underground railways, whereby the concrete track slab is 

mounted on resilient bearings, or “floats” above the tunnel invert, in an effort to provide a degree 

of vibration isolation to the tunnel and surrounding soil. 

The typical arrangement of a floating-slab track (FST) in a tunnel is shown in Figure 3.1.  

Only one tunnel with its track is shown; in the London Underground there are usually two 

tunnels in close proximity, one for each direction of travel.  The two rails are mounted via rail 

pads and rail fasteners onto a massive concrete slab, which in turn rests on slab bearings 



CHAPTER 3.  MODELLING TRACKS  25  

 

supported by the tunnel invert.  The slab may be cast in-situ, resulting in a continuous length of 

concrete, or may be constructed of a number of discrete pre-cast sections laid end to end.  The 

rail pads are rubber and protect the concrete against cracking, as well as reduce the amount of 

noise generated.  The slab bearings can be rubber blocks or steel springs, or can be replaced by a 

continuous sheet of rubber under the slab.  Their purpose, in conjunction with the track slab, is to 

provide vibration isolation to the tunnel invert from the track.  The vibration-isolation 

performance is usually assessed on the basis of simple lumped mass-spring models, where 

isolation is predicted to occur above some designed low natural frequency.  However, such an 

approach ignores important dynamic effects due to the structure of the track, tunnel and soil.  As 

a starting point for investigation of these effects the track alone can be considered. 

3.1  Modelling of Floating-Slab Track with Beams 

The three-dimensional underground railway track shown in Figure 3.1 can be thought of as a 

two-dimensional model consisting of an infinite beam, representing the two rails, mounted on 

another infinite beam, representing the slab.  This is shown in Figure 3.2(a). An infinite track 

length is reasonable, as real railways are very long.  The elastic layers between the two beams 

represent the rail pads and the slab bearings.  The foundation is considered rigid.  This is an 

extension of a simple beam on an elastic foundation (Winkler beam).  The lower beam may be 
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Figure 3.1:  Underground railway layout showing the components of floating-slab track. 
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Figure 3.2:  Double-beam models of floating-slab track with (a) a continuous slab (cast in-situ) 
and (b) discrete slabs (pre-cast sections). 
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divided into finite sections to model discrete slabs, as in Figure 3.2(b). 

Either of the two models given in Figure 3.2 can be thought of as being constructed of an 

infinite number of finite-length double-beam units.  For continuous slab track, both the top and 

bottom beams of the  unit are joined end-to-end; for discrete slab track, only the top beams are 

joined.  Such a double beam unit is depicted in Figure 3.3.  Euler beam theory (see Meirovitch 

[136] or Newland [143]) gives the equation of motion for the displacement u x t( , )  of a beam in 

bending as 
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where m is the mass per unit length and EI the bending stiffness (E Young’s modulus, I second 

moment of area) of the beam, and f x t( , )  is the distributed force per unit length acting on the 

beam.  For the top beam, the force is f x t k u k u( , ) = − +1 1 1 2, and for the bottom beam, 

f x t k u k k u( , ) ( )= − +1 1 1 2 2, so that the coupled equations of motion for the top and bottom 

beams can be written as a 2×2 matrix system 

 u u u 0IV       +








 +

−
− +








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m EI

m EI

k EI k EI

k EI k k EI
1 1

2 2

1 1 1 1

1 2 1 2 2

0

0
ɺɺ

( )
 (3.2) 

where u is the vector of displacements { }u u1 2
T of the top and bottom beams, and k is stiffness 

per unit length, with subscript 1 denoting the top beam, subscript 2 the bottom.  The numeral IV 

indicates the fourth derivative with respect to distance x and dot indicates differentiation with 

respect to time t.  The effects of damping can be included by making the material parameters 

complex once the problem is in the frequency domain.  This is possible through the 
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Figure 3.3:  Double-beam unit showing (a) the displacements Y and rotations Θ and (b) the shear 
forces Q and bending moments M at the ends of the unit. 
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correspondence principle, whereby the real parameters of an elastic problem can be replaced by 

complex ones to model the equivalent viscoelastic problem (see Bland [15] for example).   

Substitution of the harmonic solution u U= ( )x ei tω  into (3.2) yields 

 
U U
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IV   
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−

− −
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( )

( )

[ ]
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k EI m k k EI
1

2
1 1 1 1

1 2 2
2

1 2 2

ω
ω  (3.3) 

where ω is angular frequency.  Substitution of an exponential solution of the form U V= e xα  in 

(3.3) results in an eigenvalue problem in [B], with eigenvalues α 4  and eigenvectors V. The two 

eigenvalues α 1
4  and α 2

4  yield four roots each, which together with the two eigenvectors V1 and 

V2  allow the general solution for the displacement of the beam to be written as 

 
U V

V

= + + +
+ + +

− −

− −

( )

)

Ae Be Ce De

Ee Fe Ge He

x i x x i x

x i x x i x

α α α α

α α α α

1 1 1 1

2 2 2 2

1

2

 +

       (
 (3.4) 

where A, B, C, D, E, F, G and H are arbitrary coefficients.  The four roots of an eigenvalue are of 

equal magnitude but separated in the complex plane by a phase difference of π 2  from one to 

the next; thus all roots can be obtained from one by successive multiplication by i, as in (3.4).  

This can easily be seen by considering an eigenvalue in polar form as α θ π4 2= +rei n( ) , and 

applying De Moivre’s theorem to obtain the roots as α θ π= +r ei n4 4 2. ( ) .  Hence there are two 

roots with negative real part, corresponding to solutions which decay with increasing x, and two 

with positive real part, corresponding to growing solutions.  The position of a root in the 

complex plane determines whether the root corresponds to localised or travelling waves at a 

given frequency.  If (3.4) were to be solved for a double beam with infinite extent in the positive 

x-direction excited at x = 0, then the growing solutions would be ignored, because the response 

must tend towards zero at infinity. 

The dynamic stiffness matrix (DSM) relating the generalised forces (forces and moments) to 

the generalised displacements (displacements and rotations) at the beam ends can be obtained 

from the general boundary conditions at x = 0 and x L= , giving eight equations relating the end 

displacements to the eight coefficients in (3.4), and eight equations relating the end forces to the 

coefficients.  The boundary conditions for the top beam are (see Figure 3.3) 
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 (3.5) 

with the boundary conditions for the bottom beam the same, but with U 2  and EI 2  replacing U1  

and EI1 , and subscripts 3 and 4 instead of 1 and 2 everywhere else.  By substituting the 

displacements (3.4) into the boundary conditions (3.5), the sixteen equations can be rendered in 

matrix form as 

 Y M A Q N A= =[ ] [ ]     and      (3.6) 

where Y = { }Y Y Y Y1 1 3 3 2 2 4 4Θ Θ Θ Θ T  is the vector of all end displacements 

(including rotations), Q = { }Q M Q M Q M Q M1 1 3 3 2 2 4 4
T  is the vector of all end 

forces (including moments), and A = { }A B C D E F G H T  is the vector of the 

coefficients in (3.4).  The elements of [M ] and [N] are given in Appendix A.  By eliminating the 

coefficients A from the 8x8 system of (3.6), the DSM [K ] of the double-beam unit is found from 

 Q N M Y K Y= =−[ ][ ] [ ]1  (3.7) 

at a particular frequency ω. 

3.2  The Repeating-Unit Method 

The full, infinitely long track structure is simply an infinite series of repeated double-beam units 

added end to end.  The unit DSM derived in the previous section can be used to obtain the DSM 

for a semi-infinite track as described below, then two semi-infinite tracks can be joined at their 

free ends to yield the infinite track model. 

3.2.1  Determination of the DSM for an Infinite Structure 

The semi-infinite structure shown in Figure 3.4 illustrates the principle of the repeating-unit 

method.  The objective is to obtain the DSM for the semi-infinite structure; it is clear that adding 
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one more unit to such a structure will not change its DSM.  The method used here is that 

employed by Cryer [38] to model buildings as infinite structures of beam elements.  This in turn 

is based on the transfer-matrix methods described by Mead [130, 131, 132] and Livesley [120]. 

The unit’s DSM [K ] is used to generate the transfer matrix [T], which relates the state of 

displacement and force S Y Q= { }T T T  at the left-hand end of a unit to the state at the left-hand 

end of the previous unit.  The DSM matrix equation (3.7) can be partitioned between the forces 

and displacements at the left and right ends of the unit.  Given no external forces acting on the 

semi-infinite structure except at the free end, compatibility conditions require that the 

displacements at the right-hand end of the j th  unit are equal to the displacements at the left-hand 

end of the ( )j + 1 th  unit, while equilibrium requires that forces are equal and opposite.  

Partitioning (3.7) and substituting the equilibrium conditions gives 
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where the sub/superscripts of l and r refer to the left-hand and right-hand ends of a unit 

respectively.  Rearrangement of (3.8) results in the relationship 
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between the state S j +1  and the state S j . 

The crux of the method is that states propagate along the structure unchanged except in 

amplitude and phase.  If the complex amplitude-modifying factor is λ, then from the j th  unit to 

the ( )j + 1 th  unit 

 S T S S Sj j j j+ += =1 1[ ]      and     λ  (3.10) 

which is an eigenvalue problem in [T] with eigenvalues λ and eigenvectors Sj .  Equation (3.10) 

is a statement of Floquet’s theorem (see Ferrari [55]).  For the model of Figure 3.2(a) with a 

 

+

S4S3S2S1

L  

Figure 3.4:  Addition of one more repeating unit to a semi-infinite double-beam model, showing 
the states S of the left-hand ends of the units. 
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continuous slab beam, both the top and bottom beams are joined from unit to unit, so that [T] is 

an 8×8 matrix and there are eight eigenvalues, essentially four from each beam.  Four of these 

have λ < 1, corresponding to decaying solutions as x increases, and four have λ > 1, 

corresponding to growing solutions.  Since for excitation at the free end the response must vanish 

as x → ∞ , only the four decaying solutions are used to obtain the DSM. 

Any state of the free end can be expressed as a linear combination of the four eigenvectors 

with λ < 1.  If the coefficients for each eigenvector contribution are written as a vector 

C = { }C C C C1 2 3 4
T , and the end state and four eigenvectors split between displacements 

and forces, then 

 
Y Y Y Y Y C Y C

Q Q Q Q Q C Q C
1 1 2 3 4

1 1 2 3 4

= =
= =

[ ] [ ]

[ ] [ ]

     

   
 (3.11) 

where the overbar indicates eigenvector quantities.  Equations (3.11) can be used to eliminate C 

to obtain the 4×4 DSM [ ]K ∞  of the semi-infinite structure from 

 Q Q Y Y K Y1
1

1 1= =−
∞[ ][ ] [ ]  (3.12) 

The dynamics of the semi-infinite structure have now been condensed to a relationship between 

the forces and displacements at the free end.  Obtaining [ ]K ∞  in this way involves one 

computational step, whereas an analogous solution for a finite structure – adding units together 

until convergence is reached – requires many iterations. 

For the model of Figure 3.2(b) with discrete slab beams, the DSM of the repeating unit is 

extracted from [K ] in (3.7) to relate only the top beam’s forces and displacements, given that the 

end forces on the bottom beam must be zero if those ends remain free.  Hence [T] is 4×4.  When 

the repeating unit process is applied to this new DSM, there will be only four eigenvectors, two 

having λ < 1, and thus only two eigenvectors will appear in (3.11), resulting in a 2×2 [ ]K ∞ . 

The DSM for a semi-infinite structure extending to the left can be obtained by a similar 

argument to the proceeding one.  Alternatively, it can be obtained directly by symmetry from the 

DSM for the structure extending to the right, by changing the sign of the off-diagonal elements 

relating the free-end forces and rotations, and the free-end moments and displacements.  The 

DSM for an infinite structure can be obtained by adding the DSMs for two semi-infinite 

structures, one extending to the left, the other to the right. 



CHAPTER 3.  MODELLING TRACKS  31  

 

3.2.2  Adding Axle Masses to the Model 

Masses can be placed on the rail beam to represent the unsprung mass of axle-wheel assemblies 

of a train of infinite length running on the track, as shown in Figure 3.5.  The DSM for the new 

infinite model is obtained by applying the repeating-unit method to a double-beam unit with a 

lumped mass ma  added to one end.  The inertia force introduced by this mass is −m Yaω
2

1 added 

to Q1 , or −m Yaω
2

2  added to Q2 , depending on which end the mass is situated at.  Therefore the 

new unit’s DSM is created simply by adding a −maω
2  term to the appropriate main diagonal 

element of the original double-beam unit’s DSM [K ] in (3.7).  The DSM for the case of a force 

input at the middle of an infinite track with axle masses, Figure 3.5(a), is relatively simple to 

obtain: the DSMs for the left and right semi-infinite structures are both calculated from units 

with masses all at the left-hand end (or all at the right-hand end). 

A more useful and realistic model for simulating roughness and other irregularities of the rail-

wheel contact is to use a displacement input δ between the centre axle-wheel mass and rail beam, 

as shown in Figure 3.5(b).  This time the right semi-infinite structure is based on units with axle 

masses all on the right-hand end, while the left is based on units with left-hand masses, so that 

the middle of the resulting infinite track structure has no axle mass.  The centre mass is added to 

the structure with a harmonic roughness displacement δ ω= ∆ei t  interposed.  This displacement 

can be thought of as the variation about the mean of the roughness.  Suppose there are no 

external inputs except the roughness displacement.  If Ya  is the displacement of the new mass in 

the frequency domain, then the interaction force acting on it must be equal to −m Ya aω 2 ; an equal 

and opposite interaction force acts on the rail beam directly below the mass, so that 

Q m Ya a1
2 0− =ω , while the other forces acting at the centre are zero.  These forces 

 

F

L

δ

L

(a) (b)

 

Figure 3.5:  Infinite track model with an infinite series of axle-wheel masses added to the rail 
beam, excited by (a) a force at one mass (b) a displacement input between one mass and the rail 
beam. 
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Q1 1 1 3 3= { }Q M Q M T  are defined by (3.12) in terms of the centre displacements 

Y1 1 1 3 3= { }Y YΘ Θ T .  The additional condition that the difference between the axle-mass 

and rail displacements must be equal to the roughness input, Y Ya − =1 ∆ , is required for the five 

unknown displacement components to be found.  Putting all of this together yields the matrix 

equation 
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 (3.13) 

where the kij  are the elements of the DSM [ ]K ∞  of the infinite track structure with axle masses 

but no mass in the middle.  A 4×4 [ ]K ∞ , which corresponds to a continuous slab beam, is used 

in (3.13); in the discrete-slab case it would be 2×2 since only the rail beams are joined.  Note that 

the new system of equations is of dimension one greater than the original DSM [ ]K ∞ , because a 

new independent displacement component Ya  has been introduced. 

3.3  Transmitted Force 

As an initial point of comparison between different configurations of FST, the total force 

transmitted into the ground for a given input can be considered.  Via its wheels, a train provides 

several inputs to the track simultaneously, but this case of multiple inputs is best developed by 

first considering the transmitted force due to a single input acting on the track. 

3.3.1  Transmitted Force for a Single Input 

Each infinitesimal element dx of the lower beam of a unit will provide an increment in 

transmitted force of dF k U dxu = 2 2 , as shown in Figure 3.6(a).  The force transmitted from the 

unit onto the foundation will be the integral of these increments over the length of the unit, from 

x = 0 to x L= .  The bottom-beam displacement U 2  is given by the second row of matrix 

equation (3.4), so that 
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for a single unit, where the eigenvectors are defined by V1 11 12= { }V V T  and V2 21 22= { }V V T .  

The coefficients A can be found using the end displacements Y of the unit and the matrix [M ] in 

(3.6). 

The total force transmitted from the whole track to the foundation is obtained by considering 

the infinite track model shown in Figure 3.6(b).  The response at the load point Y1  to applied 

input excitation Q1  can be found from the infinite model’s DSM (created from two semi-infinite 

models’ DSMs). 

The transmitted force Fu  under any unit can be calculated by (3.14) if the end displacements 

Y are known.  The displacements are a linear combination of the eigenvectors Y j  according to 

(3.11), and from (3.10) each eigenvector decays from unit to unit by a factor of λ j  .  If the 

displacement at the excitation point corresponds to one of the four eigenvectors Y j , the end 

displacements are Y Y Y= { }j j j
T T Tλ  for the first unit to the right, { }λ λj j j jY YT T T2  for the 

second, { }λ λj j j j
2 3Y YT T T  for the third and so on.  Equation (3.6) then gives the coefficients 

for each unit as A, λ j A , λ j
2A  and so on.  Hence from (3.14) the transmitted force of one unit 

will be that of  the previous unit multiplied by λ j .  Denoting the transmitted force for the first 

 dF k U dxu = 2 2

L

U2

dFu

x dx

F Ft u=∑

λ2
1YλY1Y1λY1λ2

1Y

Q1

L

(b)(a)

 

Figure 3.6:  (a) Transmitted-force increment for a single double-beam unit.  (b) Transmitted force 
for the whole structure, showing how an eigenvector displacement propagates away from the 
loading point. 
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unit due to the j th  eigenvector as Fuj , the total transmitted force under the right-hand semi-

infinite structure, summing over all the units to infinity, is a geometric series (recall λ j < 1) 

 F F F F
F

uj j uj j uj j uj

uj

j

          + + + + =
−

λ λ λ
λ

2 3

1
…  (3.15) 

A linear combination of the eigenvector contributions (3.15) according to the proportions C, 

calculated from (3.11), gives the total transmitted force for the right half of the track model for 

any input Q1 .  The total transmitted force Ft  for the whole structure will be twice this value by 

symmetry.  Thus  

 F
C F C F C F C F
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4 4
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 (3.16) 

for the continuous slab model;  the discrete slab model would have only the first two terms.  If 

the input Q1  is a unit harmonic force acting on the rail, (3.16) gives the transfer function F Ft  

of total transmitted force to input force.  

The concept of total transmitted force adds together all the increments of force without regard 

for spatial disposition.  This gives a valid picture for an observer at a distance from the track 

which is large compared to the length over which transmitted force is produced: all transmitted 

force increments then appear to act at a single point.  This is known as St Venant’s principle.  In 

practice, however, track displacement involves travelling waves, so that an observer can never be 

far enough away for the transmitted force to be considered as coming from a point source.  The 

transmitted-force approach is therefore only useful for comparisons between track 

configurations. 

3.3.2  Transmitted Force for Multiple Inputs 

Figure 3.7 shows the case of an infinite series of force inputs acting on the rail beam, to represent 

the passage of a train of infinite length.  The inputs are separated by the unit length L, and have 

equal magnitude with a phase difference of φ from one to the next to account for the time delay 

between forces from successive wheels of the train.  The superposition of an infinite number of 

single-load cases, shifted in phase and space, gives the result for the transmitted force.   
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The unit between the loads F and Feiφ  in Figure 3.7 has contributions to its transmitted force 

from the loads to its left and the loads to its right.  The number of units that a particular load is 

from the unit under consideration determines the quantity of that load’s contribution as a power 

of λ j .  Adding these two sets of contributions for one eigenvector of the model gives a sum of 

two geometric series 
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where Fuj  is an eigenvector contribution to the transmitted force under the first unit to the right 

of the load when the infinite track model is excited by the single load F.  The transmitted force 

Fu  for the unit is the linear combination of the eigenvector contributions 
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 (3.18) 

for the continuous slab model.  The discrete slab model result would have only two eigenvector 

components instead of four.   

For the next unit to the right of that considered, the series in (3.17) is multiplied by eiφ .  

Hence Fu  in (3.18) is also multiplied by eiφ ; for each successive unit to the right, the result is 

repeatedly multiplied by this phase-shifting factor.   With a factor of e i− φ  the same is true for the 

units to the left.  The total transmitted force summed over all units is then F eu
in

n

φ

=−∞

∞
∑ .  The total 

input force for a series of phased unit harmonic inputs is ein

n

φ

=−∞

∞
∑ .  The transfer function of total 

 Fu

L

Fei 2φFeiφFFe i− 2φ Fe i− φ

 

Figure 3.7:  Transmitted force for a single unit in an infinite FST model excited by multiple 
phased inputs applied at the unit junctions. 
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transmitted force to total input force F Ft Σ  is therefore the same as the unit transmitted force 

Fu  given in (3.18).   

3.4  Results 

The package Matlab was used to investigate the behaviour of infinite FST models based on the 

double beam unit developed in the previous section.  The parameters used are given in Table 3.1. 
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Table 3.1: Parameter values used for the double-beam track model. 

The rail beam’s parameters are for two rails together.  The damping is viscous such that the real 

stiffnesses written as k in (3.3), the equations of motion in the frequency domain, are replaced by 

complex stiffnesses k k i∗ = +( )1 ωζ .  The parameters above are based on typical values for FST, 

but the value of the rail-support stiffness k1  has been reduced by an order of magnitude to make 

the resonance of the rail on the rail pads fall below 200Hz, the maximum frequency which will 

be considered. 

With the parameters given, the maximum unit length L which could be treated was about 

14m.  This is because the elements of [M ] and [N] of (3.6), upon which the unit DSM [K ] 

depends, contain exponential terms whose exponents are both positive and negative products of 

L and the roots α 1 and α 2  (see Appendix A).  Thus as L increases, [M ] and [N] start containing 

elements both very large and very small.  The accuracy of matrix inverses calculated numerically 

is adversely affected when the difference in order of magnitude between the largest and smallest 

matrix elements becomes too great for the computational precision used.  To ensure the 

numerical accuracy of the transfer matrix [T] of (3.9), which involves inverses of submatrices of 

[K ], some scheme of row and column normalisation would have to be used for larger values of L. 
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The first comparison is of total transmitted force for beam models with continuous and 

discrete slabs to the double-mass-spring system shown in Figure 3.8.  The transfer function of 

transmitted force for the double mass can be shown to be 

 
F

F

k k

m k m k k m
t   =

− − −
1 2

1
2

1 2
2

2 1 1
2( )( )ω ω ω

  (3.19) 

where the masses m and stiffnesses k are given values equivalent to some length of the FST, say 

one metre. 

Figure 3.9 shows the transfer function of total transmitted force for the double mass and for 

FST models of varying slab length including continuous slab, calculated from (3.16) and (3.19).  

The numerical results are identical for all the models.  There is a peak at about 20Hz for the 

resonance of the slab on the slab bearings, and a broad peak at about 100Hz for the resonance of 

the rails on the rail pads.  These resonances mark the onset of travelling waves in the respective 

beams.  It seems that slab length has no effect on transmitted force and that FST can be 

accurately represented by simple lumped-parameter mass-spring models.  It is interesting to note 

that calculating the total transmitted force for a single Winkler beam, by starting from (3.1) to 

determine its displacement and then using integration as in (3.14) to obtain the total force, gives 

an identical analytical result as an equivalent single mass-spring system.  
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Figure 3.8:  Total transmitted force for (a) a double mass-spring system compared to that for (b) a 
double-beam model.  The parameters for (a) are equivalent to one metre of FST. 
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Figure 3.9:  Transfer function of total transmitted force due to a single force on the rail beam, 
calculated using different FST models, and compared to that for a double mass-spring model. 
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Figure 3.10:  Responses at the loaded joint of (a) the top beam and (b) the bottom beam for an 
infinite FST model with a unit harmonic load applied to the rail beam. 
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A more subtle picture emerges when the displacement response is examined.  Figure 3.10 

gives the responses of the top and bottom beams at the loading point for different slab lengths.  

The bottom beam displacement determines the transmitted force.  Discrete slab beams introduce 

a larger resonant response of the slab on its bearings at 20Hz and a number of new resonances 

after this point compared to the continuous double-beam model’s response, which follows the 

same general shape as the total transmitted force curve.  The breaks in the slab beams reflect 

travelling waves, preventing energy from propagating away from the loading point through the 

slab.  Thus the response at slab resonance is greater and standing waves can be set up in the 

discrete slabs, resulting in the further resonances seen.  Longer discrete slabs allow standing 

waves to form at lower frequencies: the 12m slabs result in four extra resonances below 200Hz, 

but the 2m slabs are too short for any standing waves to occur in this frequency range.  Discrete 

slabs markedly change the response of the slab near the applied load, and thus also the local 

increment of transmitted force.  Because energy is prevented from propagating down the 

structure, the responses away from the load will be less than with continuous slab.  These 

changes in local effects would be important for an observer (or building foundation) close to the 
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Figure 3.11:  Transfer function of total transmitted force for discrete- and continuous-slab FST 
models once 500kg axle masses at 12m spacing are added to the rail beam, with the double-beam 
result as a reference. 
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track, where the concept of total transmitted force breaks down because the force transmitted to 

the foundation cannot be construed as acting at a single point. 

A train of infinite length running on the track can be represented by placing axle masses on 

the rail beam, as described in Section 3.2 and shown in Figure 3.5(a) with a single force input.  

Figure 3.11 gives the total transmitted force for the model with added masses excited by a force 

at one of the masses.  It can be seen that now there is a difference between the results for 

continuous and discrete slab beams.  The added mass has also reduced the resonant frequency of 

the top beam.  Figure 3.12 shows the effect on total transmitted force of changing the value and 

spacing of the masses for a continuous-slab track, so that slab length does not change with mass 

spacing.  The mass value, not the spacing between masses, changes the top beam resonance.  

This indicates that each mass interacts with some characteristic length of the beam, as shown in 

Figure 3.13, rather than there being some averaging effect of mass over the whole beam.  The 

spacing between masses only has an effect at higher frequencies, above 100Hz, after the onset of 
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Figure 3.12:  Magnitude of the transfer function of total transmitted force for the continuous-slab 
FST model with axle masses on the rail beam for (a) varying mass at 12m spacing and (b) 
varying spacing of 500kg masses. 
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travelling waves in the top beam itself.  For real railpad stiffnesses an order of magnitude higher 

than that used here, the cut-on frequency of travelling waves would be of the order of 300Hz, so 

that these higher-frequency effects would not be visible in the frequency range considered. 

The total transmitted force for phased force inputs at all the axle-wheel masses can be 

calculated from (3.18).  For an axle spacing of L and a train speed of v, the time delay between 

axles is L v  so that the phase difference is given by φ ω= L v .  The frequency ω determines the 

wavelength of the irregularity in the rail-wheel interface for a given spacing and speed.   

Figure 3.14 shows the total transmitted force for this model with v = 24m/s.  With a 

frequency range upto 200Hz, irregularity wavelengths decreasing from infinite to 0.12m are 

being simulated.  The transfer function shows a series of resonances and deep antiresonances at a 

spacing of 2Hz from peak to peak.  The resonances result when all the masses move up and 

down together in phase.  This occurs when a whole multiple of the excitation wavelength 

corresponds to the axle spacing of 12m, as depicted in Figure 3.15(a), implying frequency 

intervals of 2Hz as observed.  Similarly, the antiresonances occur when each mass is moving in 

antiphase compared to its two neighbours, as depicted in Figure 3.15(b).  The shape traced by the 

peaks of the 2Hz resonances is similar to the curves in Figures 3.11 and 3.12 for a single load. 

The more realistic model using a roughness displacement input δ between one of the axle-

wheel masses and the rail beam, shown in Figure 3.5(b), has dynamics given by equation (3.14).  

Once the displacements Y1  of the model are calculated, all the previously developed results for 

transmitted force hold.  Figure 3.16 gives the response of the model to phased displacement 

inputs at all the axle-wheel masses for the same parameters as the case with phased force inputs.  

The series of resonances and anti-resonances at 2Hz intervals appear again as expected.  Note, 

 

(a) (b)

 

Figure 3.13:  Schematics showing that (a) a smaller axle mass interacts with the same shaped 
“deflection bowl” of rail as (b) a larger axle mass, below the frequency of travelling waves in the 
rail beam.  The shape is that of the static deflection of a 20m section of an infinite rail beam on 
springs with properties as given in Table 3.1 (vertical scale highly exaggerated). 
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however, that displacement inputs give significant transmitted force at the higher-frequency end 

of the FRF of transmitted force, where the FRF for force inputs (Figure 3.14) is highly 

attenuated. 

The regular series of resonances seen in Figures 3.14 and 3.16 are due to an effect known as 

wheelbase filtering in the field of vehicle-road interaction.  For a varied distribution of motor-

vehicle speeds and axle spacings as would be expected on a typical busy roadway, the effect of 

wheelbase filtering is smoothed out and is thus unimportant in calculating the ground-vibration 

response near the road by means of random process theory (see Hunt [90, 91]).  In a real railway 

 

(b)(a)

½λλ  

Figure 3.15:  Schematics showing the relationship of irregularity wavelength λ and axle-mass 
positions for (a) resonances in total transmitted force (masses in phase), and (b) antiresonances in 
total transmitted force (alternate masses in antiphase), at the lowest frequencies (largest 
wavelengths) these first occur. 
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Figure 3.14:  Transfer function of total transmitted force for phased input forces at 500kg axle 
masses with 12m spacing on the continuous-slab FST model.  Train speed 24m/s. 
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vehicle-track system, there will be slight random variations in the spacing between the axles, 

which means that the sharp resonances in Figures 3.14 and 3.16 will be smoothed out to some 

extent, but not as completely as for a busy roadway.  However, the repeating-unit method does 

not lend itself easily to the treatment of varied axle spacing, because the transfer-matrix approach 

assumes units of precisely the same length.  Thus a different method would be needed to model 

axle spacing with some degree of inherent randomness. 

3.5  Conclusions 

Although at first glance it seems that FST is well modelled by a simple double mass-spring 

system when transmitted force is considered, closer inspection using double-beam models of 

infinite length reveals otherwise.  In particular, the slab length has a significant effect on the 

displacement response and hence on the local contribution of force transmitted onto the 

foundation.  With masses added to the model to represent axle-wheel assemblies of a train, the 

total transmitted force for a single force input can be partially explained by the dynamics of an 

axle-wheel mass on a characteristic length of rail.  However, when multiple, phased inputs of 
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Figure 3.16:  Transfer function of total transmitted force for phased displacement inputs at 500kg 
axle masses with 12m spacing on the continuous-slab FST model.  Train speed 24m/s. 
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force or displacement are used to model rail-wheel irregularities, a series of resonances due to 

axle spacing appear, which cannot be explained with simpler models.  Nevertheless, the concept 

of total transmitted force is limited, despite increasingly more complex models, because of the 

way all force increments are summed without regard to spatial distribution.  Most importantly, 

the models considered so far have assumed a rigid foundation, so nothing can be said about 

vibration levels in the soil surrounding the tunnel.  The dynamics of the tunnel and the soil need 

to be addressed. 



 45  

Chapter 4    

MODELLING THE TUNNEL 

As described at the beginning of Chapter 3, the track in an underground railway is supported by 

the invert of the tunnel, which is surrounded by soil (see Figure 3.1).  The dynamics of the track 

were investigated by considering the tunnel as a rigid foundation.  However, it is reasonable to 

expect that different tunnel designs and soil conditions will influence the effectiveness of 

underground railway tracks designed for vibration isolation, particularly if the “stiffness” of the 

tunnel invert is not so high as to be effectively rigid in comparison to the various track elements 

between the rail and the invert.  In addition to this, the only sure measure of a track design’s 

vibration-isolation performance is the level of vibration resulting in the soil around the tunnel 

when a train runs on that track.  For these reasons, a mathematical model of the underground 

railway system needs to include the effects of the tunnel and soil dynamics. 

Underground railway tunnels can be of rectangular or circular cross-section.  Rectangular 

cross-sections result from the construction method known as “cut-and-cover”, where a trench is 

excavated, the tunnel lining put in place, then the whole covered to ground level.  This method is 

used for shallow tunnels (a few metres underground), or as a run-in from the surface for deeper 

tunnels.  Circular cross-sections result from boring tunnels at greater depths.  A tunnel of circular 

cross-section will be considered in this chapter. 

The tunnel is conceptualised as an infinitely long cylindrical tube surrounded by soil of 

infinite radial extent.  If the tunnel wall is thin compared to its radius, cylindrical shell theory can 

be used to model the tunnel’s response.  The infinite soil can be treated by use of the wave 
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equations for an elastic continuum, formulated in cylindrical coordinates.  The analytical 

solutions for these two components of the physical model are coupled together through the use of 

appropriate stress and displacement boundary conditions.  Despite the absence of a free soil 

surface, useful results concerning the propagation of vibration into the soil near the tunnel – 

where building foundations are located – can be obtained.  The results for the motion of the 

tunnel and surrounding soil can then be combined with a track model (the subject of Chapter 5) 

to improve upon the understanding gained from the track models with rigid foundation 

considered in Chapter 3. 

4.1  Cylindrical Shell Equations 

The linear equations of motion for a general thin shell made of linear elastic, homogeneous, 

isotropic material are given by Volmir [181] and reproduced in Appendix B.  For the special case 

of a thin cylindrical shell, shown in Figure 4.1(a), Volmir’s equations can be substantially 

simplified.  In this case they are the same as the static equations of Flügge [57] with the addition 

of inertia terms.  Each of the three equations represents dynamic equilibrium in one of the three 

principal directions.  Equilibrium in the longitudinal direction x gives 
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equilibrium in the tangential direction y gives 
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and equilibrium in the radial direction z gives 
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where u, v and w are the displacement components in directions x, y and z respectively and 

varying with time t, a is the radius of the shell, and h is its thickness.  The shell material has 

Young’s modulus E, Poisson’s ratio ν, and density ρ.  The effects of material damping can be 

included by using complex material parameters in the frequency domain.  The net applied 

loading is usually represented by stress components acting on the inside surface of the shell: two 

shear tractions qx  and qy , and one normal stress qz .  More precisely, these are the net stresses 

acting, the differences between the inside and outside values of the surface stresses τ zx , τ zy  and 

τ zz respectively.  The displacement and stress components are shown in Figure 4.1(b) and (c). 

The terms in (4.1) to (4.3) which are multiplied by the factor h2 12  represent the 

contribution of bending effects to the displacements, while those without represent the 

contribution of membrane effects.  Use of the simplified static cylindrical shell theory of 

Timoshenko and Woinowsky-Krieger [175] results in the loss of the bending terms in (4.1) and 
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Figure 4.1:  Coordinate system used for the thin-walled cylindrical-shell theory, showing (a) the 
principle directions for a typical element in the shell, (b) the corresponding displacement 
components and (c) the corresponding surface stress components.  To model a railway tunnel, the 
length of the cylindrical shell is taken as infinite. 
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(4.2), and of the second bracket of bending terms in (4.3).  However, while also giving this 

simplified theory, Flügge [57] notes that such gross simplifications have been made as to make 

the resulting equations next to useless. 

If the loading applied to an infinitely long cylindrical shell comprises stress components 

which are harmonic in both space and time, of the form 
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and hence separable in time t, space x and angular position θ, then the equations of motion (4.1) 

to (4.3) are satisfied by the similarly harmonic displacement components 
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where ω is angular frequency, ξ is angular wavenumber, n is a positive integer, while the tilde on 

the uppercase coefficients 
~
Qxn , 

~
Qyn , 

~
Qzn , ~U n , ~Vn  and ~Wn  indicate that they are in the 

wavenumber domain as well as the frequency domain.  The spatial exponential term ei xξ  arises 

because of the cylindrical shell’s infinite longitudinal extent; if it was of finite length L, then 

these exponentials would be replaced by terms like sin( )m x Lπ  or cos( )m x Lπ  – with the 

choice depending on the end conditions – where m is a positive integer.  The trigonometric terms 

represent ring modes of the cylindrical cross-section and are chosen so that the displacements are 

symmetric about θ = 0, the downward vertical.  Figure 4.2 shows these ring modes as they relate 

to the three displacement components u, v and w.  The modes are composed of an integer 

number n of waves developed around the circumference.  Hence for the in-plane flexural modes 

of Figure 4.2(a), which are associated with radial displacement w, n = 0 corresponds to an 

expansion or “breathing” mode, n = 1 corresponds to one full wave or translation of the cross-

section, n = 2 corresponds to two full waves or a squashed cross-section, and so on.  The ring 

modes for the tangential displacement v are the in-plane extensional modes of Figure 4.2(b), 

while those for the longitudinal displacement u are the out-of-plane flexural modes of Figure 

4.2(c). 
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Substitution of the stresses (4.4) and displacements (4.5) into equations (4.1) to (4.3) and 

putting all three equations into matrix form yields 
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where [A] is a matrix of coefficients whose elements are given in Appendix B.  If the stresses 

~
{

~ ~ ~
}Q = Q Q Qxn yn zn

T  are such that they represent some kind of unit loading condition, then 

the displacements ~ { ~ ~ ~ }U = U V Wn n n
T  represent the displacement frequency-response 

functions (FRFs) in the wavenumber domain for a particular circumferential mode n.  The actual 

stresses and displacements will in general be linear combinations of the modal quantities. 

 

n = 2n = 0 n = 3n = 1
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θ

 

Figure 4.2:  (a) In-plane flexural ring modes, varying as cosnθ  and corresponding to radial 
displacement w; (b) in-plane extensional ring modes, varying as sinnθ  and corresponding to 
tangential displacement v; and (c) out-of-plane flexural ring modes, varying as cosnθ  and 
corresponding to displacement u, for different values of circumferential modenumber n.  The 
θ = 0  points are marked with small crosses on the undeformed ring shapes, while the small 
circles in (b) mark the additional nodal points on the ring’s circumference. 
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4.2  Elastic Continuum Equations 

The soil surrounding the tunnel is modelled as a three-dimensional, homogeneous, isotropic 

elastic solid in the form of a thick-walled cylinder with an inner diameter equal to the diameter of 

the tunnel, and an outer diameter of infinite extent, as shown in Figure 4.3(a).  The solution for 

the motion of this cylinder follows the method employed by Gazis [70] to investigate the modes 

of thick-walled cylindrical shells and developed further by Köpke [110] to model the dynamics 

of buried undersea pipelines. 

The wave equation describing motion within a three-dimensional, homogeneous, isotropic, 

elastic, solid medium is derived by Graff [73] and is 

 ( )λ µ µ ρ ρ ∂
∂

+ ∇∇ + ∇ + =⋅u u f
u

      2
2

2t
 (4.7) 

where u is the displacement vector, f the vector of body forces, t is time, λ ν ν= −2 1 2G ( )  and 

µ ν= + =E G2 1( )  are Lamé’s elastic constants (where G is shear modulus, E Young’s 

modulus, and ν Poisson’s ratio) for the medium, and ρ is the medium’s density.  In this case, the 

only body forces acting are due to gravity; but since the desired solution is for vibration about an 
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Figure 4.3:  Coordinate system used for the theory of an elastic continuum with cylindrical 
geometry, showing (a) the principle directions with their unit vectors for a typical element on a 
cylindrical surface of radius r within the bulk medium, (b) the corresponding displacement 
components and (c) the corresponding cylindrical-surface stress components (stresses acting on 
the edges of the element are not shown).  To model the soil surrounding a railway tunnel, the 
inner radius is set to R a1 =  to match the cylindrical shell of Figure 4.1, the outer radius is made 
infinite R2 → ∞ , and the length of the cylinder is taken as infinite. 
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equilibrium position, they are ignored and f is correspondingly set to zero.  The problem has 

cylindrical geometry, so the cylindrical coordinate system will be used.  The coordinate, 

displacement and stress directions are given in Figure 4.3.  Note that this system is different from 

that used for the analysis of the cylindrical shell in the previous section, with z now denoting the 

longitudinal coordinate. 

The wave equation (4.7) can be solved by making use of the scalar and vector potentials – 

Lamé’s potentials – which describe the field transformation 

 
u H

H r

    

 with     

= ∇ + ∇ ×
∇ =⋅

φ
F t( , )

 (4.8) 

where r  is the position vector (r, θ, z).  The scalar function F t( , )r  is arbitrary, due to the gauge 

invariance of the transformation.  The property of gauge invariance essentially means that the 

displacement field is not altered by the choice of the potentials used to describe it (see Morse and 

Feshbach [141]).  Usually H is defined by ∇ =⋅H 0  for convenience, but the arbitrary nature of 

F t( , )r  will be useful for the current problem. 

The displacement equations (4.7) are satisfied if the potentials satisfy 
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where c1 2= +( )λ µ ρ  is the speed of pressure waves in the medium and c2 = µ ρ  the speed 

of shear waves.  Since there are no surfaces or interfaces in the bulk medium, only these two 

types of waves can exist.  For cylindrical coordinates, the Laplacians in (4.9) are given by [73] 
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where er , eθ  and ez  are unit vectors in the principal directions of the cylindrical coordinate 

system, shown in Figure 4.3(a), and Hr , Hθ  and Hz  are the components of H. 

From (4.8), the displacement components can be written out as 
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The components of stress τ jk  are given by the general stress-strain relation of Hooke’s law, and 

are (see Timoshenko and Goodier [174]) 
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where the standard convention for designating stress directions is used (a stress is considered 

positive if its direction and the direction of the normal to the surface it acts upon are either both 

positive or both negative with respect to the coordinate system).  Hooke’s law is valid for linear-

elastic materials.  If some damping is introduced into the material, so that it becomes 

viscoelastic, the stress-strain relations (4.12) are still valid for low damping and the small 

magnitudes of vibration considered here.  However, when viscoelastic materials are subjected to 

large loads and displacements, more comprehensive stress-strain relations involving strain rates 

apply (see Bland [15] or Flügge [56]).  The components of strain ε jk  are defined in cylindrical 

coordinates by [73] 
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 (4.13) 

Equations (4.7) to (4.13) supply enough information to solve for the displacement and stress 

components.  To solve, solutions for the potentials in the wave equations (4.9), separable in the 

three space variables r, θ and z, and the time variable t, of the following form are assumed. 
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These represent harmonic solutions in the same way as those used in the cylindrical shell 

analysis, but now there is also variation with radius r governed by the functions f, gr , gθ  and gz  

(which also vary with ω, ξ and n).  Substitution of solutions (4.14) into equations (4.9) making 

use of definitions (4.10) and considering each component of the equation in H in turn results in 

the four differential equations 
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where prime denotes differentiation with respect to r. 

The first and fourth of equations (4.15) are modified Bessel equations of order n (see 

Kreyszig [112] for an introduction and Watson [185] for more detail), and thus have solutions 

based on modified Bessel functions of order n.  However, the second and third equations require 

further manipulation before a solution can be found.  Here the property of gauge invariance 

becomes useful: one of the functions gr , gθ  or gz  can be set arbitrarily without any loss of 

generality [70].  Choosing g gr = − θ  and substituting into the second equation of (4.15) gives 
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which is a modified Bessel equation of order ( )n + 1 . 

Hence solutions for the functions f, gr , gθ  and gz  can be deduced from equations (4.15) and 

(4.16) in the form of  linear combinations of modified Bessel functions as  
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where α ξ ω2 2 2
1
2= − c  and β ξ ω2 2 2

2
2= − c , and In  and Kn  are modified Bessel functions of 

respectively the first and second kinds, of order n.  The coefficients A, B, Ar , Br , Az  and Bz  are 

arbitrary, to be determined from boundary conditions. 

The displacements and stresses can be found in terms of the functions given by (4.17) by 

substituting the expressions for the potentials (4.14) into equations (4.11), recalling that 

g gr = − θ .  This gives the displacements as 
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The stresses can be determined from (4.12) by using the strain definitions (4.13) with the 

displacements (4.18) above.  Of the six components of stress, the three which act on cylindrical 

surfaces of the model (τ rr , τ θr  and τ rz ) are the most important in the current consideration, 

because they are involved with the boundary conditions, while the remaining three components 

(τ θθ , τ θz  and τ zz) are internal stresses.  The surface stresses are given by 
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and similar expressions can be found for the other three stress components. 

The functions f, gr  and gz  are defined in terms of Bessel functions by (4.14), while the 

displacements and stresses are functions of f, gr  and gz  and their derivatives.  Thus to determine 
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final expressions for the displacements and stresses, derivatives of Bessel functions must be 

determined first.  The identities ′ = + +I z z I z I zν ν νν( ) ( ) ( ) ( )1 ,  ′ = − +K z z K z K zν ν νν( ) ) ( ) ( )( 1 , 

′ = −−I z I z z I zν ν νν( ) ( ) ) ( )1 (  and ′ = − −−K z K z z K zν ν νν( ) ( ) ( ) ( )1  [185] can be used to calculate 

the required derivatives and thence to find the displacement and stress components of (4.18) and 

(4.19) in terms of modified Bessel functions of order n and ( )n + 1 .  The harmonic solutions can 

then be written in matrix form as 
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The stress vector has been arranged so that the first three elements are the surface stresses τ rr , 

τ θr  and τ rz .  C = { }A B A B A Br r z z
T  is the vector of coefficients, determined from 

boundary conditions.  The 3 6×  matrix [U] defining displacements, and the 6 6×  matrix [T] 

defining stresses, are given in full in Appendix B.  The elements of both matrices are in terms of 

modified Bessel functions with arguments of αr and βr, and thus are functions of wavenumber ξ, 

frequency ω and circumferential mode number n, as well as radius r and the material properties. 

By comparing (4.20) to the solutions (4.4) and (4.5) for the cylindrical shell, the elastic 

continuum’s displacements and stresses can be written in the wavenumber-frequency domain in a 

way similar to the shell result (4.6).  The displacement and surface stress components are 
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where the 3 6×  matrix [ ]Tr  is the top half of the 6 6×  matrix [T] in (4.20). 
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4.3  Solution and Results for Particular Boundary Conditions 

Before the displacements of either the cylindrical shell for the tunnel or the elastic continuum for 

the soil can be determined, the boundary conditions must be specified.  For modelling the tunnel 

surrounded by soil, the boundary conditions include the applied loads, compatibility of 

displacements and equilibrium of stresses at the tunnel-soil interface, and a radiation condition 

for the infinite soil.  The equations can of course be used to model the dynamic behaviour of 

other problems with cylindrical geometry if the appropriate boundary conditions are used, and 

this provides a means to check the equations before they are used to model the full tunnel-in-soil 

case.  In general the external loading applied to the tunnel will not be harmonic in space, even if, 

as here, steady-state harmonic variation in time is of interest.  Each general applied stress will 

instead be a linear combination of the spatially harmonic components given in (4.4) for the shell 

or (4.21) for the continuum.  The total displacement response can be obtained by adding the 

individual harmonic displacement components which result from each of the harmonic load 

terms which make up the total load, calculating the components from (4.6) or (4.21) in 

combination with the other boundary conditions which apply to a given problem. 

4.3.1  Resolution of a Point Load 

The most useful result for the tunnel model is its response to a unit point load, as the response to 

a more complicated loading condition can easily be determined by a superposition of point-load 

cases with suitable translations and rotations.  The greatest effect on the tunnel from interaction 

with a track supported by it is assumed to be via normal reaction forces; the longitudinal and 

tangential applied forces are therefore set to zero.  The spatial variation of such a point load is 

shown in Figure 4.4(a).  The response to this load is equivalent to the Green’s function of the 

tunnel for a time-harmonic point load in space, although the Green’s function is more generally 

the same as the impulse response function, that is, the response to an input impulsive in both 

time and space. 

The problem here is to cast the load into a form which can be utilised with the previously 

developed results.  The cylindrical shell notation will be used for the following argument, but it 

holds equally for the elastic continuum as well.  The loads px , py  and pz  applied to the inside 
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of the shell (which correspond to qx , qy  and qz  in (4.4) if there are no loads applied to the 

outside of the shell) are stresses, while the proposed normal point load is a force.  To ensure that 

the normal stress is scaled correctly to be equivalent to a unit force, the spatial variation of the 

normal loading can be visualised as a three-dimensional rectangular pulse centred on the position 

x = 0 and θ = 0, of (small) base side-lengths ∆x  and a∆θ , and of height 1 a x∆ ∆θ  (the stress 

magnitude), as depicted in Figure 4.4(b).  This pulse can be considered as the product of two 

separate rectangular pulses in x and θ, given in Figure 4.4(c).  The point load is achieved in the 

limit as ∆x  and ∆θ  tend to zero.  Thus the state of applied stress for a unit point load is 
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Figure 4.4:  (a) A unit normal point force acting on the invert of an infinitely long tunnel can be 
construed as (b) an appropriately scaled uniform normal stress acting over a small rectangular 
area centred on x = 0  and θ = 0 .  This normal stress distribution can be decomposed into (c) the 
product of two rectangular pulse functions, one in x and one in θ. 
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where δ ( )x  and δ θ( )  are Dirac delta functions. 

The solutions for the cylindrical shell  (4.6) and elastic continuum (4.21) are expressed in the 

wavenumber-frequency domain for a particular circumferential mode number n.  While the 

desired final displacement results will be FRFs – that is, will remain in the frequency domain – 

they will, in general, be linear combinations of the space-harmonic components calculated by 

(4.6) or (4.21), due to the fact that the applied loading is in general expressed as linear 

combinations of the space-harmonic stress components, as discussed above.  Thus the point load 

(4.22) must be decomposed into its space-harmonic components before the displacements can be 

found. 

Around the circumference, the space-harmonic variation is represented by the discrete ring 

modes of order n, while the variation of the load is represented by the term δ θ( ) a .  This part of 

the load can be written as a linear combination of the ring modes by means of the Fourier Series 

(see Kreyszig [112]) 
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 (4.23) 

on the interval − < ≤π θ π .  The series has reduced to a Fourier cosine series (bn = 0) because 

the Dirac delta δ θ( )  is an even function. 

The longitudinal variation of the load is described by the term δ ( )x .  Since the tunnel is 

infinitely long, the space-harmonic decomposition of this term is not described by discrete 

modes, but rather by a continuous function of ξ.  The harmonic components are found by taking 

the Fourier transform of the term δ ( )x .  Conversely, the total longitudinal variation of the load is 

described by the inverse Fourier transform of the resulting function 
~

( )δ ξ ; that is, the sum of the 

contributions from the harmonics at each increment of ξ.  Thus, 
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where the Fourier transform pair used has the factor of 1 2π  in the inverse transform†.  This 

definition will prove the most convenient for transformations from the space to wavenumber 

domain and vice-versa. 

Substituting the results for δ θ( ) a  and δ ( )x  from (4.23) and (4.24) into (4.22) yields  
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for the state of applied stress.  Recalling that (4.25) is a transform of a sum of modal space-

harmonic stress components and comparing it with those components in (4.4) allows the 

harmonic stresses for a particular circumferential mode number n to be deduced as 
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for all ξ.  The harmonic displacements {~ ~ ~ }U V Wn n n
T  are calculated for each value of n from 

(4.6) by applying the harmonic stresses (4.26).  The total displacements resulting from a time-

harmonic unit point load are given by the linear combination of these spatially harmonic 

components.  In the same way as the load, the linear combination is achieved by the inverse 

Fourier transform of a sum of the modal components, but this time there are no scaling factors 

explicitly apparent, since the modal displacements are derived from the correctly scaled modal 

stresses.  Thus the total displacements are given by 

                                                 
† This is the definition of Fourier transform usually used (though for functions of time) in electrical engineering and 

digital signal processing (see Maloney et al [127], Stearns [168]).  However, the position of the factor of 1 2π  can 

vary.  The convention used in the field of random vibration has the 1 2π  in the forward transform (see Newland 

[144]), while a definition with a 1 2π   in each of the forward and inverse transforms is often used in mathematics 

and physics (see Kreyszig [112]). 
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where the term which would correspond to ~V0  is zero because it is properly multiplied by 

sinn
n

θ = =
0

0, while the other two elements of the same vector are properly multiplied by 

cosn
n

θ = =
0

1.  In other words, the total wavenumber-domain displacements 
~
U  and 

~
W  are 

Fourier cosine series (which start from n = 0), while the displacement 
~
V  is a Fourier sine series 

(which starts from n = 1).  In practice it is not possible to calculate an infinite number of 

circumferential modes for the summation, so only as many as required to reach satisfactory 

convergence are used. 

Thus the time-harmonic displacement response is, in general, the inverse Fourier transform 

(from the wavenumber to space domain) of a sum of the circumferential modes in the 

wavenumber domain; or, alternatively, a sum of the circumferential modes in the space domain, 

obtained by the inverse Fourier transform of the modes in the wavenumber domain.  The result 

(4.27) holds for any type of time-harmonic loading condition; the modal displacements 

{ ~ ~ ~ }U V Wn n n
T  just have to be calculated for the correct modal stress components, in place of 

those given by (4.26) for the normal point load.  More general loads that are not harmonic in time 

could be treated by introducing a second inverse Fourier transform from the frequency to time 

domain. 

4.3.2  Modelling a Thin-Walled Cylinder with the Elastic Continuum Theory 

A useful check on the solutions (4.6) for the cylindrical shell and (4.21) for the elastic 

continuum, and for the validity of using thin-shell theory for the tunnel, is to make use of the 

continuum theory to model a thin-walled cylinder. 

For an infinitely long, free cylindrical shell loaded on the inside surface only, the modal 

loading components 
~
Q n  of (4.4) will simply be the applied loading 

~
Pn .  Thus the modal 

displacement components can be calculated from (4.6) as 
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To obtain an equivalent solution using continuum theory is more complicated.  To begin 

with, the conventional notations used in shell theory and continuum theory do not correspond 

exactly to one another.  The relationships between the displacements and stresses in the two 

different coordinate systems can be found by comparing Figures 4.1 and 4.3.  They are 
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where the shell quantities have been given first.  The shell coordinate system is more convenient 

here, because in this system stresses applied to an inside cylindrical surface (such as a tunnel 

invert) are positive in the same direction as the resulting displacements. 

The thin-walled cylinder equivalent to the shell will have an inside radius of the mean shell 

radius minus half the shell thickness, and an outside one of the mean radius plus half the 

thickness.  The applied stresses on the inside are the same as before, taking note of the 

differences in directions given by (4.29), and the outside ones are again zero.  Using (4.21), these 

stress boundary conditions can be written 
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and are sufficient to solve for the 6x1 vector of coefficients C, which can then be substituted into 

the displacement expression of (4.21).  For direct comparison to the thin-shell result (4.28), the 

displacements should be calculated for the mean radius of the cylinder wall.  Thus the modal 

displacement components are given by 
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Either of the solutions (4.28) or (4.31) can be used to determine the total displacement due to a 

particular set of load stresses by a modal summation then inverse Fourier transform, as given by 

equation (4.27).  If the cylinder is excited by a normal point load, then the stress components 

(4.26) are used in (4.28) or (4.31). 

4.3.3  Results for the Thin-Walled Cylinder 

The numerical results for the thin-walled cylinder were calculated using the unit point load 

described by (4.26) to determine the wavenumber-domain modal displacement components from 

(4.28) for the shell theory, or (4.31) for the continuum theory, for a range of modenumber n.  

These components were then summed and inverse Fourier transformed as in (4.27) to give total 

displacements in the space domain.  All these operations were accomplished numerically in 

Matlab, and are described in this section. 

The geometry and material parameters were chosen for comparison to match those used by 

Tuchinda [179], who uses the finite-element (FE) method to model a free, infinitely long 

cylindrical shell.  An 88m-long cylindrical unit of 704 8-node thick-shell elements (16 

circumferentially by 44 longitudinally) was analysed through the ABAQUS FE package to 

compute its dynamic-stiffness matrix (DSM).  The repeating-unit method (see Chapter 3) was 

applied to this DSM to join the cylindrical units at 8 nodes at each end, giving the DSM of a 

semi-infinite cylindrical shell, two of which make an infinite shell. 

The numerical values of the parameters used are given in Table 4.1.  Those for the shell 

theory come directly from values given in [179], while those for the continuum theory are 

derived from them.  The material parameters are for concrete and the radius and thickness are 

typical for an underground railway tunnel, so the infinite cylinder with these properties represents 

a very long, free tunnel with no surrounding soil. 

The material damping used for the FE model was Rayleigh (or proportional) damping, 

governed by the two parameters α R  and β R  in Table 4.1.  This form of damping is such that the 

FE model is represented by 
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= +with Rα β
 (4.32) 
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where [M ] is the mass matrix, [C] the damping matrix, [K ] the stiffness matrix, x the vector of 

nodal displacements and f the vector of forces applied to nodes.  In the frequency domain with 

x X= ei tω , this is equivalent to using complex mass and stiffness matrices of the form 

[ ] ( )[ ]M M∗ = +1 α ωR i  and [ ] ( )[ ]K K∗ = +1 iωβ R  without a separate damping matrix [C].  The 

Rayleigh damping can thus similarly be accounted for in the continuous shell model (4.28) by 

including the mass-proportional damping in a complex density ρ ρ α ω∗ = +( )1 R i  and the 

stiffness-proportional damping in a complex Young’s modulus E E i∗ = +( )1 ωβ R .  The same 

complex density can be used in the corresponding elastic-continuum result (4.31), while Lamé’s 

constants λ and µ are proportional to E and so can be replaced by the complex values 

λ λ ωβ∗ = +( )1 i R  and µ µ ωβ∗ = +( )1 i R .  Rayleigh damping is only used here to allow 

comparison to the FE results.  Loss-factor damping as used later is perfectly adequate for most 

purposes. 

Once the modal wavenumber-domain displacements are calculated from (4.28) or (4.31), the 

total solution is obtained by substituting them into (4.27).  This involves two operations: a sum 

of circumferential modes and an inverse Fourier transform from the ξ- to x-domain.  The ξ-

domain displacements are calculated numerically by matrix operations on the analytical 

solutions, so the transform must also be done numerically, using the inverse discrete Fourier 

transform (DFT) described in standard texts such as Newland [143, 144] or Stearns [168].  The 

DFT pair which corresponds to the definition of Fourier transform used to resolve the load in 

(4.24) and to obtain the solution (4.27) is 
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Table 4.1: Parameter values used to model a thin-walled cylinder. 
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where N is the number of discrete points at a spacing of ∆x  in the sample Ym of Y x( )  and hence 

in the sample ɵYk  of ɵ( )Y ξ  at wavenumbers ξ k .  The exponential ei km N( )2π  corresponds to the ei xξ  

in the continuous Fourier transform.  The DFT ɵ( )Y ξ  is related to the continuous Fourier 

transform 
~

( )Y ξ  by [168] 
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that is, the DFT is a superposition of an infinite number of shifted Fourier transforms.  While the 

Fourier transform is not periodic, (4.34) shows that the DFT is, so that (4.33) represents just one 

period of the DFT.  For this DFT period to be a close approximation of the Fourier transform, 

∆x  must be small enough to give sufficient separation between the Fourier transforms in the sum 

of (4.34), otherwise they will overlap and add at ξ where they contain significant energy.  This 

condition can be met by satisfying the Nyquist criterion (or sampling theorem): the sampling 

frequency 2π ∆x  in the x-domain must be at least twice the largest ξ-component of the signal to 

correctly capture all ξ-components.  If it is not satisfied, aliasing will occur, where high- 

wavenumber components will be falsely mapped to lower wavenumbers, that is, overlap will 

occur in (4.34).  It follows from this that the highest ξ-component extracted by a DFT is half the 

sampling wavenumber, known as the Nyquist wavenumber.  Similar considerations apply to the 

inverse DFT.  In practice, therefore, the DFT can be considered equivalent to the Fourier 

transform if both the sample and its transform decay to zero at their respective extremities. 

The inverse DFT was carried out by the inverse fast Fourier transform (FFT) algorithm 

provided in Matlab.  This FFT computes the transform (4.33), which represents a DFT period 

from zero to 2ξ Nyquist rather than one centred on ξ = 0 .  The analytical displacement expressions 

(4.28) or (4.31) give an exact Fourier transform which is centred on ξ = 0  by definition.  Thus a 

sample set calculated using (4.28) or (4.31) must be scaled by 1 ∆x  from (4.34) and rearranged 



CHAPTER 4.  MODELLING THE TUNNEL   65  

 

by transposing the negative-ξ data to come after the positive-ξ data, so that the discrete sample 

resembles the correct DFT period and the inverse DFT of (4.33) can be applied. 

The inverse DFT of (4.33) can be used to transform individual modal displacement 

components into the space domain to check that the Nyquist criterion is satisfied and to examine 

modal behaviour.  Figure 4.5 shows the radial modal displacement for n = 3 in both the 

wavenumber and space domains, calculated from the shell theory.  The DFT parameters used 

were ∆x = 0 5. m and N = 2048.  Figure 4.5(a) shows this displacement at a frequency of 30Hz.  

The displacement is a sharp localised pulse at x = 0  and this follows from the broad 

wavenumber content shown in the ξ-domain.  Thus at this frequency, the small ∆x  is required to 

give a maximum wavenumber (2π here) large enough to capture all the broad wavenumber 

information and ensure the Nyquist criterion is met.  Figure 4.5(b) shows the displacement at a 
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Figure 4.5:  The real part of the radial modal displacement components 
~

( )Wn ξ  and W xn ( ) , for 
n = 3, for an infinitely long, thin cylindrical shell with properties as given in Table 4.1 and 
loaded by a unit point force at x = 0 , at a frequency (a) below the natural frequency for the ring 
mode and (b) above the natural frequency.  The real part in the x-domain represents a “snapshot” 
for time t = 0 .  The imaginary parts are of similar form.  The inverse FFT is done with 
∆x = 0 5. m and N = 2048 and is performed on the complete complex displacement components 
~

( )Wn ξ , not just the real parts illustrated.  Loading of 
~ ~
P Pxn yn= = 0  and 

~
Pzn = 1 . 
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frequency of 50Hz.  In the x-domain there is now a propagating wave rather than a localised 

displacement pulse.  In the ξ-domain the displacement is concentrated around a single value of 

wavenumber of about 0 3. rad m, corresponding to the 21m wavelength of the travelling wave.  

This time the large N is needed to capture all of the displacement response in the x-domain.  It 

can be seen that the chosen values of N and ∆x  result in all the functions shown in Figure 4.5 

decaying to zero at the ends of their sample sets, so the inverse DFTs to the x-domain can be 

trusted as good representations of the actual inverse Fourier transforms. 

The transition from localised to propagating modal displacement seen in Figure 4.5 occurs at 

the natural frequency of the n = 3 circumferential ring mode.  The radial displacement w is 

associated with in-plane flexural modes of the circular cross-section, Figure 4.2(a).  The natural 

frequency fn  of the nth  in-plane flexural ring mode for a slender ring is (see Den Hartog [45] or 

Blevins [17]) 

 f
a

n n

n

EI

m a

n n

n

Eh
nn

x        = −
+

= −
+

=1

2

1

1

1

2

1

1 12
1 2 3

2

2

2 1 2 2

2

2 1 2

2

π π ρ
( )

( )

( )

( )
, , , ,… (4.35) 

where I x  is the second moment of area and m the mass per unit length of the beam forming the 

circular ring.  The right-hand side of (4.35) can be applied to the infinitely long thin-walled 

cylinder.  The first in-plane mode associated with w is, however, the expansion mode with n = 0 .  

This is really a type of in-plane extensional ring mode, the higher orders of which correspond to 

tangential displacement v.  The natural frequency fn  of the nth  in-plane extensional ring mode 

for a slender ring is [17] 

 f
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E
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2
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π ρ
… (4.36) 

The values of the natural frequencies for the radial in-plane ring modes of the thin-walled 

cylinder can be calculated from (4.35) and (4.36) and are given in Table 4.2 for the first eleven 

values of n.  For the n = 3 mode fn = 39 9. Hz , which accords with the localised displacement at 

30Hz and propagating displacement at 50Hz apparent in Figure 4.5. 
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Having established the spacing and the number of points required for the inverse DFT, there 

remains the question of how many modal displacement terms have to be included in the Fourier 

series sum of the solution (4.27) to give satisfactory convergence.  Each modal displacement 

behaves like the n = 3 one discussed above, with a localised displacement below the ring-mode 

natural frequency, and a propagating displacement above.  At a given driving frequency, the 

response at a point some distance from the driving point will only depend on modal 

displacements which have begun to propagate, that is, have natural frequencies below the driving 

frequency.  From Table 4.2 it can be deduced that only the modes up to n = 4  would have to be 

included to achieve convergence at a remote point along the cylinder for driving frequencies up 

to 100Hz.  However, the total driving point response at x = 0  has significant contributions from 

both propagating and localised modal displacements.  Nevertheless, the localised modal 

displacements decrease in maximum magnitude with increasing modenumber n, that is, the 

further their natural frequencies lie above the driving frequency.  It was found that convergence 

at x = 0 , both longitudinally and circumferentially, was reached with a sum of the modes up to 

n = 10 for frequencies up to 100Hz.  Thus all calculations were done using the first eleven 

modes. 

The general procedure adopted to calculate numerical values of the total displacements can be 

summarised as follows: 

1. Calculate an array of modal displacement values from (4.28) or (4.31) for a grid of 2048 ξ-

points by 100 ω-points, for each n from 0 to 10; 

2. Multiply each array by the appropriate cosnθ  or sinnθ  term and add them together to 

effect the Fourier-series part of (4.27), giving total displacements in the ξ-domain; 

     
 n f n [Hz]   n f n  [Hz]  

 0 
1 
2 
3 
4 
5 

227.8 
0 

14.1 
39.9 
76.5 

123.8 

6 
7 
8 
9 
10 

181.6 
249.9 
328.8 
418.2 
518.2 

 Table 4.2: Natural frequencies for in-plane ring modes associated with radial 
displacement of the thin-walled cylinder with properties given in Table 4.1. 
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3. Apply the inverse FFT over the columns of the summed array to effect the Fourier- 

transform part of (4.27), giving total displacements in the x-domain. 

The frequency range started at 1Hz because zero frequency causes the matrices of coefficients to 

become singular.  Each row of the final array corresponds to the FRF at a particular value of x. 

Figure 4.6 gives the driving point response of the thin-walled cylinder calculated from the 

shell theory, the continuum theory and from Tuchinda’s FE plus repeating-unit method.  These 

three results are also compared to a free bending beam of infinite length, which models the 

translation of the cross-section (n = 1 ring mode) only.  Starting from the equation of motion 

(3.1) for an Euler beam it is easy to show that the displacement frequency response Y x( , )ω  of 

such a beam excited by a unit point harmonic force at x = 0  is given by 

 ( )Y x
EI

e ie
m

EI
x i x( , ) ,ω

α
α ωα α      with = + =1

4 3
4

2

 (4.37) 
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Figure 4.6:  The radial driving point response (at x = 0 , θ = 0) for an infinitely long, free thin-
walled cylinder with properties as given in Table 4.1, showing results calculated from the shell 
theory, continuum theory and Tuchinda’s [179] FE plus repeating-unit approach, compared to the 
driving point response of an infinitely long, free Euler beam with equivalent material and cross-
sectional properties.  The resonant peaks are marked with their corresponding modenumber n; 
their frequencies can be compared to those given in Table 4.2. 
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where m is the mass per unit length of the beam and EI its bending stiffness.  The root α used is 

the second-quadrant one, so that both α and iα have negative real parts and the two exponentials 

in (4.37) decay as x → ∞ .  The beam parameters equivalent to the thin-walled cylinder defined 

by Table 4.1 are m = ×12 27 103. kg m  and EI = ×1200 1012. Pa.m4 . 

Figure 4.6 shows that the infinite free beam gives a good approximation of the driving-point 

response until the n = 2  ring mode of the cylinder starts to resonate.  The resonances correspond 

well with the calculated ring-mode natural frequencies given in Table 4.2, but are a little higher 

because the different types of modes are coupled in the cylinder but not in a ring.  Figure 4.7 

gives the response at 88m along the infinite cylinder.  This time the bending beam gives a good 

approximation all the way up to 15Hz, above which frequency the n = 2  ring mode begins 

propagating from x = 0  and reaches x = 88m.  Both the driving-point and remote responses 

show very good agreement between the shell, continuum and FE results.  This consistency means 

firstly that the shell and continuum equations are working correctly and secondly that the use of 

the shell equations is justified to model the thin-walled cylinder of the tunnel.  The tunnel could 
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Figure 4.7:  The radial response of an infinitely long, free cylindrical shell at a point remote 
( x = 88m, θ = 0) from the normal point load (at x = 0 , θ = 0), calculated by the same methods 
and for the same shell properties (Table 4.1) as Figure 4.6. 
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just as well be modelled by the continuum method, but the shell solution (4.28) involves one 

3 3×  matrix instead of the three 3 6×  matrices of the continuum solution (4.31), so saving 

computation time.  There are also great advantages over the FE method.  To calculate the 

response of one unit at 61 frequency points (40Hz to 100Hz), the ABAQUS FE model required a 

total of 18 hours run time and 7320MB disk space [179].  In contrast, the Matlab shell model 

required 6 hours of run-time on the same computer system to calculate the eleven 2048 100×  

arrays (1Hz to 100Hz) of radial modal displacement, using a total of 35MB disk space.  This run 

time could be considerably reduced by use of compiled program code instead of Matlab’s 

interpreted-code environment.  The shell theory therefore gives significant savings in 

computation time and storage requirements over FE methods. 

4.3.4  Modelling a Tunnel in Soil 

For the complete tunnel-in-soil system, the tunnel is modelled by a cylindrical shell and the soil 

by an elastic continuum of infinite extent surrounding the tunnel.  Three sets of boundary 

conditions are needed to solve this system completely: 

1. The stresses on the inside of the tunnel shell are equal to the applied loading; 

2. The displacements must be compatible and the stresses in equilibrium at the interface of 

the tunnel shell and the soil continuum; 

3. The displacements of the soil continuum must decay to zero as the radius from the centre 

of the tunnel increases towards infinity (the radiation condition). 

This time the stresses on the outside of the shell are not zero, so that the first condition can be 

used with the shell results (4.6) to write 
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The third condition can be used to reduce the dimensions of the equations describing the 

response of the continuum.  It will be recalled that the displacements u and stresses ττττ for the 

continuum are expressed in (4.20) as linear combinations of modified Bessel functions I rn ( )α , 

K rn ( )α , I rn ( )β , K rn ( )β , I rn+1( )β  and K rn+1( )β , originally found as solutions for the functions 
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f, gr , gz  of (4.17) which specify the radial variation of the potentials describing the 

displacements.  Only the modified Bessel functions of the second kind K decay for all arguments 

as r increases.  Thus the coefficients of the modified Bessel functions of the first kind I in (4.20) 

must be set to zero for the radiation condition to be satisfied, so that 
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Correspondingly, this means that the terms containing Bessel functions I in the matrices [U] and 

[T] (that is, the first, third and fifth elements of each row) drop out of the equation.  Hence the 

radiation condition reduces the size of the problem for the continuum by half. 

The condition of compatibility can be used with the radiation condition expressed by (4.39), 

remembering the differences in the shell and continuum coordinate systems given by (4.29), to 

write the displacements at the tunnel-soil interface as 
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while equilibrium means that the stresses at the interface are given by 
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where the u jk  and t jk  are the remaining elements of [U] and [ ]Tr  of (4.21).  By substituting 

(4.41) into (4.38) to eliminate the stresses acting on the outside of the shell tunnel and using 

(4.40), the unknown displacements  and coefficients can be found, after some rearrangement, 

from 
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where [ ]I  is a 3 3×  identity matrix.  The displacements 
~

{
~ ~ ~

}Un n n nU V W= T  at the interface 

result directly from (4.42), but the displacements at some radius R elsewhere in the soil have to 

be calculated using the coefficients B from 

 
~

[ ]U U Bn
r R

r R= ∞ == ⋅   (4.43) 



CHAPTER 4.  MODELLING THE TUNNEL   72  

 

Of course, the foregoing argument determines the modal displacement components in the 

wavenumber domain.  Once a sufficient number of these have been obtained, equation (4.27) can 

be used to obtain the total displacements in the space domain. 

4.3.5  Results for the Tunnel in Soil 

Table 4.3 gives the parameter values used to model the tunnel surrounded by soil.  Parameters 

not used directly in each particular theory (shell or continuum) are nevertheless given to allow 

direct comparison between the properties of the tunnel and those of the soil.  Frequencies up to 

200Hz are of interest for ground-vibration propagation here. 
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 Table 4.3: Parameter values used to model a tunnel surrounded by soil. 

The tunnel parameters are for concrete.  The material damping of the concrete is assumed to be 

negligible compared to that of the soil, so is taken as zero.  The tunnel is the same as the thin-

walled cylinder described by Table 4.1, except for a slightly smaller radius and zero damping.  

The soil parameters are based on the averages of the values given by Hunt [89] for Oxford Clay 

and Middle Chalk.  As in [89], all energy dissipation due to material damping in the soil is 

assumed to occur through shear motion, characterised by the shear modulus G, with no losses in 

volumetric expansion, characterised by the bulk modulus K E= −3 1 2( )ν .  The constant 

hysteretic loss factor ηG  is derived from the frequency-dependent viscous damping factor in [89] 

at 100Hz.  The soil damping is included in the model by using the complex material parameters 
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G G i G
∗ = +( )1 η  and K K i KK

∗ = + =( )1 η  in the frequency domain.  The other damped Lamé 

constant λ∗  required can most simply be obtained via the elastic relations (which still hold due to 

the correspondence principle, see Bland [15]) and a complex Poisson’s ratio ν ∗ .  Although the 

normal practice is to take ν as the purely real parameter, there is no good reason why this has to 

be so.  A complex Poisson’s ratio merely implies a phase difference between the transverse and 

axial strains in a piece of the material subjected to uniaxial harmonic loading.  Thus 

ν ∗ ∗ ∗ ∗ ∗= − −1

2
3 2 3( ) ( )K G K G , µ ∗ ∗= G  and λ ν ν∗ ∗ ∗ ∗= −2 1 2G ( ) . 

Calculation of the total tunnel and soil displacements was done with a sum of modal 

displacement components and an inverse DFT in the same way described in Section 4.3.3 for the 

thin-walled cylinder.  However, the modal displacements now depend on (4.42), the tunnel ones 

directly and the soil ones via the coefficients B and (4.43).  The inverse matrix in (4.42) 

comprises four submatrices of vastly different orders of magnitude: the elements of [ ]A E  are 

typically of order 1011 , those of [ ]T∞ =r a  101, those of [ ]I  100  and those of [ ]U∞ =r a  10 7− , for 

the parameters of Table 4.3 and for frequencies of up to 200Hz.  This span of 18 orders of 

magnitude means the assembled matrix is so badly scaled that a numerical solution to (4.42) is 

inaccurate or even impossible.  Row and column normalisation was therefore used to reduce the 

elements of the assembled matrix to magnitudes between zero and unity, before numerical 

solution.  This process is described in more detail in Appendix C. 

As for the thin-walled cylinder, the inverse DFT was calculated by FFT, using N = 2048 and 

∆x = 0 5. m.  The individual modal displacements can be examined as done before.  Figure 4.8 

shows the tunnel’s n = 3 modal displacements in all three directions, at a frequency of 50Hz so 

that the radial displacement of the tunnel surrounded by soil, Figure 4.8(c), can be compared to 

the radial displacement of the free tunnel at the same frequency, Figure 4.5(b).  The free tunnel, 

even with significant material damping, has relatively high radial displacement away from the 

load, due to the propagating waves above the ring-mode resonance; but the tunnel in soil has a 

rapidly decaying response, despite the tunnel’s zero damping.  The tunnel in soil is still 

exhibiting propagating waves at 50Hz, as can be seen by the peaks in the wavenumber domain at 
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about 0 7. rad m.  Indeed, the net effect of adding soil of about the same density as the tunnel but 

about 100 times less stiff should be to lower the frequency at which longitudinal propagation 

begins for each circumferential mode.  However, apart from a change in propagation frequencies, 

the soil greatly modifies the tunnel response by allowing energy to propagate away from the 

tunnel radially.  Because the soil is infinite in extent, this energy cannot come back: the effect is 
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Figure 4.8:  The real part of the tunnel’s (r = 3m) modal displacement components, for n = 3, 
for a tunnel-in-soil model with properties as given in Table 4.3, showing (a) longitudinal, (b) 
tangential and (c) radial components in both ξ- and x-domains.  Inverse FFT as for Figure 4.5, 
with ∆x = 0 5. m and N = 2048.  Loading of 

~ ~
P Pxn yn= = 0  and 

~
Pzn = 1 .  Note that the full range 

of x from –512m to 512m is not shown, and that the full vertical range of  W xn ( )  in (c) is 
− × −2 5 10 4.  to 7 0 10 4. × − kN mm . 
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“radiation damping” and the much reduced responses of Figure 4.8.  The radiation damping is 

much more important here than the relatively low material damping of the soil.  All three modal 

displacement components for the tunnel show similar behaviour. 

Figure 4.9 shows the three corresponding modal displacement components in the soil at a 

radius of 20m.  The behaviour is somewhat different from that seen at the tunnel, but still shows 

maximum activity near x = 0  with rapidly decaying response on either side.  Figures 4.8 and 4.9 

both exhibit sufficient decay of the displacements at the extremes of the signals in both 

wavenumber and space domains, indicating that the requirements for using the DFT have been 

met.  It could be argued that although the small ∆x  is near optimal to capture all the 

wavenumber (small-wavelength) information, the number of points N could be substantially 

reduced since the current resolution in the wavenumber domain is not required (or equivalently, 

the responses in the space domain decay to zero long before the limits of the x-range are 

reached).  However, the addition of a track mounted on slab bearings (see Chapter 5) between the 

applied load and the tunnel invert gives rise to larger displacements away from x = 0  because 

energy can travel along the track before being transmitted to the tunnel and soil.  For this 

N = 2048 is required. 

Figures 4.8 and 4.9 also show the symmetry of the displacements.  Because the two halves of 

the tunnel either side of x = 0  are identical, a radial load applied at x = 0  as here should produce 

displacements which are mirrored in the x = 0  plane, which is the case.  Component U is parallel 

to the x-axis, so is an odd function of x, while V and W are orthogonal to the x-axis, so are even 

functions of x.  The same is true of the displacement components in the wavenumber domain.  

This symmetry is useful in the computation of the individual modal displacements, since only 

values for positive ξ need to be calculated, as the values for negative ξ can be generated by the 

correct reflection when needed at the inverse DFT stage.  Calculating only half the values halves 

the computation time and disk storage space required, and reduces the amount of memory needed 

to hold modal components during the summation stage to obtain total displacements. 
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The same procedure as before was used, summing the modal displacement components – this 

time calculated from (4.42) and (4.43) – then using the inverse DFT to give the total 

displacements of the tunnel or the soil by (4.27).  As for the free tunnel, modal displacements 

from n = 0  to n = 10 were found to give sufficient convergence for frequencies from 1Hz to 

200Hz with the model parameters of Table 4.3.  Figure 4.10 illustrates the types of responses 
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Figure 4.9:  The real part of the soil’s  modal displacement components at r = 20m, for n = 3, 
for a tunnel-in-soil model with properties as given in Table 4.3, showing (a) longitudinal, (b) 
tangential and (c) radial components in both ξ- and x-domains.  Inverse FFT as for Figure 4.5, 
with ∆x = 0 5. m and N = 2048.  Loading of 

~ ~
P Pxn yn= = 0  and 

~
Pzn = 1 .  Note that the full range 

of x from –512m to 512m is not shown. 
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which can be calculated.  It is convenient to look at responses at θ = 0  in the tunnel 

(corresponding to the tunnel invert upon which a track rests), and responses at θ = 90�  in the soil 

(corresponding to the horizontal plane likely to contain building foundations), as in both cases 

the cylindrical coordinate system then coincides with the absolute horizontal, vertical and 

longitudinal directions.  Because of the symmetry about x = 0  and θ = 0 , some displacements 

are zero at some of the positions shown.  However, all non-zero displacements include the effects 

of several modal contributions.  The tunnel-invert displacements U and W at (ii) are simple sums 

of all their modal contributions, because cosnθ = 1 for all n when θ = 0 ; while at (iv) with 

θ = 90� , the soil displacements U and W include only the even-numbered modal contributions as 

cos( )2 1 0k + =θ  for odd n k= +2 1, and V includes only the odd-numbered modal contributions 

as sin 2 0kθ =  for even n k= 2 . 

Figure 4.11 shows the driving-point response of the tunnel invert.  Only the vertical 

displacement W is non-zero.  This does not show any ring-mode resonances like the free thin-

walled cylinder’s driving-point response in Figure 4.6, but is instead smooth and decreases 

slightly in magnitude as frequency increases.  The loss of noticeable resonances is due to the 

radiation damping of the infinite soil now surrounding the tunnel. 
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Figure 4.10:  The non-zero displacement components of the tunnel-in-soil model (i) at the 
driving point (x = 0 , r = 3m, θ = 0) on the tunnel invert, (ii) at a point on the tunnel invert 
( x = 20m, r = 3m, θ = 0) away from the load, (iii) at a point a distance horizontally (x = 0 , 
r = 20m, θ = 90� ) out into the soil, opposite the load, and (iv) at a distance horizontally out into 
the soil and a distance longitudinally parallel to the tunnel (x = 20m, r = 20m, θ = 90� ). 
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Figure 4.12 shows the response of the tunnel invert at a distance of 20m from the load.  The 

vertical response W has troughs at about 51Hz, 119Hz and 184Hz.  The spacing between these is 

68Hz and 65Hz respectively.  If a standing wave is set up between a source at one point and a 

node at a second, then their separation L must correspond to an odd multiple of quarter 

wavelength.  Thus the possible wavelengths are 4 2 1L k( )−  with k = 1 2 3, , ,… and with a 

wavespeed c, the corresponding frequencies are c k L( )2 1 4− .  In other words, each successive 

standing wave represents an increase in frequency of c L2 .  Standing waves with an antinode at 

each end have frequencies that fall between these but which are characterised by the same 

frequency step.  Although the infinitely long tunnel has no suitable boundaries to set up standing 

waves longitudinally, the shape of W in Figure 4.12 suggests some kind of correspondence of 

wavelength with the distance from the load to observation point.  For a distance of 20m, the 

speed of shear (transverse) waves in the tunnel concrete of c2 2774= m s gives a standing-wave 

frequency step of 69Hz, which matches the observed spacing between the troughs in the vertical 
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Figure 4.11:  The driving point response of the tunnel in the tunnel-in-soil model with parameters 
given in Table 4.3, under a normal unit point force, corresponding to position (i) in Figure 4.10.  
The longitudinal component U is zero because x = 0 , while the horizontal (tangential) 
component V is zero because θ = 0 . 
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(transverse) displacement W.  The longitudinal displacement U exhibits less pronounced 

variation, with changing frequency intervals between troughs, none of which seem to correspond 

to the shear- or pressure-wave speeds in either the tunnel concrete or the soil.  The variation is 

probably due to the behaviour of the interface between the tunnel and the soil. 

Figure 4.13 shows the soil response 20m horizontally opposite the position of the load 

applied to the tunnel.  The horizontal displacement W shows clear undulations with a step of 

about 20Hz between troughs (or peaks), while the vertical displacement V shows similar, but 

very slight, undulation.  This is probably due to interference effects, with points along the tunnel 

acting as sources transmitting energy propagated from the load.  At each “source”, some energy 

radiates into the soil and the remainder continues along the tunnel.  The exact distribution of 

“sources” will depend on which parts of the tunnel show maximum activity at a given frequency.  

However, the load at x = 0  will always act as one of the sources.  The distance between any 

source and an observation point has to be a multiple of half the wavelength (to give antinodes at 

each end) for an interference node or antinode to be observed.  Thus the distance between the 
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Figure 4.12:  The response of the tunnel invert at a distance x = 20m from the load, 
corresponding to position (ii) in Figure 4.10, for tunnel-in-soil parameters given in Table 4.3.  
The horizontal (tangential) component V is zero because θ = 0 . 
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load and the observation point can be used to estimate the frequency step between the peaks or 

the troughs in Figure 4.13.  As for standing waves, the frequency step between successive 

interference patterns is c L2 .  The direct distance from the bottom of the tunnel (of radius 3m), 

where the load is applied, to the point 20m horizontally out into the soil, is 20.2m, although this 

line cuts through the tunnel cross-section.  For a distance L of 20.2m, soil pressure waves of 

speed c1 944= m s give a frequency step of 23.3Hz, while shear waves of speed c2 309= m s 

give a step of 7.6Hz.  Thus the undulating response of Figure 4.13 appears to be due to the 

interference of pressure waves propagating through the soil from different points along the 

tunnel.  Hence the greatest influence is on W , which lies nearly along the line of propagation 

which is also the direction of oscillation of the pressure (longitudinal) waves; there is little 

influence on V, which lies nearly perpendicular to the line of propagation. 

The dominance of pressure-wave effects in the soil raises the question of the influence of 

shear waves.  The answer lies in the material damping.  Reduction in magnitude due to material 

damping depends on the number of cycles of vibration the material has gone through, the more 
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Figure 4.13:  The response in the soil at x = 0 , r = 20m, θ = 90� , horizontally opposite the point 
load acting on the tunnel invert, corresponding to position (iii) in Figure 4.10, for tunnel-in-soil 
parameters given in Table 4.3.  The longitudinal component U  is zero because x = 0 . 
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cycles, the more reduction.  Since the speed of pressure waves in the soil is about three times the 

speed of shear waves, a propagating shear wave will go through three times as many cycles as a 

propagating pressure wave over the same distance, for any given frequency.  If the reduction per 

cycle due to material damping were the same for all types of motion, then it would be expected 

that shear-wave magnitudes would be reduced by the cube of the factor that pressure-wave 

magnitudes are.  However, the original assumption was that all material damping losses in the 

soil are due to shear motion.  Therefore material damping has a much bigger effect on the decay 

of shear waves than of pressure waves, even without considering number of cycles, and after 

some distance of propagation, pressure waves are predominant. 

Figure 4.14 shows the response of the soil at a radius of 20m horizontally from the centre of 

the tunnel and 20m longitudinally from the load on the invert.  This means the observation point 

is a direct distance of 28.4m from the load.  This distance gives a frequency step of 16.6Hz for 

pressure waves involved in interference.  Undulations of about this spacing can be clearly seen in 

the horizontal and longitudinal displacements W and U (each with a significant component in the 

direction of the line of propagation) above 60Hz, and in the vertical displacement V (which is 

nearer orthogonal to the line of propagation) above 120Hz.  On a larger scale, dips in V can be 

observed at 43Hz and 123Hz.  These correspond quite closely to the vertical displacement of the 

tunnel invert at 20m from the load (Figure 4.12), the part of the tunnel closest to the soil 

observation point here.  In the case of V, the adjacent vertical tunnel displacement is transmitted 

by shear waves.  Above 120Hz, the shear waves complete eight or more cycles over 20m, so 

have decayed sufficiently that the pressure-wave effects appear clearly in V.  Thus it appears that 

at lower frequencies the local displacement of the tunnel has the biggest effect on the soil 

displacement, while at higher frequencies interference effects dominate. 
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4.4  Conclusions 

A tunnel surrounded by soil can be modelled by considering the tunnel as an infinitely long, thin 

cylindrical shell and the soil as an infinite homogeneous isotropic continuum.  An analytical 

solution for the time-harmonic displacements of the tunnel and soil can be found in the form of 

the spatial inverse Fourier transform of an infinite sum of components, representing ring modes 

of the tunnel cross-section, which are harmonic in both space and time.  The modal harmonic 

displacement components are calculated from the modal harmonic components of the total load 

applied to the tunnel.  Numerical computation of results from this analytical solution is 

straightforward for typical values of tunnel and soil parameters.  The infinite sum converges with 

the first eleven terms, and the inverse Fourier transform is satisfactorily represented by an inverse 

DFT of 2048 sample points, of which symmetry requires only 1025 to be calculated.  The 
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Figure 4.14:  The response in the soil at x = 20m, r = 20m, θ = 90� , horizontally out from the 
load then parallel to the tunnel, corresponding to position (iv) in Figure 4.10, for tunnel-in-soil 
parameters given in Table 4.3. 
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computation time and disk storage space required for the analytical solution are much more 

modest than those for an FE model of the same system.   

Numerical results for the case of a normal unit point load applied to the tunnel invert reveal 

several aspects of the system’s behaviour.  A tunnel surrounded by soil does not show the ring-

mode resonances apparent in the driving-point response of a free tunnel, due to the radiation-

damping effect of the infinite soil.  The response of the tunnel away from the load is influenced 

by the propagation of shear waves in the tunnel material and interaction with the soil interface.  

The soil response seems to be influenced in large measure by the response of the closest part of 

the tunnel, with strong interference patterns based on soil pressure waves propagating from 

different parts of the tunnel appearing particularly in the higher part of the frequency range, 

where shear-wave effects are reduced by soil damping.  The tunnel-in-soil model can be used as 

a realistic track foundation so that the true effectiveness of floating-slab track can be evaluated 

by looking at soil responses directly. 



 84 

Chapter 5    

MODELLING TRACKS IN TUNNELS 

The results obtained for the tunnel-in-soil model of Chapter 4 and the general ideas from Chapter 

3 regarding the modelling of floating-slab track with infinite beams on elastic foundations can be 

combined to produce a complete model of an underground railway.  Much better assessments of 

the vibration-isolation effectiveness of a given track structure can be obtained from this 

combined model than if a rigid foundation is used for the track as was done in Chapter 3.  In 

particular, vibration levels in the surrounding soil due to a train running on the track can be 

calculated, providing a direct measure of the track’s effectiveness. 

5.1  A Simple Track Slab 

The simplest track model that can be combined with the tunnel is an infinitely long, continuous 

slab beam, as shown in Figure 5.1.  The approach used is similar to that employed by Ng [146] to 

join an infinite beam directly to an elastic halfspace to model a surface railway.  The slab beam 

and tunnel are joined along a single continuous line running longitudinally along the bottom of 

the tunnel invert.  The coupling is achieved through the interaction force G x( )  which acts on the 

tunnel and its equal and opposite counterpart −G x( )  which acts on the beam. 

5.1.1  Coupling Equations for the Simple Slab Beam and Tunnel   

Figure 5.2 shows a general continuous distribution of time-harmonic force per unit length Q x( )  

acting along a line such as the joining line on the slab beam or tunnel invert.  The distributed 
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force can be considered as a train of point loads represented by pulses of infinitesimal width dχ  

and magnitude Q( )χ , so that the increment of the time-harmonic displacement response Y x( )  to 

one of these point loads is dY x H x Q d( ) ( ) ( )= − χ χ χ , where H x( )  is the frequency-response 

function (FRF) for Y x( )  to a point load acting at x = 0 .  Thus the total displacement response is 

the sum of these increments over the whole length of the infinite joining line, giving the integral 

 Y x H x Q d( ) ( ) ( )   = −
−∞

∞

∫ χ χ χ  (5.1) 

which is a convolution (or Duhamel) integral (see Newland [144]) in space, rather than in time as 

familiar from signal-processing applications.  This is equivalent to a Green’s function 

formulation for the response, where H x( )− χ  is the Green’s function.  If the Fourier transform 

of both sides of (5.1) is taken using the first integral of the transform pair 
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where ξ  is angular wavenumber, then (5.1) becomes 
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Figure 5.1:  Joining a simple slab beam of infinite length to the tunnel, showing the equal and 
opposite interaction forces acting on the beam and the tunnel. 
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Figure 5.2:  General force distribution per unit length Q(x) acting along a single line of joining.  
The displacement response Y(x) is obtained by the convolution in space of the force increments 
Q(χ).dχ with the frequency-response function to a point load. 
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so that the convolution in space has been reduced to a simple multiplication in the wavenumber 

domain.  Applying (5.3) to the coupled slab beam and tunnel invert in turn yields 
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for the displacements 
~
Y1  along the beam and 

~
Y2  along the invert, when a unit point load acts on 

the slab at x = 0 .  The applied point load, additional to the interaction force, is equivalent to a 

force per unit length of F x= δ ( ) , which gives 
~
F = 1 when transformed; hence the total ξ-domain 

force (
~

)− +G 1  acting on the slab beam.  The functions 
~
H11  and 

~
H22  are the FRFs H11  (for the 

response of the free beam to a point load at x = 0) and H22  (for the response of the uncoupled 

tunnel invert to a point load at x = 0) in the wavenumber domain. 

The slab beam can either be joined directly to the tunnel invert, or be supported on the invert 

via resilient slab bearings.  For direct joining, the displacements of the slab and invert must be 

equal, so that in the wavenumber domain 
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Using (5.5) with equations (5.4) to eliminate 
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G  gives 
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for the displacements in the direct-joining case. 

When the slab is joined to the invert via resilient slab bearings, the interaction force is 

determined by the extension of the bearings and their stiffness.  If the bearings are modelled as a 

continuous resilient layer of stiffness k per unit length (like a Winkler foundation but without the 

rigid base), then the joining condition becomes 
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Using this new condition (5.7) with (5.4) yields 
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for the displacements when the slab is joined to the tunnel via an elastic layer.  Damping can be 

included by using a complex stiffness k to model a visco-elastic layer. 

The response along a line in the soil parallel to the joining line (see Figure 5.1) can be 

determined, once the displacement 
~
Y2  is known, by using the second of equations (5.4) to find 

the interaction force 
~
G  which acts on the tunnel invert.  The soil displacement is then 
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    = =  (5.9) 

for either joining method, where H32  is the FRF of a particular soil-displacement component Y3  

to a point force acting on the uncoupled tunnel invert at x = 0 . 

Any of the displacements found from (5.6), (5.8) or (5.9) can be inverse Fourier-transformed 

from the wavenumber to the space domain by means of the second transform of the pair (5.2).  

With the unit point-load condition assumed, the physical displacements in the space domain 

represent the FRFs of the combined system for a point load acting at x = 0  on the slab beam. 

It is worth noting that if the alternative definition of the Fourier transform pair is adopted, 

with the factor of 1 2π  in the forward transform rather than the inverse one as in (5.2), then a 

factor of 2π  appears on the right-hand side of the ξ-domain multiplication (5.3).  This is then 

also true for equations (5.4), with the end result that every term containing a k in equations (5.8) 

is also multiplied by 2π .  This extra complication is avoided by using the definition (5.2). 

5.1.2  Calculation of FRFs for Simple Coupling 

The only quantities left to determine are the FRFs in the wavenumber domain for the tunnel-in-

soil model and the slab beam before joining.  The soil displacements 
~

{
~ ~ ~

}U = U V W T  at a 

particular radius r and angular position θ  which result from a spatial unit point load acting on 

the invert are the sum 
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of the modal displacement components calculated from (4.42) and (4.43) using the modal stress 

components for a unit load given by (4.26) .  The sum is of the same form as (4.27) but without 
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the integral for the inverse Fourier transform from wavenumber to space domain.  The tunnel 

invert FRF 
~
H22  is thus 

~
W  for r a=  and θ = 0 , while the soil FRF 

~
H32  can be whichever 

displacement component is of interest for any line in the soil defined by constant r R=  and 

θ β= .  These can be expressed as 
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Note that the Fourier transform used in (4.24) to transform the unit point load acting on the 

tunnel into the ξ-domain must be the same as the Fourier transform defined by (5.2) if the ξ-

domain FRFs of (5.11) are to be compatible with the coupling equations (5.3) to (5.9).  This is 

because the transformation used for the input force also determines the transformation for the 

FRFs, since the input force is the only quantity affected by the Fourier-transform definition 

during the solution for tunnel and soil displacements.  Thus the Fourier transforms in (4.24) were 

chosen to match those defined by (5.2), which give the simplest coupling equations. 

The FRF for the free beam can be determined from the equation of motion for its vertical 

displacement y x t( , ) .  This is (see Meirovitch [136]) 
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where m is mass per unit length, EI is bending stiffness (E Young’s modulus and I the second 

moment of area), and f x t( , )  is applied force per unit length.  Substituting a harmonic solution 

y Yei t x= +~ ( )ω ξ  with a force f Fei t x= +~ ( )ω ξ  of the same form yields 
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Using harmonic solutions in this way is equivalent to taking the Fourier transform of (5.12) 

twice, once for time to frequency domain, and once for space to wavenumber domain.  The force 

~
F = 1 represents a unit spatial point load acting at x = 0  as discussed above.  Thus the free-beam 

FRF 
~
H11  is simply 
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5.1.3  Results for the Tunnel with a Simple Slab Beam 

As mentioned earlier, the slab beam can be joined either directly to the tunnel invert or via slab 

bearings, represented by springs.  Either case can be compared to the Winkler beam model often 

used for track design, as shown in Figure 5.3.  To allow comparison of results, the Winkler 

frequency response Y x( , )ω  must be determined.  This is easily obtained by applying (5.12) to a 

beam on an elastic foundation, giving 

 ( )Y x
EI

e ie
m k

EI
x i x W( , ) ,ω

α
α ωα α     with = + =

−1

4 3
4

2

 (5.15) 

where kW  is the stiffness per unit length of the elastic foundation.  The root α used is the second-

quadrant one, so that both α and iα have negative real parts and the two exponentials in (5.15) 

decay as x → ∞ .  To make the Winkler beam “equivalent” to the slab beam on the tunnel, its 

static displacement at x = 0 is equated to the numerical value for the static displacement of the 

directly joined slab beam, resulting in kW  being the effective Winkler stiffness keff  of the tunnel 

invert, as depicted in Figures 5.3(a) and (b).  If the slab is then supported on bearings of stiffness 

k per unit length, Figure 5.3(c), the equivalent Winkler beam has the additional stiffness added in 

series, Figure 5.3(d), giving k k kW eff= +1 1 1( ) .  The Winkler beam has a resonance at 

ω n Wk m=  as can be seen from (5.15), so k can be selected to give specific Winkler “natural 

frequencies”.  Classic vibration-isolation theory using a mass on a spring predicts that isolation 

should be achieved at frequencies greater than 2ω n ; this assumption can now be tested. 
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Figure 5.3:  A simple slab beam joined (a) directly to the tunnel invert and compared to (b) an 
“equivalent” Winkler beam on the effective stiffness of the tunnel invert.  The slab beam (c) with 
resilient bearings between it and the tunnel can then be compared to (d) the “equivalent” Winkler 
beam with the extra foundation stiffness of the bearings added in series. 
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The displacements (5.6), (5.8) or (5.9) of the tunnel-plus-slab model were calculated using 

Matlab.  The inverse Fourier transforms were carried out with Matlab’s inverse FFT function.  

The values of the parameters for the slab beam and its support stiffness are given in Table 5.1, 

the slab beam having the same properties as that used in the track models of Chapter 3 (see Table 

3.1).  The tunnel FRFs were calculated as described in Chapter 4, using the parameters in Table 

4.3.  In conjunction with the slab properties, these determine the effective stiffness keff  of the 

tunnel invert for use with the equivalent Winkler beam.  Once the effective stiffness is 

calculated, the slab-support stiffnesses can be determined for various Winkler natural 

frequencies.  Three stiffnesses are given in Table 5.1 for increasingly softer support, with the 

30Hz frequency representative of actual floating-slab tracks.   

Damping in the springs is hysteretic, described by a constant loss factor such that complex 

stiffnesses k i( )1+ η  are substituted for real stiffnesses k.  The calculated loss factor η eff  is very 

close to the shear loss factor given in Table 4.3 for the soil.  The loss factor of η k = 0 5.  for the 

slab-support stiffness is relatively high but not unreasonable for rubber with high damping (see 

data in Nashif et al [142] for instance).  Its value is also influenced by the numerical 

considerations arising from the Nyquist criterion for the inverse FFT, which are discussed in 

Section 4.3.3.  For frequencies up to 200Hz, a spacing of ∆x = 05. m, as used for the tunnel 

model, was found sufficient to capture all the wavenumber information of the slab-plus-tunnel 

model, and with N = 2048 points and the given loss factor, the response of the slab beam 

decayed sufficiently at the sample ends in both ξ- and x-domains for the FFT to be considered an 

accurate representation of the Fourier transform.  The symmetry of the responses in both domains 

means that all ξ-domain calculations could be done for the 1025 points of the sample with ξ ≥ 0, 

and the portion for ξ < 0 created by a suitable reflection just prior to the inverse FFT. 
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Figure 5.4 shows the driving-point response of the slab beam for the various slab-support 

stiffnesses, compared to that of an “equivalent” Winkler beam in each case.  The directly joined 

slab shows a flat response very like the uncoupled tunnel’s driving-point response shown in 

Figure 4.11, while the corresponding Winkler response shows a clear resonance just below 80Hz.  

The energy of the slab beam is radiated into the soil quite effectively when the slab is closely 

coupled to the tunnel, whereas this radiation damping effect is not accounted for in the loss 

factors of the elastic foundation of the Winkler beam.  As the slab-support stiffness is reduced, 

the slab response gets closer to the Winkler response, until the two almost coincide for 

f n = 30Hz.  With lower values of k, the slab beam is less strongly coupled to the tunnel, or in 

other words, the tunnel becomes more like a rigid foundation (compare the values of k with the 

value of keff  in Table 5.1).  At this point it might be assumed that for realistic, soft bearings, the 

Winkler theory adequately describes the behaviour of a floating slab.  However, a glance at 

Figure 5.5, which gives responses at 20m from the load, shows that this is not the case.  The slab 

beam supported by the tunnel has significant response (about –100dB) at low frequencies no 

matter what value k has, while the equivalent Winkler beams do not show much response below 

the Winkler natural frequencies, at which travelling waves occur and propagate energy along the 

beam.  This illustrates how the tunnel can transmit energy to the coupled slab beam even when 

there are no travelling waves in the slab itself. 
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Table 5.1:  The simple slab beam’s properties, the effective stiffness of the tunnel invert 
described by the parameters of Table 4.3, and three resulting slab-support stiffnesses. 
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Figure 5.4:  Vertical driving-point displacement response of a simple slab beam on the tunnel 
(blue) compared to the “equivalent” Winkler beam (red) for direct joining and various support 
stiffnesses for different Winkler “natural frequencies”. 
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Figure 5.5:  Vertical displacement response of the simple slab beam 20m from the load (blue), 
compared to the “equivalent” Winkler beam (red) with various slab support stiffnesses. 
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Even if the Winkler theory were adequate for describing the slab beam, it cannot predict the 

response of the tunnel invert and the soil surrounding the tunnel.  Figure 5.6 shows the vertical 

response of the invert directly beneath the load applied to the slab at x = 0.  Small circles mark 

the 2 f n  frequencies above which, according to simple theory, vibration isolation is supposed 

to occur.  It can be seen in this case that the responses for a slab on bearings drop below the 

response of the directly joined slab well before these cut-off points, so simple vibration-isolation 

theory holds so far.  However, the response 20m along the tunnel invert, shown in Figure 5.7, is 

actually made higher by the insertion of rubber between the slab and the invert, with only the 

softest bearings (f n = 30 Hz) eventually giving a lower response at about 145Hz.  The higher 

responses are to be expected since the bearings decouple the slab from the tunnel and hence 

allow energy to propagate further along the beam before being transmitted to the invert.  This is 

not necessarily a problem: it could indeed be beneficial if it means that vibrational energy is 

confined to the slab beam and the tunnel and is not radiated into the soil. 

The most important measure of the isolation effectiveness of a track is the vibration level in 

the soil.  As for the results in Chapter 4, soil responses here are given for the horizontal plane 
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Figure 5.6:  Vertical displacement response of the tunnel invert directly under the load on the 
slab beam for various slab-support stiffnesses, with circles marking the 2 fn  points. 
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θ = 90� , so that the displacement components W and V coincide with the horizontal and vertical 

directions (see Figure 4.10).  Figure 5.8 shows the horizontal soil displacement at a radius of 

20m horizontally out into the soil, opposite the load on the slab.  The responses exhibit the peaks 

and troughs of the pressure-wave interference pattern observed and discussed in Chapter 4 for the 

uncoupled tunnel.  At this position in the soil, increasingly softer slab support results in reduction 

starting at frequencies near the 2 f n  points, again marked with circles, obeying simple 

vibration-isolation theory just as the tunnel invert did directly under the slab load .  Figure 5.9 

shows similar behaviour for the horizontal response at x = 20m, although now isolation is 

delayed somewhat (the “isolated” responses cross the directly joined response at higher 

frequencies than before), because at frequencies near the resonance the slab on bearings is 

propagating energy further along the tunnel before it enters the soil. 
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Figure 5.7:  Vertical displacement response of the tunnel invert 20m along the tunnel from the 
load applied to the slab beam, for various slab-support stiffnesses, with circles marking the 

2 f n  points. 
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Figure 5.8:  Horizontal soil displacement response 20m horizontally out into the soil opposite the 
load on the slab for various slab-support stiffnesses, with circles marking the 2 f n  points. 
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Figure 5.9:  Horizontal soil displacement response 20m horizontally out into the soil and 20m 
longitudinally parallel to the tunnel from the slab load, for various slab-support stiffnesses, with 
circles marking the 2 f n  points. 
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The vertical soil response at 20m radius opposite the load, Figure 5.10, also shows classic 

vibration isolation, this time very clearly because the pressure-wave effects are subdued.  But as 

the observation point is shifted longitudinally, this behaviour changes.  Figure 5.11 shows that, at 

x = 20m, the insertion of the stiffer rubber bearings (f n = 60Hz and f n = 45Hz) has almost no 

effect on the vertical soil displacement, while for the softest bearings (f n = 30Hz) only a 

modest, roughly constant reduction of 5-10dB is achieved, rather than an ever-increasing 

reduction with frequency as exhibited in Figure 5.10 (and expected from simple isolation theory).  

At x = 40m, Figure 5.12, adding any slab bearings at all increases the vertical displacement for 

all frequencies between 40Hz and 200Hz.  This can again be explained by the transmission of 

energy along the slab on bearings, giving higher response at the portion of the tunnel nearest the 

observation point.  The longitudinal soil response at x = 20m, given in Figure 5.13, is very 

similar to the horizontal response given in Figure 5.9, showing the same type of delayed 

isolation, for the same reason (the longitudinal displacement at x = 0 is zero because it is an 

asymmetric function). 
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Figure 5.10:  Vertical soil displacement response 20m horizontally out into the soil from the 
load, for various slab-support stiffnesses, with circles marking the 2 f n  points. 
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Figure 5.11:  Vertical soil displacement response 20m horizontally out into the soil and 20m 
longitudinally parallel to the tunnel from the slab load, for various slab-support stiffnesses, with 
circles marking the 2 f n  points. 
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Figure 5.12:  Vertical soil displacement response 20m horizontally out into the soil and 40m 
longitudinally parallel to the tunnel from the slab load, for various slab-support stiffnesses, with 
circles marking the 2 f n  points. 
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The results discussed above have considered the responses to a single load acting on the slab 

beam.  In reality a train provides a series of simultaneous inputs to the track.  This means that the 

total response at an observation point in the soil will be some kind of sum of the responses for 

the various loads applied at different points along the track.  Taking the vertical displacement 

component as an example, this would be the sum of the responses (among others) represented by 

Figures 5.10 to 5.12.  The magnitudes of these separate responses are all of the same order (near 

–120dB), but with slab bearings sometimes reducing response and sometimes increasing it.  

Whether floating the slab gives a beneficial reduction in soil vibration depends on how these 

various responses add up. 

5.2  A Track Slab with Bending and Torsion 

A real track has two rails, whose inputs will not necessarily be correlated, so it is reasonable to 

assume that the motion of the slab will not be pure, laterally symmetric bending, but that there 

will be some torsional motion as well.  Such a three-dimensional slab beam can be joined to the 
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Figure 5.13:  Longitudinal soil displacement 20m horizontally out into the soil and 40m 
longitudinally parallel to the tunnel from the slab load, for various slab-support stiffnesses, with 
circles marking the 2 f n  points. 
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tunnel along two lines of support as shown in cross-section in Figure 5.14, instead of just one 

line as for the simple slab beam. 

5.2.1  Coupling Equations for the Torsional Slab Beam and Tunnel 

Figure 5.15 shows the general case of a body loaded by two parallel lines of distributed force.  

Because there are now two lines of load Q x1( )  and Q x2 ( ) , the equations describing the time-

harmonic displacement responses Y x1( )  and Y x2 ( )  are coupled.  However, the idea of 

convolution in space can still be used, to give 

 
Y x H x Q d H x Q d

Y x H x Q d H x Q d

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

    

    

= − + −

= − + −
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∞

−∞

∞

−∞

∞
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∞

∫ ∫

∫ ∫

χ χ χ χ χ χ

χ χ χ χ χ χ
 (5.16) 

where the FRFs H x11( ) , H x12( ) , H x21( )  and H x22( )  are for point-load inputs at x = 0 , with, 

for example, H x12( )  denoting the FRF along line 1 to an input on line 2.  Fourier transformation 

of both equations of (5.16) into the wavenumber domain allows the coupled system to be written 

in the matrix form 
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Y F2 2,  Y F1 1,  
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Figure 5.14:  Tunnel cross-section showing how a torsional slab beam is joined to the tunnel 
invert along two longitudinal lines between the beam at 1 and 2 and the invert at 3 and 4. 
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The joining of the torsional slab beam to the tunnel is complicated by the fact that the lines of 

motion of the tunnel and those of the slab are not coincident, as can be seen from Figure 5.14.  It 

will be assumed that interaction forces can only be transmitted along lines normal to the tunnel, 

and that the absolute displacements also lie in these directions.  Thus the vertical slab-beam 

displacements Y1  and Y2  at the small angle α to the tunnel normals are really just the vertical 

components of the motion of the slab’s edges; the lateral dynamics of the slab beam are 

neglected as having only a small effect on total response.  Applying (5.17) to both the slab and 

the tunnel therefore gives 
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 (5.18) 

where 
~
G1  and 

~
G2  are the normal interaction forces impinging on the tunnel invert at the contact 

lines 3 and 4 (i.e. coincident with Y3  and Y4 ), and 
~
F1  and 

~
F2  are the external forces acting 

vertically on the slab at lines 1 and 2 (see Figure 5.14). 

As for the simple slab beam, the torsional slab can either be joined directly or be supported 

on springs.  For the directly joined case, the absolute displacements of the slab and the tunnel 

must be the same, that is 
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Figure 5.15:  General force distributions acting along two lines of joining.  The displacement 
responses along the lines are obtained by coupled convolutions in space. 
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Using the joining condition (5.19) with (5.18) allows the displacements to be found as 
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where 
~

{
~ ~

}Y12 1 2= Y Y T , 
~

{
~ ~

}Y34 3 4= Y Y T , 
~

{
~ ~

}F = F F1 2
T , and the FRF matrices [

~
]H 12  and 

[
~

]H 34  are those in respectively the first and second equations of (5.18). 

For the case of support by springs, the interaction forces are dependent on the differences in 

the absolute displacements of the slab and tunnel, and the stiffness of the springs.  Assuming 

equal slab-support stiffness of k per unit length acting normally to the tunnel for both lines of 

joining, the coupling condition becomes 
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Substituting (5.21) into (5.18) results in expressions for the displacements of  
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Once the tunnel displacements 
~
Y34  are calculated from (5.20) or (5.22), the interaction forces 

can be calculated from the second of equations (5.18) and thus the response 
~
Y5  along a line in the 

soil at some constant radius r R=  and angle θ β=  (see Figure 5.14) is 
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where 
~
H53 and 

~
H54  are the FRFs for the response at line 5 to inputs at lines 3 and 4 respectively 

on the uncoupled tunnel invert.  As before, the responses in the space domain are obtained by the 

inverse Fourier transforms of the ξ-domain responses calculated above. 
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5.2.2  Calculation of FRFs for Torsional Coupling 

The various FRFs for the uncoupled tunnel and slab have to be calculated before any of the 

foregoing results can be utilised.  The tunnel FRFs can be determined from (5.10) as they were 

for the simple slab case.  Referring to Figure 5.14 and using symmetry (noting that 
~
U  and 

~
W  are 

even functions of θ while 
~
V  is an odd function of θ), they are given by 
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The bending response 
~
Y  of the slab beam is governed by the FRF 

~
HYF  of (5.13).  The 

torsional response is determined from the equation of motion for the angle of twist ϕ( , )x t  of a 

shaft in torsion, which is (see Meirovitch [136]) 

 J
t
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x

x t
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∂

τ
2

2

2

2
    − = ( , )  (5.25) 

where J is the polar moment of inertia per unit length, GK is the torsional rigidity (G the shear 

modulus, K the torsional constant of the cross-section), and τ ( , )x t  the applied torque per unit 

length.  To put (5.25) into the wavenumber domain, harmonic solutions of the form 

ϕ ω ξ= +~ ( )Φei t x  and τ ω ξ= +~ ( )Τei t x  are substituted to give 
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where 
~Τ = 1 represents the unit spatial torque (acting at x = 0) given by a torque per unit length 

of Τ = δ ( )x  in the space domain.  With only the two lines of force 
~
F1  and 

~
F2  acting on the slab 

beam, the torque per unit length is 
~ ~

.
~

.T F c F c= −1 2  in the wavenumber domain, where c is the 

distance of the edge loading lines from the centreline of the slab, as indicated in Figure 5.14.  

Thus the vertical displacements of the two edges of the slab under combined bending and torsion 

are given by 
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By applying a unit spatial point load to each edge in turn, that is, forces per unit length of 
~
F1 1=  

and 
~
F2 0= , then 

~
F1 0=  and 

~
F2 1= , the free-beam FRFs can be deduced from (5.27) as 
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5.2.3  Results for the Tunnel with a Torsional Slab Beam 

As for the simple-slab model, the tunnel and soil FRFs were calculated as described in Chapter 4 

for the parameters of Table 4.3.  Table 5.2 gives the other parameters required.  The bending 

stiffness EI and the mass per unit length m of the torsional slab are taken to be the same as for the 

simple slab, but this still leaves the torsional rigidity GK and the moment of inertia per unit 

length J to be determined.  If the cross-section of the slab is rectangular, then the torsional 

constant K is given to an accuracy of 4% by (see Young [202]) 
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for the slab of width b and height d depicted in Figure 5.14.  Taking the slab to be 2000mm wide 

and 700mm deep, (5.29) together with the bending properties (assuming a Poisson’s ratio for the 

slab concrete of 0.2) results in the values of GK and J given in Table 5.2. 
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Table 5.2:  The torsional slab beam’s properties.  The slab-support stiffnesses are half those of 
used for the simple slab (see Table 5.1), since there are now two lines of support. 
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The joining geometry shown in Table 5.2 is determined by the gauge of the rails, taken as 

1500mm.  Half the gauge gives the distance c (see Figure 5.14).  The angle α of the normals to 

the tunnel invert at the joining lines 3 and 4 is calculated by assuming a clearance between the 

slab and invert of 50mm along the normals – enough space to insert a ballast mat – and recalling 

that the tunnel radius a is 3m.  Although this 50mm clearance would result in interference 

between the ends of the assumed rectangular slab and the tunnel wall, a real slab would be 

shaped to fit the wall’s curve and would only be approximately rectangular in cross-section.  To 

allow direct comparison with the simple-slab model, the three different values of slab-support 

stiffness k shown in Table 5.2 were chosen to give a bending response equivalent to the simple 

slab.  Since there are now two lines of joining, they are half the values given in Table 5.1; a 

spring has the same apparent vertical stiffness for any inclination which remains constant, as was 

assumed in formulating the torsional-slab equations. 

The ξ-domain displacements were calculated from (5.20), (5.22) and (5.23) using Matlab, and 

then the physical x-domain displacements were obtained by an inverse FFT with N = 2048 

points and a sampling interval of ∆x = 05. m, as done for the simple-slab model.  To examine 

bending effects only, the applied forces per unit length are set at ~ .F1 05=  and ~ .F2 05=  (which 

gives a net unit vertical force applied at x = 0 in the space domain); to examine torsional effects 

only, the forces are set at ~ .F1 05=  and ~ .F2 05= −  (which gives a net unit torque applied at x = 0).  

The response to a single off-centre unit force is given by the sum of these two cases, that is, with 

~
F1 1=  and ~F2 0= . 

Figure 5.16 shows the vertical driving-point response of the torsional slab beam, which can 

be compared to Figure 5.4 for the simple slab.  Figure 5.16(a) shows the response of the slab 

beam in pure bending, where the two edges of the slab are moving in-phase with the same 

magnitude.  While the response for the directly joined slab is quite flat as before, the peaks of the 

responses with slab bearings inserted have shifted upwards in frequency compared to the simple 

slab, most apparent in the f n = 45Hz case where the peak actually occurs at 53Hz rather than 

45Hz as in Figure 5.4, despite choosing support stiffnesses k to make the two slab models 

apparently equivalent.  This indicates that the tunnel as a foundation is effectively stiffer when it 

supports the slab beam along two lines instead of one: two lines of force would tend to deform the 
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tunnel cross-section in ways which involve greater contributions from the more complicated (and 

hence “stiffer”) circumferential modeshapes than those for a single line of force.  How the 

floating slab is supported on the tunnel is therefore an important factor.  Figure 5.16(b) shows the 

motion of the slab beam in pure torsion, where the two edges are moving exactly out of phase 

with the same magnitude.  The resonance peaks are higher than for pure bending, indicating that, 

for the parameters used here, torsional waves start propagating along the slab at higher 
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Figure 5.16:  Vertical responses Y1  (blue) and Y2  (red) of a torsional slab beam supported on a 
tunnel, at the applied loads of (a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) F1 1= , 
F2 0= .  Slab-support stiffnesses giving various natural frequencies as indicated.  (Magenta 
indicates overlap of the blue and red curves). 



CHAPTER 5.  MODELLING TRACKS IN TUNNELS 106  

 

frequencies than bending waves.  This means that even if a simple isolation theory were valid for 

floating-slab track, a Winkler-beam model – which only considers bending – would under-

predict the natural frequencies and hence would predict vibration isolation at frequencies lower 

than would actually be the case.  Figure 5.16(c) illustrates the effect of combined bending and 

torsion, as might be expected from a pair of unbalanced train-wheel loads.  There is a difference 

of about 10dB between the motion of the two edges, so the greater motion of Y1 will have more 

influence on the forces transmitted to the tunnel invert and then the soil. 

The normal response of the tunnel invert directly under the applied loads is given in Figure 

5.17.  The displacements of the two joining lines under pure bending of the slab, Figure 5.17(a), 

are in phase and of the same magnitude, with behaviour very similar to Figure 5.6, the tunnel 

response for a simple-slab model.  Slab bearings of any stiffness reduce the response because the 

decoupling effect allows energy to propagate further along the slab beam and thus away from this 

part of the tunnel invert.  The performance is apparently better than what classic theory would 

predict, as the reduced response occurs below the 2 f n  points, despite the two-line joining 

arrangement being “stiffer” than the single-line one upon which the natural frequencies are 

based.  The purely torsional response (with Y3  and Y4  out of phase), Figure 5.17(b), suggests that 

mounting the slab on springs allows torsional energy to propagate more effectively down the slab 

than bending energy, since the responses with bearings are all significantly lower than that for the 

directly joined slab, for all frequencies.  The combination of bending and torsion due to an off-

centre load, Figure 5.17(c), shows two different behaviours for the two adjacent lines along the 

bottom of the tunnel.  Insertion of rubber bearings reduces Y3  for all frequencies, whereas for the 

smaller displacement Y4 , it results in a more familiar response with reduction in vibration 

delayed to frequencies slightly above the 2 f n  points. 

Examination of the responses 20m along the tunnel from the applied loads confirms that 

torsional motion of the slab on bearings transmits proportionally more energy down the tunnel.  

Figure 5.18(a) shows that the tunnel response to pure bending of the slab is very similar to Figure 

5.7 for the simple slab, with slab bearings giving higher response than if the slab is directly 

joined, for most of the frequency range.  However, Figure 5.18(b) shows that pure torsion of the 

slab results in much higher response with slab bearings than without.  Nevertheless, the 
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combined response, Figure 5.18(c), is dominated by the higher-magnitude bending component, 

although the introduction of torsion does dramatically reduce the levels of two of the Y3  

responses at 105Hz and 160Hz respectively. 

To allow comparison with soil displacements previously discussed, soil responses were 

calculated for the line given by r = 20m and θ = 90�  (which correspond to R and β in equations 

(5.24)   and   Figure   5.14),   resulting   in   W   and  V  coinciding   with  horizontal  and  vertical  
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Figure 5.17:  Normal responses Y3  (blue) and Y4  (red) of the tunnel invert under a torsional slab 
beam directly under applied loads of (a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) 
F1 1= , F2 0= .  Slab-support stiffnesses giving various natural frequencies as indicated.  Circles 
mark the 2 f n  points.  (Magenta indicates overlap of the blue and red curves). 
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displacement components.  Figure 5.19 gives the horizontal soil response directly opposite the 

loads on the slab.  The response to pure slab bending, Figure 5.19(a), is very like that in Figure 

5.8, although “isolation” is delayed to higher frequencies than for the simple slab, because of the 

stiffer mounting of the torsional slab, and the undulations due to pressure-wave effects are more 

pronounced.  The response to pure torsion, Figure 5.19(b), is not particularly different from that 

to pure bending, giving a combined response in Figure 5.19(c) that shows the same type of 
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Figure 5.18:  Normal responses Y3  (blue) and Y4  (red) of the tunnel invert under a torsional slab 
beam 20m along the tunnel from applied loads of (a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  
and (c) F1 1= , F2 0= .  Slab-support stiffnesses giving various natural frequencies as indicated.  
Circles mark the 2 f n  points.  (Magenta indicates overlap of the blue and red curves). 
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classic isolation as the simple slab, albeit slightly delayed.  The horizontal displacement at 20m 

away longitudinally, Figure 5.20, shows a bending response like that in Figure 5.9 and a torsional 

response different in shape but generally of lower magnitude, so that again the combined 

response is most like the bending-only response.  Only the softest bearings with f n = 30Hz give 

significant vibration reduction at this point. 
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Figure 5.19:  Horizontal soil displacement response with a torsional slab beam, 20m horizontally 
out into the soil opposite applied loads of (a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) 
F1 1= , F2 0= .  Slab-support stiffnesses giving various natural frequencies as indicated.  Circles 
mark the 2 f n  points. 
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Slab torsion has a greater effect on the vertical vibration of the soil.  Figure 5.21 shows this 

displacement component directly opposite the slab loads.  Like the horizontal response to 

bending in Figure 5.19(a), the bending response in Figure 5.21(a) is like that for the simple slab, 

Figure 5.10, conforming to classic isolation theory more or less (but with isolation at higher 

frequencies than predicted because of the stiffer foundation) and with more pronounced 

undulations  from  pressure-wave  effects.   At  frequencies  below  about  40Hz, the torsion-only  
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Figure 5.20:  Horizontal soil displacement response with a torsional slab beam, 20m horizontally 
out into the soil and 20m longitudinally parallel to the tunnel from applied loads of (a) F1 0 5= . , 
F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) F1 1= , F2 0= .  Slab-support stiffnesses giving various 
natural frequencies as indicated.  Circles mark the 2 f n  points. 
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response of Figure 5.21(b) is less than the bending-only one, but above 40Hz its magnitude 

becomes comparable or greater than the bending-only magnitude, so that the torsion effects 

predominate above 40Hz in the combined response of Figure 5.21(c).  The very low level of the 

torsional response below 10Hz can be attributed to cancellation of the two lines of input 3 and 4 

on the tunnel invert.  The V component of soil displacement at r = 20m and θ = 90�  is largely 

dependent on the propagation of shear waves, while the two lines 3 and 4 are producing out-of-
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Figure 5.21:  Vertical soil displacement response with a torsional slab beam, 20m horizontally 
out into the soil opposite applied loads of (a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) 
F1 1= , F2 0= .  Slab-support stiffnesses giving various natural frequencies as indicated.  Circles 
mark the 2 f n  points. 
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phase vertical shear motion when the slab is in pure torsion.  At low frequencies the separation of 

these two lines is small compared to the shear wavelength, and so can be construed as a single 

source; but they are out of phase, so the “single source” is effectively motionless.  At higher 

frequencies the separation is great enough that cancellation does not occur at source.  It is 

interesting to observe that the torsional response shows little influence from pressure-wave 

interference, so that the combined response of Figure 5.21(c) is much less undulating than the 

bending response, and hence actually more like Figure 5.10 for the simple slab than Figure 

5.21(a) is.  This raises the question of whether it is necessary to include torsional effects at all, 

beyond the effects that different slab-mounting arrangements have on support stiffness. 

Figure 5.22 gives the vertical displacement at a longitudinal position of x = 20m.  This time 

the torsional response, Figure 5.22(b), is again of significant magnitude, but of very different 

shape to the bending-only response in Figure 5.22(a), with addition of rubber bearings increasing 

the response above the 2 f n  points and reducing it below.  The bending-only response is very 

like that for the simple slab in Figure 5.11 (although there is some more undulation at the high-

frequency end and the trough at 45Hz is deeper), with slab bearings making little difference 

except for the f n = 30Hz case, which gives a modest reduction.  However, the combined 

response, Figure 5.22(c), is not very like Figure 5.11 at all, the torsional component resulting in 

slab bearings giving generally larger vertical soil displacements.  This demonstrates that the 

effects of slab torsion are significant for some observation points in the soil. 

The longitudinal soil displacement at x = 20m is given in Figure 5.23 (as explained for the 

simple-slab case, longitudinal displacement at x = 0 is zero because U is an odd function of x).  

All three types of motion are very similar to the horizontal motion for the same position (see 

Figure 5.20), because both longitudinal and horizontal motion here are largely due to the 

propagation of pressure waves from the tunnel.   The bending-only response, Figure 5.20(a), 

resembles the simple-slab case of Figure 5.9, with slab bearings having little effect below 100Hz.  

The effect of slab torsion is not very great – the combined response of Figure 5.20(c) is quite 

similar to the bending-only one, with an adverse effect over the whole frequency range with the 

f n = 60Hz bearings.  This illustrates the recurring theme that a beneficial effect is only achieved 

with the softest slab bearings, if it is possible at all. 
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All the responses discussed above are for one pair of loads applied to the track slab.  As for 

the simple slab, the responses at different longitudinal positions are of comparable magnitude, so 

it is difficult to estimate the exact effect of adding up these responses to give the response to a 

train which provides many simultaneous inputs.  It is not simple to predict the effect of torsional 

motion of the slab on the vibration levels in the soil: sometimes it is not very significant, so that 

the response to combined bending and torsion is approximately the same as to bending alone; 

 

0 20 40 60 80 100 120 140 160 180 200

−150

−140

−130

−120

−110

−100

x = 20m, r = 20m, θ = 90° (bending)

frequency [Hz]

V
 m

ag
. [

dB
re

f m
m

/k
N

]

(a)

0 20 40 60 80 100 120 140 160 180 200

−160

−150

−140

−130

−120

−110

x = 20m, r = 20m, θ = 90° (torsion)

frequency [Hz]

V
 m

ag
. [

dB
re

f m
m

/k
N

]

(b)

0 20 40 60 80 100 120 140 160 180 200
−150

−140

−130

−120

−110

−100

−90
x = 20m, r = 20m, θ = 90° (bending + torsion)

frequency [Hz]

V
 m

ag
. [

dB
re

f m
m

/k
N

]

(c)

direct
60Hz  
45Hz  
30Hz  

 

Figure 5.22:  Vertical soil displacement response with a torsional slab beam, 20m horizontally 
out into the soil and 20m longitudinally parallel to the tunnel from applied loads of (a) F1 0 5= . , 
F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) F1 1= , F2 0= .  Slab-support stiffnesses giving various 
natural frequencies as indicated.  Circles mark the 2 f n  points. 
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sometimes it affects the combined response very significantly, to the extent that it makes the 

insertion of slab bearings unfavourable, when soft bearings would seem to have some benefit if 

only slab bending was considered. 
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Figure 5.23:  Longitudinal soil displacement response with a torsional slab beam, 20m 
horizontally out into the soil and 20m longitudinally parallel to the tunnel from applied loads of 
(a) F1 0 5= . , F2 0 5= .  (b) F1 0 5= . , F2 0 5= − .  and (c) F1 1= , F2 0= .  Slab-support stiffnesses 
giving various natural frequencies as indicated.  Circles mark the 2 f n  points. 
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5.3  A Full Track with Axle Masses 

As well as the effects of the track slab, a track model should take the dynamics of the rail and the 

train interacting with it into account.  An improved track model is depicted in Figure 5.24.  It 

consists of a simple slab beam supporting a rail beam (representing the two rails together) with 

masses placed at intervals to represent the axle-wheel assemblies of a train.  The slab and rail 

beams are infinitely long.  The form is similar to the track models described in Chapter 3, with 

resilient layers to model the slab bearings and rail pads, but now the foundation of the track is a 

tunnel instead of a rigid base.  The axle masses are a first-approximation train model which only 

considers the unsprung mass of the train, assuming that the primary suspension isolates the rest 

of each vehicle in the train.  Real train vehicles have pairs of axles attached to bogies, which also 

contribute to the low-frequency interaction with the rail (below and around the primary 

suspension’s natural frequency, that is, below about 20Hz).  However, the important frequencies 

for ground-borne vibration from underground railways are well above this region (for example, 

Cryer [38] gives acceleration spectra of a pile cap due to the passage of London Underground 

trains, showing most activity between 40Hz and 100Hz).  Therefore the bogie dynamics are not 

significant for the current problem.  Also neglected is a Hertzian contact spring between each 

wheel and the rail, because this only plays a role at frequencies higher than those of interest (for 

 

L

L 2L0−L−2L

δ

soil

slab

rails

ma

 

Figure 5.24:  Full track model supported on the tunnel invert, with masses added to represent 
axles of a train.  The centre mass is excited by a roughness displacement input δ.  The tunnel’s 
infinite length means the responses at one point in the soil to each axle input (paths with dashed 
lines) are equivalent to the line of separate responses to the single input shown (paths with solid 
lines) for an infinite number of masses at regular spacing. 
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example, Clark et al [35] conclude that the Hertzian contact does not have a significant effect on 

rail response below 750Hz). 

The aim is to find the response at a single representative point in the soil when there is a 

series of input loads along the rails due to a train running on the track.  For just one input load, 

the infinite length of the tunnel means that the load and the observation point can be shifted 

longitudinally while maintaining their separation, and the response at the observation point will 

not change.  In other words, the response in the soil at x = 0  to a load on the rail at x L=  is 

always identical to the response at x L= −  to the same load at x = 0 .  (For tangential and radial 

soil-response components, which are even functions of x, it is also identical to the response at 

x L=  to the load at x = 0 , so that only the magnitude of the separation matters.)  Hence, the 

problem of finding the set of FRFs for the soil response at x = 0  to a set of loads at various 

positions on the rail can be recast into the problem of finding the FRFs for the soil at those 

various longitudinal positions to a single load at x = 0 .  The shifting principle for a tunnel and 

track model with axle masses is depicted in Figure 5.24.  Note that in this case it only works for 

an infinite number of axle masses at regular spacing, so that the overall model remains infinite 

and the longitudinal symmetry is maintained with any amount of shifting.  Nevertheless, when 

the shifting principle is invoked so that only an input at the middle axle (x = 0) is used, a finite 

number of axles is sufficient if there are enough of them that the responses of the model do not 

change with more axles added at the ends, that is, a convergence has been reached. 

The total soil response due to all the axle loads acting simultaneously can be calculated by 

adding up all the FRFs for an input at x = 0 , after scaling and phasing each one appropriately.  If 

the train is infinitely long and the inputs random, the sum represents the response anywhere along 

the soil line and thus condenses the three-dimensional problem represented by the individual 

FRFs to a two-dimensional problem of the vibration level at a particular point in the cross-

section of the tunnel and soil. 

5.3.1  Joining a Rail Beam to the Slab-Plus-Tunnel Model 

The easiest way to construct the basic track model is to add a rail beam to the combined slab-

plus-tunnel model of Section 5.1, using the principle of convolution in space.  Although the 
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repeating-unit method of Chapter 3 could be used to construct a track model complete with axle 

masses (but minus slab bearings), there is the difficulty of obtaining the displacement function 

for the whole structure between unit junctions.  In addition, the displacement function would 

have to be transformed into the wavenumber domain in order to join the track to the tunnel via 

the slab-supporting stiffness.  Since this function would not be a simple analytical expression, the 

transformation would have to be done numerically by FFT with its attendant condition of 

sufficient decay of the function (see Section 4.3.3), which is unlikely to be met for a free double-

beam track model without excessive internal material damping. 

To join the rail beam to the model, therefore, the coupling equations (5.8) are applied to the 

rail beam and slab-plus-tunnel as the two entities being joined.  To avoid confusion with the 

numerals already used in Section 5.1 to denote the lines along the slab (1), the tunnel invert (2) 

and the soil (3), the line along the rail beam will be denoted by 0 (zero).  Thus the vertical rail 

and slab responses 
~
Y a0  and 

~
Ya1  of the new combined system to a vertical unit spatial point load 

acting on the rail beam at x = 0  are 
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where 
~
H a00  is the ξ-domain FRF for the unjoined rail beam, 

~
H a11  is the ξ-domain FRF of the 

slab beam to a load on the slab before the rail is added, and kr  is the stiffness per unit length of 

the resilient layer between the rail and slab beams.  In the same way as (5.9), responses along 

lines not involved in the joining can be determined by means of the coupling interaction force.  

In this case the interaction force acts on the slab beam and is given by the slab’s response in the 

new combined model divided by it’s pre-rail-beam FRF, that is, 
~ ~
Y Ha a1 11 .  Hence the responses 

~
Y a2  along the tunnel invert and 

~
Y a3  in the soil are  
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where 
~
H a21  and 

~
H a31  are the ξ-domain FRFs of the tunnel invert and the soil to a load on the 

pre-rail-beam slab.  The physical displacement functions in the x-domain can be obtained by the 

inverse Fourier transform of the results (5.30) and (5.31) according to (5.2). 

The FRFs of the slab, tunnel and soil displacements which appear in equations (5.30) and 

(5.31) are just the displacements determined by (5.8) and (5.9) for the slab-plus-tunnel model.  

The FRF for the rail beam is that given by (5.13) for a free beam, but now with the properties of 

the two rails instead of the slab.  Thus 
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5.3.2  Adding Axle Masses to the Rail Beam 

Adding axle masses to the model constructed so far is most simply done in the space domain.  

Since the axles interact with the rail, the coupled rail’s x-domain FRF H x0 ( )  is required.  This 

can be obtained by the inverse Fourier transform of the ξ-domain result from (5.30), that is, 

 H x Y e da
i x

0 0

1

2
( )

~
( )  =

−∞

∞

∫π
ξ ξξ  (5.33) 

which represents the FRF of the rail to a point load acting at x = 0  on the rail, at a particular 

frequency ω.  To find the final response in the soil, the soil’s x-domain FRF H x3( )  to the same 

load on the rail is required.  This latter FRF is obtained in the same way as H x0 ( ) , but from the 

result (5.31), so that 

 H x Y e da
i x

3 3

1

2
( )

~
( )  =

−∞

∞

∫π
ξ ξξ  (5.34) 

where 
~

( )Y a3 ξ  can be the u, v, or w component of soil displacement. 

As the first step in the addition of axle masses, the rail responses at the positions where the 

masses are to be added must be formed into an FRF matrix [ ]H 0  which satisfies  

 Y H F0 0 0  = [ ]  (5.35) 

where Y0  is the vector of rail displacements at the stations where masses will be added, and F0  

is the vector of forces acting at those positions on the rail (once masses are added, these will be 
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the interaction forces between the masses and the rail).  Keeping this in mind, it is interesting to 

note that (5.35) is exactly analogous to the convolutions in space presented earlier.  While 

convolution was used to find the function of responses along a line to a continuous interaction 

force acting along that line, the matrix multiplication here is used to find the vector of responses 

along a line to a set of discrete interaction forces acting on the line.  The elements of the matrix 

[ ]H 0  are determined by the rail-displacement FRF H x0 ( )  of (5.33) as described below. 

The case of adding only five masses will be considered here as an example of the general 

approach.  It can easily be extended to more added masses to give the convergence necessary to 

model an infinitely long train.  The infinite length and the symmetry of the track and tunnel mean 

that a given rail FRF is only dependent on the magnitude of the separation between the 

displacement and load involved, as discussed above in the context of soil displacements.  Thus 

the rail FRF matrix is 

 
[ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

H0

0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

0 1 0 0 2 0 2 3 0 2 3 4

0 1 2 0 2 0 0 3 0 3 4

0 1 2 3 0 2 3 0 3 0 0 4

0 1 2 3 4

0

0

0

0

  =

+ + + + + +
+ + +

+ +
+ + +

+ + +

H H L H L L H L L L H L L L L

H L H H L H L L H L L L

H L L H L H H L H L L

H L L L H L L H L H H L

H L L L L H0 2 3 4 0 3 4 0 4 0 0( ) ( ) ( ) ( )L L L H L L H L H+ + +























 (5.36) 

where L1 , L2 , L3  and L4  are the consecutive spacings between the five points where axles will 

be added.  If the spacing is regular so that L L L L L1 2 3 4= = = = , (5.36) can be simplified to 

 [

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

H 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 3 4

0 2 3

2 0 2

3 2 0

4 3 2 0

]  =























H H L H L H L H L

H L H H L H L H L

H L H L H H L H L

H L H L H L H H L

H L H L H L H L H

 (5.37) 

To facilitate the process of adding axles, the FRF matrix [ ]H 0  of (5.36) or (5.37) should be 

inverted, allowing the dynamic-stiffness matrix (DSM) expression 

 F H Y K Y0 0
1

0 0 0    = =−[ ] [ ]  (5.38) 

to be written.  Axles are then added to the model as concentrated masses ma  by adding inertia 

terms of the form −m Yaω
2 , where Y is the displacement at the axle’s station, to the appropriate 

diagonal elements of the DSM [ ]K 0 , leaving the centre station free.  In the same way as in 

Section 3.3.2, an axle mass is added to this centre station via a roughness displacement 

δ ω= ∆ei t , as shown in Figure 5.24.  The overall matrix equation then becomes 
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 (5.39) 

where the kij  are the elements of [ ]K 0 .  Equation (5.39) is of order one greater than the original 

DSM because of the extra displacement component Ya  introduced by the independent axle mass 

at the centre.  As mentioned earlier, if a model with an input at the middle, such as (5.39), is to 

be used in conjunction with the shifting principle to calculate the responses to several different 

inputs, the axle spacing must be regular. 

After the displacements of the rail at the axle masses have been calculated from (5.39), the 

corresponding interaction forces F0  acting on the rail at the mass stations can be determined by 

substituting the vector of displacements Y0 1 2 3 4 5= { }Y Y Y Y Y T  (that is, omitting Ya ) back 

into (5.38).  Knowing the interaction forces which act on the rail, the soil displacements Y3  can 

be found from the FRF function H x3( )  given by (5.34).  In matrix form this can be expressed as 

 Y H F3 3 0  = [ ]  (5.40) 

where [ ]H 3  is the FRF matrix for the soil line to input forces acting on the rail (with no axle 

masses added).  For the tangential and radial components of soil displacement, V and W, [ ]H 3  is 

of the same form as [ ]H 0  given by (5.36) or, for constant axle spacing, (5.37), but with H x3( )  

replacing H x0 ( ) .  This is because these components are even functions of x for a vertical load 

applied at x = 0 , just like the vertical displacements of the rail.  However, the longitudinal 

component U is an odd function of x for such a load, so that the sign of the longitudinal 

separation between a given load and displacement is important.  The soil FRF matrix is then 
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H L
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 (5.41) 

where similar simplifications of the kind exhibited in going from (5.36) to (5.37) can be made if 

the spacing between axles is a constant value L. 
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5.3.3  Random Process Theory Applied to the Full-Track Model 

The roughness and other irregularities of real rail and wheel surface profiles will be randomly 

distributed, so the roughness-displacement inputs at the wheels of a train travelling on the track 

will be random processes.  The calculation of the resultant soil responses therefore requires the 

use of the theory of random vibration, which is dealt with by Newland [144], whose approach 

will be used here. 

A random process is stationary if its mean, mean square and standard deviation are 

independent of time.  Consider a system with N stationary random inputs x j  (such as the axle 

inputs provided by a train) and one (stationary random) output y (such as the displacement 

response of a particular point in the soil).  The power-spectral density (PSD), or spectrum, Sy ( )ω  

of the output process y is then given by  

 S H H Sy p r x x
q

N

p

N

p q
( ) ( ) ( ) ( )ω ω ω ω  = ∗

==
∑∑

11

 (5.42) 

where H p ( )ω  and Hq ( )ω  are the FRFs of y to the inputs xp  and xq  respectively (with star 

denoting the complex conjugate), and Sx xp q
( )ω  is the cross-spectral density, or cross-spectrum, 

between the two inputs.  If two input processes have the same statistical properties, that is, have 

the same spectrum S0 ( )ω , but one lags the other such that x t x t T2 1( ) ( )= − , then the cross-

spectra are given by 

 
S S e

S S e

x x
i T

x x
i T

1 2

2 1

0

0

( ) ( )

( ) ( )

ω ω

ω ω

ω

ω

=

=

−

 (5.43) 

which also satisfies the general relationship that Sx x2 1
( )ω  is always the complex conjugate of 

Sx x1 2
( )ω .  Equation (5.43) can readily be shown to be true by considering the cross-correlation 

R x t x t dtx x1 2 1 2( ) ( ) ( )τ τ= −
−∞

∞

∫ , the Fourier transform of which (including a factor of 1 2π ) gives 

the cross-spectrum Sx x1 2
( )ω . 

If the train’s wheels are assumed to be perfectly smooth, so that all irregularities are 

contained in the rail surface, the axle inputs can be assumed to differ by a time delay only, giving 

cross-spectra between inputs of the type in (5.43).  The time delay between two adjacent axles is 

T L= v , where L is the axle spacing (assumed to be constant) and v is the train’s speed.  If the 

axles are not adjacent, this time delay is multiplied by the integer difference ( )q p−  between the 
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indices of the two axles concerned.  Thus the general formula (5.42) for the output spectrum can 

be written 

 S H H S ey p q
i q p L

q

N

p

N

( ) ( ) ( ). ( ). ( )ω ω ω ω ω  = ∗ − −

==
∑∑ 0

11

v  (5.44) 

assuming that an axle with a higher index is further to the back of the train. 

The FRFs H p ( )ω  and Hq ( )ω  in (5.44) can be obtained from the appropriate elements of the 

soil-response vector Y3  in (5.40) – which is for an input at the centre axle mass only – by means 

of the shifting principle.  The model should, of course, then include N axle masses instead of just 

five, and N should be sufficiently large for convergence of the soil responses so that the shifting 

principle is valid.  Strictly, because of the way the FRFs are derived and because the time delays 

between axles are taken as all the same, the result (5.44) gives the statistical response of a point 

which moves longitudinally through the soil at the train speed and so stays opposite the axle 

mass placed at x = 0 ; but it is the vibration level at a stationary observation point next to the 

tunnel which is of interest.  The response of a stationary point will be influenced by Doppler 

effects, because the wheels at the front of the train and ahead of the point will be moving away 

from it, while those at the rear of the train and behind the point will be moving towards it, 

altering the effective time delays.  However, Doppler effects are not very significant in this case, 

because the train speeds (below 30 m s) are much less than the speeds of pressure and shear 

waves in the soil (944 m s and 309 m s respectively for the soil parameters given in Table 4.3), 

so can be ignored.  A further consideration despite this is whether the total response varies much 

with the actual longitudinal position of the observation point, next to an axle or somewhere 

between two axles.  In the soil around an actual underground railway system, a hypothetical 

observer close to the tunnel will “hear” individual axles as they pass, whereas an observer further 

away will only detect a continuous “rumble” as the train goes by.  Thus if the observation point is 

at a distance from the tunnel larger than the axle spacing, the point’s relative longitudinal 

position should not have much bearing on the total vibration response perceived.  Given these 

two considerations, the result (5.44) provides a reasonable estimate of the vibration spectrum at a 

stationary observation point in the soil. 
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The actual input between wheel and rail is a roughness displacement δ which varies along the 

rail.  The spectrum for this would normally be given as a function of wavenumber γ (with units 

of radians per unit length).  The roughness spectrum as a function of frequency depends on the 

speed v of a vehicle traversing the rough surface, and is given by 

 S Sδ δω γ ω
( )  = =


 




1

v v

 (5.45) 

An important property of the spectrum of a random process y t( )  is that integrating it over all 

frequencies ω gives the expected value of y2 , or mean-square (MS) value of the process, that is 

 MS  E   = =
−∞

∞

∫[ ] ( )y S dy
2 ω ω  (5.46) 

The widely used root-mean-square (RMS) value of the process is obtained by taking the square 

root of the MS value (5.46). 

The spectra discussed above are all even (symmetric) functions of angular frequency (or 

wavenumber), defined for frequencies from −∞  to +∞ .  However, practical spectra are usually 

single-sided functions defined for positive frequencies only, with the frequencies themselves in 

cycles (rather than radians) per unit time (or per unit length).  If such single-sided spectra are 

used, they must still give the MS value when integrated over all frequencies for which they are 

defined, that is, over 0 to +∞  with a frequency f instead of the angular frequency ω in (5.46).  

Thus a factor of 2 arises from their being single-sided and a factor of 2π  from the change to 

cyclical frequency, giving the single-sided spectrum S fy ( )  as 

 S f Sy y( ) ( )  = =4 2π ω π  (5.47) 

and similarly for a single-sided spectrum Sδ λ( )1  of roughness 

 S Sδ δλ
π γ π

λ
1

4
2






 = =






   (5.48) 

where λ is wavelength.  All the relationships given for double-sided spectra still hold if all of 

them are replaced by the equivalent single-sided spectra. 

Note also that the units of a spectrum are ( ) ( )units of units of frequencyy 2 , so it is often 

more convenient to plot graphs of root spectrum with units of ( )units of units of frequencyy , 

to reduce the range of values of the spectrum.  The results from the full-track model will be 

plotted as root spectra. 
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5.3.4  Results for the Tunnel with a Full Track Model 

As for the two previous track models, the tunnel and soil FRFs were calculated as described in 

Chapter 4, using the parameters in Table 4.3.  The parameter values for the full track are given in 

Table 5.3.  The slab properties used are the same as those for the simple-slab model given in 

Table 5.1, including the three different slab-support stiffnesses and loss factor.  The beam 

representing the two rails has the same sectional properties as those given in Table 3.1, but the 

railpad stiffness has a higher, more realistic value giving a resonance of the rail on the rail pads 

of 318Hz (instead of 100Hz as in Chapter 3), which is above the 200Hz maximum frequency 

considered here.  Results were calculated in Matlab, with the inverse Fourier transforms 

computed by inverse FFT using 2048 points with a sampling interval of ∆x = 05. m, as for 

previous results.  This gives a maximum x-value of 512m, so the maximum longitudinal 

separation which can be used with the shifting principle to create the FRF matrices such as (5.37) 

is also 512m; all the axle masses must therefore fit within this distance.  With a regular spacing 

of L = 20m, the maximum odd number of axles (odd to retain symmetry about x = 0) which can 

be added is thus N = 25.  This number of axles gave converged soil responses for a roughness 

input at the x = 0 axle mass. 
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Table 5.3:  Parameter values for the various parts of the full track.  The three different slab-
support stiffnesses are the same as those given in Table 5.1 for the simple slab. 

Due to the cylindrical geometry of the tunnel-in-soil model, the displacement is expressed as 

longitudinal, tangential and radial components U, V and W (see Figure 4.1).  However, horizontal 

and vertical components are more meaningful when considering inputs to building foundations, 

so an absolute coordinate system XYZ needs to be defined.  The longitudinal direction X 
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coincides with the longitudinal x-axis of the tunnel, the horizontal direction Y with the θ = 90�  

radius, and the vertical direction Z with the θ = 180�  radius.  Thus the relationships of the new 

longitudinal, horizontal and vertical displacement components U X , UY  and U Z  to the original 

components U, V and W are 

 

U U

U V W

U V W

X

Y

Z

=
= −
= +

cos sin

sin cos

θ θ
θ θ

 (5.49) 

The FRFs can be calculated for the U, V and W components of soil displacement, then resolved 

according to (5.49) before being used in the PSD equation (5.44). 

A useful way to evaluate the effect of floating the track slab is to take the ratio of the soil 

responses with and without resilient bearings inserted between the slab and tunnel invert.  A 

common measure of this ratio is the “Insertion Loss” in dB, which gives the amount of reduction 

in vibration provided by the bearings, so Insertion Losses greater than zero indicate vibration 

isolation.  However, this notion is opposite to all the results presented so far, where a higher 

(absolute) response is worse.  To maintain consistency, the concept of “Insertion Gain” in dB, 

indicating the increase in vibration levels caused by the bearings (hence the negative of Insertion 

Loss), will be used here; it is increasingly being used in industry (see Greer and Manning [77] for 

example).  The definition of Insertion Gain for the current results is 

 Insertion Gain [dB]  ,      ,  or = =20 10log
S

S
j X Y Z

j f

j direct

n  (5.50) 

that is, the ratio of the soil-displacement root spectrum for a slab “natural frequency” of f n  to the 

root spectrum for a model with a directly joined slab.  Insertion Gains less than zero indicate 

vibration isolation. 

The computation procedure for calculating the PSDs of soil displacement for the full-track 

model can be summarised as follows: 

1. Join the slab beam to the tunnel by (5.6) or (5.8) for each slab-support stiffness k, join the 

rail beam to the slab by (5.30), and obtain the rail FRF (5.33) by inverse FFT; 

2. Obtain the rail DSM via the FRF matrix (5.37), add axle masses according to (5.39), and 

use the resulting displacement vector to calculate the rail interaction forces from (5.38); 
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3. For each radius r and angular position θ in the soil, 

(i) Calculate the soil FRFs for the uncoupled tunnel by summing the appropriate modes 

for n from 1 to 10 according to (5.10); 

(ii) Add the effect of the slab beam by (5.9) and that of the rail beam by (5.31), then 

obtain the soil FRF (5.34) for a tunnel with a floating-slab track by inverse FFT; 

(iii) Form the soil FRF matrix and obtain the soil displacement vector from (5.40) and the 

interaction forces calculated above; 

(iv) Calculate the soil PSDs for this position from (5.44) for each train speed v required. 

The PSDs for different slab-support stiffnesses can then be used to calculate Insertion Gains from 

(5.50) or RMS levels via the MS (5.46). 

Computation time can be reduced by the use of symmetry.  The longitudinal symmetry means 

that ξ-domain displacements need only be calculated at the 1025 points with ξ ≥ 0, with the rest 

of the sample being created by a suitable reflection just prior to the inverse FFT; and symmetry 

about the vertical centreline of the tunnel cross-section means that only soil positions within the 

range 0 180≤ ≤θ �  need to be considered.  Computation speed in the Matlab environment can be 

increased by maximising the use of matrix or array operations (vectorised code) in place of 

looping procedures where possible.  Even so, program execution can be severely slowed by large 

memory requirements.  Each ξ-domain tunnel or soil mode was represented as an array of 1025 

space points by 200 frequency points for a given radius r and modenumber n, filling 3.1MB (16 

bytes per double-precision complex number); thus the eleven modes for one displacement 

component at one radius fill 34.4MB.  All 132 soil modes, required in step 3(i) at various stages 

to calculate the PSDs for all three displacement components at four radii, therefore did not 

physically fit within the 256MB of memory of the Unix workstation used, even leaving aside the 

memory needed by the operating system and Matlab for itself and intermediate calculations.  This 

necessitated heavy use of time-consuming swapping between memory and the hard disk.  

Leaving this swapping largely to Matlab and the operating system resulted in a program still 

running after three days.  Thus the program was rewritten to explicitly load only one set of eleven 

modes from the hard disk at a time, which still involved the same set being loaded and unloaded 

many times, but gave a full set of PSDs after 18 hours of computation. 
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Spectra were computed for a “white” (uniform) input roughness spectrum of S0 1= mm Hz2  

in (5.44).  This gives equal weighting to all frequencies.  Although a uniform roughness spectrum 

is unrealistic, it does show the fundamental transmission behaviour of the track-tunnel-soil 

system.  It is clear from (5.44) that the output PSD for a non-uniform input is obtained simply by 

multiplying the uniform result by the actual input S0 ( )ω , which is independent of the 

summation.  This also means that the Insertion Gain (5.50) is independent of the details of input, 

as S0 ( )ω  will cancel in the ratio of the two output spectra. 

Figures 5.25, 5.26 and 5.27 give contour plots of the longitudinal, horizontal and vertical 

PSDs respectively, at a radius of 20m and a train speed of 40km h, on axes of frequency versus 

angular position.  Graph (a) in each figure shows the soil displacement spectrum for a white 

input when the slab is joined directly to the tunnel invert, while graphs (b) to (d) show the 

Insertion Gains for the three slab-support stiffnesses given in Table 5.3.  Thus the absolute 

displacement spectrum for a given stiffness is the sum (because a dB scale is used) of graph (b), 

(c) or (d) with graph (a).  The contour intervals are 10dB, with red or “hot” colours indicating 

higher levels than blue or “cold” colours.  Instead of one 10dB band for the 0dB level in the 

Insertion Gains, there are two 5dB bands: > 0dB (up to 5dB) and < 0dB (down to –5dB).  This 

is to clearly show the cross-over between worsened performance and reduced vibration.  Thus the 

yellow < 0dB areas denote marginal improvement over a directly joined slab.  Such marginal 

reduction may not be worth the cost of floating the track slab. 

The three spectra (a) in Figures (5.25) to (5.27) for a directly joined slab beam have some 

common features.  The soil vibration levels for frequencies below 10Hz are all very small 

compared to the rest of the frequency range, and because the Insertion Gains (b) to (d) in each 

figure are all near 0dB below 10Hz, this can also be said for the slabs supported on varying 

stiffness.  Since all input frequencies have equal weighting, this shows that very low frequencies 

are highly attenuated by the track-tunnel-soil system; therefore the assumption that these 

frequencies are relatively insignificant is justified.  Maximum activity occurs between 100Hz and 

160Hz, but longitudinal levels seem to be lower than horizontal and vertical ones.  The highest 

levels occur mainly for angular positions less than 100� , underneath and to the sides of the 

tunnel,  resulting in a  “vibration shadow”  in the soil above the tunnel.    The vibration shadow is 



CHAPTER 5.  MODELLING TRACKS IN TUNNELS 128  

 

 

0 30 60 90 120 150 180
0

20

40

60

80

100

120

140

160

180

200

angle θ [deg]

fr
eq

ue
nc

y 
[H

z]

√S
X
 [dB

ref
 mm/√Hz], direct joining(a)

absolute dB

LONGITUDINAL, r = 20m, v = 40km/h

0 30 60 90 120 150 180
0

20

40

60

80

100

120

140

160

180

200

angle θ [deg]

fr
eq

ue
nc

y 
[H

z]

Insertion Gain [dB], f
n
 = 60Hz(b)

0 30 60 90 120 150 180
0

20

40

60

80

100

120

140

160

180

200

angle θ [deg]

fr
eq

ue
nc

y 
[H

z]

Insertion Gain [dB], f
n
 = 45Hz(c)

I.G. dB

 −40
 −50
 −60
 −70
 −80
 −90
−100
−110
−120
−130
−140
−150

0 30 60 90 120 150 180
0

20

40

60

80

100

120

140

160

180

200

angle θ [deg]

fr
eq

ue
nc

y 
[H

z]

Insertion Gain [dB], f
n
 = 30Hz(d)

 40
 30
 20
 10
 >0
 <0
−10
−20
−30
−40
−50
−60
−70

 

Figure 5.25:  (a) Longitudinal soil displacement spectrum for a full track model joined directly to 
the tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 20m with a train speed of 40 km h.  θ = 0  is directly underneath the 
tunnel invert and θ = 180�  is directly above the tunnel.  White (uniform) input roughness 
spectrum of 1mm / Hz between rail and wheel.  The contour intervals are 10dB, centred on the 
values given in the legends, except for the <0dB and >0dB bands which represent –5dB to 0dB 
and 0dB to 5dB respectively. 
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Figure 5.26:  (a) Horizontal soil displacement spectrum for a full track model joined directly to 
the tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 20m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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Figure 5.27:  (a) Vertical soil displacement spectrum for a full track model joined directly to the 
tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 20m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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probably beneficial, if a high proportion of energy propagated downwards means propagation 

away from nearby building foundations.  The Insertion Gain plots (b), (c) and (d) are for 

increasingly softer resilient bearings with designed natural frequencies of 60Hz, 45Hz and 30Hz.  

This gives 2 f n  frequencies, above which isolation is supposed to occur, of 84.9Hz, 63.6Hz 

and 42.4Hz respectively.  Insertion Gains are generally positive until the 2 f n  frequencies, but 

do not become uniformly negative above these – there are many pockets of increased response at 

higher frequencies.  Clearly, simple vibration-isolation theory is not applicable in the current 

situation. 

Each displacement component has some individual characteristics.  Figure 5.25(a) for the 

longitudinal PSD has a series of white horizontal strips at 5Hz intervals.  White areas mean that 

the level is below the minimum of the scale, so these strips represent troughs of very low 

magnitude in the PSD surface plotted.  It is not clear how these deep antiresonances arise.  The 

antisymmetric nature of the FRF for longitudinal displacement does not fundamentally alter the 

way the terms in the PSD summation (5.44) add up compared to the symmetric FRFs for the 

horizontal and vertical displacement components.  The antiresonances cannot be due to standard 

wheelbase filtering, because they were found to appear at the same 5Hz intervals regardless of 

train speed.  Further investigation is required to determine the mechanism responsible for this 

regular attenuation.  The many small, round contours in Figures 5.25(b)-(d) giving a “dotted” 

appearance are most probably due to numerical fluctuation in the Insertion Gain ratio of the very 

small magnitudes at the trough frequencies, so should be ignored.  Nevertheless, Figures 5.25(b) 

and (c) show that insertion of only a small amount of resilience gives only marginal vibration 

reduction over the whole frequency range, with some positions showing quite large increases 

right up to 200Hz when the slab is floated.  The softest mounting, Figure 5.25(d), gives 

worthwhile reductions (green and blue areas) for many soil positions above 70Hz, but this is 

much higher than the corresponding 2 f n  value of 42.4Hz and there are still significant areas of 

increased response. 

The spectrum of horizontal displacement, Figure 5.26(a), has a vertical white line at θ = 0 

and at θ = 180� , since the horizontal displacement at these two positions, as given by (5.49), is 

wholly made up of the tangential component V, which is zero directly above and below the 
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tunnel.  There are high levels of vibration (red areas) for a wider frequency range than the 

longitudinal displacement.  Clearly discernible are horizontal fingers of colour, indicating 

undulation in the surface represented by the contour plot.  The most obvious frequency spacing 

from crest to crest is about 5Hz, though closer inspection reveals smaller spacing on some parts 

of the surface.  This undulation arises from wheelbase filtering, due to coincidence of roughness 

wavelength with the axle spacing on the track: crests occur when all the axle masses move up 

and down in phase, troughs when they move out of phase, as explained at the end of Chapter 3.  

For the train speed of 40km h (111. m s) and axle spacing of 20m, the expected frequency 

interval between peaks of in-phase force transmitted to the tunnel invert is 0.556Hz.  This is not 

discernible in Figure 5.26(a) for two reasons.  Firstly, the contour interval of 10dB will not show 

many surface undulations of smaller magnitude.  Secondly, the spectrum results were computed 

for a frequency step of 1Hz, which is a resolution too coarse to show variation at a period of 

0.556Hz.  Thus the variation can only be seen at a multiple of the fundamental frequency 

interval.  The Insertion Gains, Figures 5.26(b)-(d), show the same kind of behaviour as Figure 

5.25 when the slab bearings become softer, but there are now more positions that have 

significantly reduced vibration levels.  The positions above the 2 f n  frequencies with increased 

vibration are concentrated around θ = 90� , the horizontal plane bisecting the tunnel.  Once again, 

largely beneficial results are only achieved with the softest slab bearings, Figure 5.26(d). 

The spectrum of vertical displacement, Figure 5.27(a), is similar to the horizontal one in 

Figure 5.26(a), showing the same surface undulation due to wheelbase filtering.  However, the 

highest levels of vibration extend further around the tunnel, from directly underneath to more 

than 90� .  The Insertion Gains follow a similar pattern too, although Figure 5.27(d) shows that 

the softest bearings reduce vertical vibration more than the horizontal vibration of Figure 5.26(d).  

The positions with increased vibration above the 2 f n   frequencies are now concentrated near 

θ = 0, underneath the tunnel. 

PSDs can be calculated for other soil radii and train speeds to determine the effects these 

parameters have.  The vertical component of displacement will be used for this purpose, so 

comparisons are to Figure 5.27.  The response at a radius of 10m (with the train speed still 

40km h) is shown in Figure 5.28.  The absolute spectrum, Figure 5.28(a), shows higher levels 
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than at 20m.  This is to be expected because the cylindrical surface around the tunnel at 10m is 

smaller than at 20m, so even if there was no material damping, equal energy passing through 

each surface would mean that the displacements at 20m have to be less.  However, the tunnel 

model includes shear material damping in the soil, so the resulting energy loss also reduces 

displacement levels as radius increases.  The spectrum for a radius of 30m, Figure 5.29(a), shows 

lower levels than 10m or 20m, consistent with the larger distance from the tunnel.  For both 

cases, the undulations due to wheelbase filtering are at the same spacing as before.  The general 

characteristics of the Insertion Gains are much the same at the different radii.  Nevertheless, at 

10m radius, Figures 5.28(b)-(d), marginal reduction (yellow areas) starts at lower frequencies 

than at 20m, and at 30m radius, Figures 5.29(b)-(d), there is markedly less significant reduction 

(blue areas) than at 20m. 

The effect of halving the train speed to 20km h on the levels at 20m radius is shown in 

Figure 5.30, while that of doubling the train speed to 80km h is shown in Figure 5.31.  The 

main effect seems to be on the frequency interval of undulations due to wheelbase filtering.  

Halving the speed halves the apparent frequency of a given roughness wavelength, so the spacing 

between peaks is halved, as seen in Figure 5.30(a), while doubling the speed similarly doubles 

the spacing, as seen in Figure 5.31(a).  Apart from this, the levels of each graph correspond with 

the 40km h levels in Figures 5.27(a)-(d) in their overall disposition with respect to frequency 

and angular position.  Halving the speed just splits the different areas into more fingers, while 

doubling it causes separate fingers to coalesce into wider ones. 

Although it is informative to plot the response of the full-track model to a white roughness 

input spectrum, ultimately the soil vibration levels induced by actual wheel-rail roughness need 

to be known.  Frederich [62] gives a formula for rail irregularity PSDs based on many 

measurements of the track geometry of different surface railways.  The spatial PSD of track 

irregularity is given by the single-sided spectrum 

 S
a

bδ λ λ
1

1 3


 


 =

+
  

( )
 (5.51) 
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Figure 5.28:  (a) Vertical soil displacement spectrum for a full track model joined directly to the 
tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 10m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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Figure 5.29:  (a) Vertical soil displacement spectrum for a full track model joined directly to the 
tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 30m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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Figure 5.30:  (a) Vertical soil displacement spectrum for a full track model joined directly to the 
tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 20m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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Figure 5.31:  (a) Vertical soil displacement spectrum for a full track model joined directly to the 
tunnel invert and (b)-(d) Insertion Gains relative to (a) with increasingly softer slab-support 
stiffnesses, at a radius of 20m with a train speed of 40 km h.  Otherwise as for Figure 5.25. 
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where λ is the irregularity wavelength, a is an “unevenness” parameter and b is a “waviness” 

parameter.  The values of a and b for irregularity in the vertical height of the rails are given in 

Table 5.4, derived by fitting (5.51) to measured data.  The parameters for track in “worst” and 

“best” condition define the envelope of all measured data.  The formula (5.51) is valid for 

wavelengths λ from 0.1m to 200m; smaller wavelengths are due to rail surface roughness and 

larger ones to variations in the topography of the ground surface.  The function (5.51) is plotted 

in Figure 5.32 for the three track conditions described by the parameters in Table 5.4. 

    
  a  [mm .(1 m) ]2 2

       b  [1 m]  

 worst 

average 

best 

939 10 1. × −  

131 10 2. × −  

190 10 4. × −  

689 10 2. × −  

2 94 10 2. × −  

9 71 10 3. × −  

Table 5.4:  Values of the unevenness a and waviness b of vertical railway track 
irregularity, for three different track conditions.  From Frederich [62]. 

To convert the PSD (5.51) to a function of frequency f, relation (5.45) is applied, recalling 

that 1 λ = f v  where v is the train speed, to give the single-sided roughness spectrum 

 S f
a

b f
δ ( )

( )
  =

+
1

3
v v

 (5.52) 

which can be used as S0  in (5.44).  Function (5.52) is plotted in Figure 5.33 for a track in 

average condition, for three different train speeds.  The frequencies below 20Hz (corresponding 

to long wavelengths) receive a very high weighting.  Note that to cover frequencies up to 200Hz, 

(5.52) is extrapolated beyond the 0.1m minimum wavelength (frequencies greater than 56Hz at 

20km h and 111Hz at 40km h) for which the function was originally defined.  It is arguable 

whether rail surface roughness and corrugation has a smaller (as given by the extrapolation in 

Figure 5.33) or comparable magnitude to small-wavelength irregularity in the track geometry. 

The actual spectra of soil vibration are obtained by multiplying the previously calculated 

spectra for a white input by Sδ  of (5.52) according to the PSD formula (5.44).  For a radius of 

20m and train speed of 40km h, this results in the spectra of vertical soil vibration shown in 

Figure 5.34.  Although Figure 5.33 shows a large bias in the input towards low frequencies, these 

are  not  over-emphasised  in  Figures  5.34(a)-(d).     The frequencies below 5Hz remain of small 
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Figure 5.32:  Spectrum of vertical rail irregularity versus wavenumber of the irregularity for 
railways in worst, average and best condition.  Plotted from equation (5.51) using the parameters 
of Table (5.4), based on Frederich [62]. 
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Figure 5.33:  Spectrum of vertical rail irregularity versus frequency for railway in average 
condition, calculated for three different train speeds from equation (5.52) and corresponding to 
the “average” curve of Figure 5.32.  Note that this is an extrapolation on Frederich’s [62] data for 
f > 56Hz when v = 20 km h and for f > 111Hz when v = 40 km h. 
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Figure 5.34:  Realistic spectra of vertical soil displacement with a full track model, at a radius of 
20m with a train speed of 40 km h, for (a) direct joining and (b)-(d) increasingly softer slab-
support stiffnesses.  θ = 0  is directly underneath the tunnel invert and θ = 180�  is directly above 
the tunnel.  The input roughness spectrum between rail and wheel is that given in Figure 5.33.  
When integrated over frequency, (a)-(d) give the four RMS curves on Figure 5.37(b). 
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magnitude, while there are small maxima near the respective natural frequencies of the slab on its 

bearings; the overall effect is to flatten out each spectrum over the whole frequency range.  

Nevertheless, if the extrapolated rail-roughness magnitude above 111Hz is indeed 

underestimated, then the spectra could be increased by up to 7dB for the highest frequencies 

shown. 

The RMS levels of soil vibration are obtained by integrating the spectra for a realistic input, 

such as those in Figure 5.34, over frequency, using the MS (5.46).  Each spectrum surface is thus 

condensed to a single curve which is a function of angular position.  Figure 5.35 shows the effect 

of resilient slab bearings on the RMS level of longitudinal soil vibration at various radii for a 

train speed of 40km h.  Close to the tunnel at 10m radius, the effect of adding resilience is to 

increase the RMS level at most positions around the tunnel, with only the softest bearings giving 

a reduction for angles greater than 120� , above the tunnel.  As the radius is increased, the levels 

for angles less than 90�  drop below the directly joined case, but this is all under the tunnel and 
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Figure 5.35:  Longitudinal soil displacement RMS levels for a train speed of 40 km h, around the 
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 40m.  θ = 0  is directly underneath the tunnel 
invert and θ = 180�  is directly above the tunnel.  Calculated with the realistic roughness input 
spectrum of Figure 5.33 for varying slab-support stiffnesses giving the natural frequencies 
indicated. 
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thus not so important.  At angles corresponding to positions above the tunnel, adding resilience 

generally increases the levels by a few dB, with a marginal improvement provided at some 

positions again only by the softest bearings.  Note that the variation about the levels for the 

directly joined slab are all within about ±5dB, which is not very much compared to the tens of 

dB reduction predicted using simple mass-spring models. 

The RMS levels of horizontal displacement in Figure 5.36 show that at 10m radius, this 

component behaves in a way opposite to the longitudinal one.  Any amount of resilience reduces 

vibration at most positions, with the softest giving up to 7dB reduction.  But this effect is 

diminished as the radius increases, with all responses collapsing on to that for the directly joined 

slab at 40m radius, the vibration for angles greater than 90�  even being slightly increased.  A 

similar picture emerges from the RMS levels of vertical soil displacement shown in Figure 5.37.  

As for the original PSDs, the horizontal and vertical RMS levels are generally higher than the 

longitudinal one.  Since the longitudinal levels with resilience start off higher and end up lower 

than the directly joined case as radius increases, and vice-versa for the horizontal and vertical 
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Figure 5.36:  Horizontal soil displacement RMS levels for a train speed of 40 km h, around the 
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 40m.  Otherwise as for Figure 5.35. 
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levels, it would seem that there is some kind of transfer of energy from longitudinal motion to 

horizontal and vertical motion as waves travel outwards from the tunnel.  In addition, shear-wave 

motion will manifest itself mainly in the horizontal and vertical components of displacement.  

Because the soil material damping acts in shear, these two components will be attenuated more 

by damping than the longitudinal one.  It is perhaps the case that a closely coupled slab beam 

induces more shear motion in the soil than one on softer springs, so that the effect of material 

damping is correspondingly more, eventually reducing responses for all slab-support stiffnesses 

to similar levels at large radius.  The situation is complicated by the fact that the transmission 

paths from the vicinities of the axles to the observation point at a given angular position are not 

the same for different radii.  The longitudinal position of the observation point relative to the axle 

stations spaced at 20m could also be significant, especially for smaller radii. 

Figure 5.38 shows the effect of doubling the train speed on the RMS levels of vertical 

displacement.  The graphs are almost identical in shape to those in Figure 5.37; they are just 

increased uniformly by about 5dB.  Similarly, halving the speed was found to decrease all levels 

by about 5dB.  This is true for the other two displacement components as well.  This follows 

from the similarity of the curves in Figure 5.33 for the input spectrum at different speeds, and the 

observation from Figures 5.27, 5.30 and 5.31 that train speed does not change the general 

distribution of vibration level with respect to frequency and angular position.  Thus the 

maximum achievable reduction in RMS levels is of the order of only 6dB regardless of train 

speed. 
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Figure 5.37:  Vertical soil displacement RMS levels for a train speed of 40 km h, around the 
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 40m.  Otherwise as for Figure 5.35. 
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Figure 5.38:  Vertical soil displacement RMS levels for a train speed of 80 km h, around the 
tunnel at radii of (a) 10m (b) 20m (c) 30m and (d) 40m.  Otherwise as for Figure 5.35. 
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5.4  Conclusions 

The track slab can be modelled by a bending beam coupled to the tunnel, either directly or via 

resilient bearings, using straightforward algebra in the wavenumber domain.  This simple model 

demonstrates that Winkler-beam theory is inadequate for the design of floating-slab track.  While 

the driving-point response of a slab on soft bearings is passably well modelled by a Winkler 

beam, radiation of energy into the soil heavily attenuates the response of slab beams more closely 

coupled to the tunnel.  The tunnel also transmits energy to the slab beam at points away from the 

load at low frequencies, whereas a Winkler beam cannot do this below its “natural frequency”, 

which marks the onset of travelling waves.  Mounting the track slab on resilient bearings allows 

energy to propagate down the slab before being transmitted to the tunnel then soil, so that under 

the slab load, the tunnel invert response is decreased compared to a directly joined slab beam, but 

is increased at positions further down the tunnel.  This is reflected in the soil displacements, for 

which resilient bearings produce classic vibration isolation for positions next to the slab load, but 

higher levels at other longitudinal positions. 

The coupling equations are made only slightly more complex by the introduction of torsion 

into the slab beam to model the laterally unbalanced loads expected from the two rails of a real 

track.  The two longitudinal lines of joining for the torsional slab result in similar bending 

responses to the one line for the simple slab, but appear to make the whole structure “stiffer”, 

despite using equivalent support resilience.  This shows that the details of the slab mounting have 

an important influence on the interaction with the tunnel.  Travelling torsional waves in the slab 

begin at higher frequencies than travelling bending waves, with implications for designing a slab 

on its bearings to have a given “natural frequency”.  Addition of slab torsion to slab bending 

complicates the responses in the soil.  For some positions, bending effects are dominant, but for 

others, torsional effects lead to increased soil response with resilient bearings, when 

consideration of bending only would have predicted some reduction.  However, it does appear 

that, with resilient bearings, torsional waves propagate along the slab more readily than bending 

waves, rather than transferring energy to the tunnel in the vicinity of the loads.  This effect might 

be exploited to design a floating-slab track such that input forces induce mainly torsional motion 

which remains confined to the slab and is eventually dissipated by damping in the slab bearings. 
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A complete track model can be constructed by adding a rail beam to the simple-slab model 

using the same original wavenumber-domain coupling equations, then adding axle masses via an 

FRF matrix for the rail.  For a model of infinite length, a shifting principle can be invoked to 

calculate the soil response due to inputs at every train axle by considering responses to only one 

input at the middle axle.  Contour plots of soil displacement PSDs for uniform random 

roughness-displacement inputs between the axles and the rail show that the track-tunnel-soil 

system attenuates frequencies below 10Hz the most and frequencies between 100Hz and 160Hz 

the least.  The highest levels occur under and to the sides of the tunnel, resulting in a vibration 

shadow above the tunnel.  Longitudinal vibration levels are less overall than horizontal and 

vertical ones. The differences between these three components prompt the question of which 

ones are the most important in transmitting vibration into building foundations.  The PSD 

surfaces have undulations at regular frequency intervals due to wheelbase filtering by the axles, 

with train speed changing the interval but not the general distribution of vibration levels with 

frequency and position.  Insertion Gain plots for increasingly softer slab-support stiffnesses 

confirm that isolation is not achieved at frequencies as low as predicted by simple theory.  Any 

reductions are modest and there are some positions around the tunnel for which resilient slab 

bearings cause increased response at higher frequencies. 

RMS vibration levels can easily be calculated from the PSDs.  This was done using a realistic 

input spectrum giving higher weighting to longer wavelengths of track irregularity.  Floating the 

track slab increases longitudinal RMS levels near the tunnel, but decreases them at greater radii 

for some positions under the tunnel.  Resilient bearings reduce horizontal and vertical RMS 

levels close to the tunnel, but make little difference at large radii.  This suggests some kind of 

energy transfer between the different components, although this could only be confirmed by a 

power-flow analysis, requiring calculation of stresses as well as displacements.  Doubling the 

train speed simply increases all RMS levels uniformly by approximately 5dB.  Any vibration 

reduction achieved is modest, no more than 6dB with the softest slab bearings. 
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Chapter 6    

FIELD MEASUREMENTS 

Field measurements were undertaken in February 1997 in order to collect some experimental 

data to compare with the theoretical models described in the previous chapters.  The site was an 

underground section of London’s Heathrow Express railway line, then under construction.  Since 

there were no trains yet running, it was relatively straightforward to perform a series of impulse-

hammer tests on the track.  In the time available (one day of access to the site), it was not feasible 

to measure vibration responses in the surrounding soil or on the surface, but some useful 

observations can still be made from the responses of the track and tunnel alone. 

6.1  Site Description 

The measurement site was near the Heathrow Airport end of the Heathrow Express line.  

Construction work had progressed to the point where the major structural components such as 

the tunnel wall and the track itself were complete.  Most of the track was fixed directly to the 

tunnel invert, but a 500m-long section was built with a floating slab to minimise transmission of 

ground vibration to a nearby airport hotel.  This meant that measurements could be performed on 

isolated and unisolated track under similar conditions. 

The cross-section of the tunnel and isolated track is shown in Figure 6.1.  The concrete 

floating slab rests on a 25mm-thick resilient layer of Trackelast FC75, a cork-particle filled 

rubber material usually used for ballast mats.  The space between the sides of the slab and the 

tunnel floor is filled by 25mm-thick sound-deadening quilt.  Longitudinally the slab is effectively 
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continuous, cast in-situ with expansion joints every 100m or so.  The unisolated track is the same 

but without the rubber and quilt layers, resulting in one solid continuum of concrete across the 

tunnel floor.  In both cases the UIC 54 rails are fastened to the slab every 700mm by Pandrol 

E2007 clips, with Tiflex FC136 rubber rail pads placed between rail and slab. 

The tunnel cross-section is round because it was bored.  The complete railway consists of two 

such tunnels, one for each direction of travel, whose centres are about 18m apart and 22m below 

the ground surface at the measurement site.  The tunnel lining consists of 2m-long cylindrical 

sections, each comprising nine concrete pieces held in place against the soil by a smaller wedge-

  

Figure 6.1:  Cross-section showing the construction of the floating-slab track at the measurement 
site.  The unisolated track is the same but without the FC75 and quilt layers.  A section of tunnel 
lining consists of nine pieces held in place by a smaller key piece, shown above the horizontal 
centreline at left.  All dimensions mm. 
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shaped key piece.  It is therefore not a continuous concrete shell.  About 1.5km from the 

measurement site in the direction of central London, the two tunnels emerge at the surface via 

cut-and-cover portions of square cross-section.  This distance is large enough for the transition to 

the surface to have no significant effect on the vibration behaviour of the area of interest. 

The geological survey maps for the Heathrow area [22, 23] show the site to be situated in flat 

and relatively low-lying ground covered by river deposits of the Thames and its tributary the 

Colne.  The surface (drift) layers of  5-10m total depth are variously Alluvium, Brickearth (a 

stoneless loam), Flood-Plain Gravel and Taplow Gravel.  Going downwards, the (solid) layers 

underlying this surface cover are 80-100m of London Clay (brown weathering grey clays), about 

25m of Reading Beds (unfossiliferous red and green mottled clays) and about 150m of Upper-

Middle Chalk (white chalk with some beds containing flints).  The Heathrow Express tunnels are 

therefore well into the London Clay layer, which is deep enough for the layers beneath it to have 

negligible effect on vibration transmission.  However, the surface layers are sufficiently close to 

the tunnels and probably sufficiently different from the London Clay formation to have a 

significant effect on the wave-propagation behaviour of the ground in the vicinity of the tunnels. 

6.2  Equipment Used 

The vibration measurements presented in the following sections were all obtained using a 

transient testing approach with excitation provided by a hand-held impulse hammer.  

Measurements were recorded by a computerised data-logging system.  All equipment was battery 

powered, making the outfit fully self-contained without the need for a generator.  A schematic of 

the experimental set-up is shown in Figure 6.2 and details of the measuring equipment are given 

in Table 6.1. 

6.2.1  Transducers and Amplifiers 

Five piezoelectric accelerometers were used to detect the vibration response to hammer impulses.  

They were fixed in position on the track and the tunnel invert with small pieces of plasticine.  

They are convenient because of their small size and wide operating frequency range including 

low frequencies.  Typical accelerometers give a small charge output proportional to acceleration.  
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Such accelerometers should be used with short, low-capacitance cables to minimise charge 

leakage.  Their charge amplifiers must then be nearby, which can be inconvenient.  However, the 

B&K 8318 accelerometers used have integral charge amplifiers giving a current output, which 

allows standard coaxial cables up to 1km long to be used without loss of signal; thus all other 

equipment can be located together, away from the accelerometers.  In addition, they have a high 

sensitivity suitable for the low level of response expected from the track.  The accelerometers 

were connected to B&K 2813 line-drive supply current amplifiers, each of which has two 

channels.  The resulting voltage signals were passed through passive high-pass filters with a 

corner frequency of 1.6Hz to remove any DC offset before sampling. 

The excitation force was provided by a hand-held impulse hammer.  A B&K 8200 force 

transducer was mounted on the hammer head and the blow was delivered via a hard nylon tip 

attached to this transducer.  Like the accelerometers, the force transducer is a piezoelectric 
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Figure 6.2:  Schematic of the experimental set-up for vibration measurement and data logging. 
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device, but its charge output is proportional to force.  A Kistler Type 5001 charge amplifier was 

used to convert this into a voltage signal, which was also passed through a 1.6Hz high-pass filter 

before sampling.  The gain was chosen by trial and error to give a voltage level comparable to 

that of the greatest accelerometer output.  The Kistler amplifier comes as a mains-powered 

device, but in this case it was converted to run on two rechargeable gel cells set up as a ±12V DC 

supply. 

6.2.2  Anti-Alias Filtering 

The measured input force and resulting accelerations were digitally sampled.  The Nyquist 

criterion requires that the sampling frequency be greater than twice the highest frequency 

contained in the sampled signal in order to avoid aliasing, whereby high-frequency components 

    
 Item Specification Use 

 Brüel & Kjær 8318 
accelerometers 

318 A ms 2µ −  measurement of track and 
tunnel vibration response 

 Brüel & Kjær 8200 
force transducer 

4 pC N measurement of force 
applied by impulse hammer 

 Brüel & Kjær 2813 
line-drive supply 
current amplifiers 

1mV Aµ  amplifiers for B&K 8318 
accelerometers 

 Kistler Type 5001 
charge amplifier 

variable gain, set at                          
55 10 pC V 0.01818 mV pC3× =  

amplifier for B&K 8200 
force transducer 

 In-line passive filters 1.6Hz high pass                        
unity gain 

removal of any DC offset in 
transducer signals 

 Rubber pad 9mm-thick Tiflex FC846 (stiff 
black rubber with cork particles) 

low-pass filtering by 
increasing duration of 
hammer impulse 

 National Instruments 
DAQCard 1200 
data-acquisition     
PC Card 

8-channel 12-bit A/D conversion                         
1022.5Hz sampling rate and   
1024 sample points used            
gain set to 20 

sampling transducer time 
signals 

 Toshiba T2130CT 
notebook computer 

75MHz 486 microprocessor 
16MB RAM                        
500MB hard disk 

control of DAQCard 1200, 
data storage and analysis 

Table 6.1:  Details of the equipment used to determine track and tunnel impulse responses. 
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appear as lower-frequency ones (see Newland [143, 144] or Stearns [168]).  Thus it is standard to 

apply a low-pass filter to signals before sampling them, so that all components with frequency 

greater than the Nyquist frequency (half the sampling rate) are removed.  The usual way to carry 

out this low-pass filtering is with some appropriate electronics.   

A different approach was used here.  Mathematically, an impulse can be idealised as a Dirac 

delta function of zero width in time and infinite height.  However, a real hammer blow has a 

finite duration, which can be increased by applying the blow via a rubber pad as used here.  A 

longer duration results in reduced higher-frequency content, justified as follows.  A smooth 

impulse of finite duration can be considered as a half sine wave, the force distribution expected 

from a perfectly elastic impact.  Such a pulse y t( )  of duration t0 , magnitude a and centred on 

t = 0 takes the form 
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The frequency content of the time signal y t( )  of (6.1) is described by its Fourier transform 

Y( )ω , which is given in tables in Maloney et al [127] as 
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where sinc ( ) sin( )x x x= .  Several rubber pads were tested in the laboratory with the hammer 

and a digital-storage CRO to assess the smoothness of the force impulse and to measure its 

duration.  The FC846 pad used in the field measurements was chosen because it gave a 

repeatable smooth impulse like the half sine wave (some specimens gave a “double bounce” 

effect) with a duration of t0 = 4 ms .  Figure 6.3(a) shows a representation of this impulse.  Its 

spectrum calculated from (6.2) and given in Figure 6.3(b) shows that the impulse has no 

significant frequency content above 200Hz.  Figure 6.3 also shows that halving the duration 

doubles the peak force for an impulse of the same magnitude, and increases the frequency 
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content to 400Hz.  This technique of manipulating the impulse duration is equivalent to low-pass 

filtering.  The track was only excited by frequencies up to 200Hz, so if it is a linear system – a 

reasonable assumption for small-magnitude vibration – the responses will contain no significant 

components of frequency higher than this either.  Using the rubber pad in lieu of electronic low-

pass filtering meant one less piece of equipment to carry to the measurement area. 

6.2.3  Data-Logging System 

The data sampling was performed by a National Instruments DAQCard 1200, which fits in a 

PCMCIA slot in a notebook computer.  The DAQCard provides eight channels of 12-bit 

analogue to digital conversion, of which six were used for the signals from the force transducer 

and five accelerometers.  The maximum sampling rate is 100kHz, more than sufficient for the 

low frequency range considered.  Given the Nyquist criterion and the filtering effect of the rubber 

pad, a sampling rate of 1kHz was chosen; the DAQCard’s nearest setting with six channels in use 

was 1022.5Hz.  Preliminary tests showed that 1s was long enough to capture the transient track 
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Figure 6.3:  Unit impulses of finite duration represented by (a) half sine waves according to 
equation (6.1) have the frequency-domain spectra (b) calculated from equation (6.2).  The longer 
4ms pulse approximates the observed shape of the impulse when using the FC846 rubber pad. 
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responses, so 1024 samples per channel were taken for each measurement set.  The DAQCard 

provides pre-sampling analogue gain of 1, 2, 5, 10, 20, 50 or 100, the same value applying to all 

channels.  A gain of 20 was found to be the maximum useable without saturating any of the 

channels.  The DAQCard’s sampling method is to poll each channel in turn within one sample 

period.  This results in a small artificial phase shift from one channel to the next, which must be 

corrected at the data analysis stage. 

The DAQCard was controlled by a Visual Basic program running on the Toshiba notebook 

computer.  This program was used to make all card settings, start data logging, check for channel 

saturation and save sampled data to the computer’s hard disk.  The experimental procedure 

involved one person operating the computer and providing a countdown to the start of sampling 

for a second person using the impulse hammer.  Some Matlab programs were then used to 

examine the saved raw data, in particular to check that the impulse was smooth.  Responses for 

any given configuration of accelerometers and impulse input were all measured twice to allow 

repeatability to be checked. 

Figure 6.4 shows the railway tunnel with accelerometers set up along the track slab.  The rest 

of the measuring equipment can be seen in the background.  Figure 6.5 shows how the rubber 

pad was placed on the concrete surface where the impulse was applied, with accelerometers 

placed across the slab in this case.  The rubber pad was steadied with one hand while the hammer 

was wielded in the other. 

6.3  Data Processing 

The aim is to calculate frequency-response functions (FRFs) from the time records of input force 

and acceleration.  Since the recorded signals are discrete, they can be transformed into the 

frequency domain by means of the discrete Fourier transform (DFT) (see Newland [143, 144] or 

Stearns [168]).  DFTs can be calculated using the fast Fourier transform (FFT) algorithm.  The 

FRFs are then given by the ratios of each transformed acceleration to the transformed force, with 

the appropriate sampling phase correction applied in each case.  
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Figure 6.4:  Photograph of the tunnel, showing at left the supports for the incomplete track-side 
walkway and above them the wedge-shaped keys in the tunnel lining.  The accelerometers are set 
out along the floating-slab track and the rest of the equipment can be seen in the background. 

  

Figure 6.5:  Photograph showing the use of the impulse hammer in conjunction with a rubber pad 
resting on the structure to be excited.  Here the accelerometers are set out across the track. 
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Figure 6.6 gives typical time records for the sampled force and acceleration signals with 

accelerometers placed along the track slab.  There are some features which were introduced by 

the measuring equipment and must be removed before FRFs are calculated.  Each record has a 

start-up exponential and decays to a non-zero DC offset long after the transient has finished.  In 

addition, the impulse in Figure 6.6(a) overshoots “zero” after its peak force.  The records also 

contain small-magnitude random noise either side of the transients, particularly significant for the 

low signal levels from accelerometers far from the impulse, such as those in Figures 6.6(e) and 

(f).  It was found that the noise issuing from accelerometer 2, Figure 6.6(c), was of greater 

amplitude than the others, so this accelerometer was always used where the response was 

expected to be large.  Some approaches to removing noise in signals from electronic 

instrumentation are discussed in Wilmhurst [190], on which the following signal-conditioning 

procedures are partly based. 

An interactive Matlab program was written to extract the true impulse and acceleration 

signals from the recorded ones.  This program plotted a given record on screen at each stage of 

conditioning, allowing graphical selection of points when necessary.  The program was used to 

condition each measurement set of one force record and five acceleration records, and to save the 

conditioned records in a new data file.  The conditioning processes for the impulse and the 

accelerations are slightly different, so will be described separately. 

6.3.1  Conditioning the Impulse Signal 

The steps in conditioning a typical impulse record are illustrated in Figure 6.7.  The final DC 

offset in the raw signal is apparent in Figure 6.7(a).  A point well after the impulse, marked by a 

cross, is manually selected and the mean of all points from this to the end of the sample is 

calculated.  This end mean is subtracted to give the signal in Figure 6.7(b). 

Two points defining the ends of the start-up exponential, marked by crosses in Figure 6.7(b), 

are then manually selected.  All sample points between the selected ends are used to determine 

the coefficients A and b of the function 

 y t Ae bt
1( )  = −  (6.3) 
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Figure 6.6:  Typical raw time records of (a) a force impulse applied midway across the floating 
slab, (b) slab acceleration at the impulse, (c) rail acceleration next to the impulse, and slab 
accelerations (d) 5m, (e) 10m and (f) 20m along the slab from the impulse.  After signal 
conditioning and transformation by FFT, records (b)-(f) referenced to record (a) give the FRFs in 
Figure 6.18. 
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Figure 6.7:  The various stages of conditioning an impulse record (using that of Figure 6.6(a) as 
the example) are (a) subtracting the end mean, (b) subtracting the start-up exponential, (c) 
eliminating the return overshoot of the impulse caused by the high-pass filter, (d) windowing the 
non-zero portion of the signal and (e) calculating the position of the impulse’s peak for use in 
conditioning the corresponding acceleration records. 



CHAPTER 6.  FIELD MEASUREMENTS     159  

 

via a linear regression on t and loge y1.  The start-up exponential (6.3) is then subtracted from 

the whole signal to give the signal in Figure 6.7(c). 

The overshoot just after the peak of the impulse, still present in Figure 6.7(c), is due to the 

high-pass filter used (see Cryer [38]).  Such a filter comprising a first-order resistor-capacitor 

network with unit gain at high frequencies is described by the differential equation 

 
df

dt

dg

dt
g    = + ω 0  (6.4) 

where f t( )  is the input signal, g t( )  is the output signal and ω 0  is the filter’s cut-off frequency 

(1.6Hz in this case).  Integrating (6.4) up to time t results in the equation 

 f t g t g t dt
t

( ) ( ) ( )    = +
−∞∫ω 0  (6.5) 

for the input signal.  Applying the integration in (6.5) numerically (by the trapezoidal rule) to the 

signal in Figure 6.6(c) taken as g t( )  results in the impulse signal of Figure 6.6(d) taken as f t( ) . 

The signal in Figure 6.6(d) still contains some random noise before and after the impulse.  

This noise is not very noticeable here because the impulse is of relatively large peak amplitude, 

but it still affects the smoothness of FRFs.  To eliminate the noise, the non-zero part of the signal 

is windowed.  The start and finish of the impulse are manually selected (marked with crosses), 

and the signal is multiplied by a window of unit magnitude between these two points and tapered 

off to zero over 10 samples on either side.  The tapering avoids discontinuities which can arise 

from the use of a rectangular window; such discontinuities introduce spurious frequency content, 

known as spectral leakage.  This is not as great an issue for a transient signal such as this (where 

windowing is used to remove extraneous noise) as for a periodic signal (where windowing is 

used to make the signal suitable for transformation by DFT).  A Hanning window (see Stearns 

[168]) might be used in the latter case.  The window used here makes the parts of the signal 

which are expected to be zero actually zero, as shown in Figure 6.7(e). 

Conditioning the acceleration records, described in the next section, requires knowledge of 

the precise position of the peak of the impulse (as opposed to the maximum magnitude 

recorded).  Taking the tip of the impulse as approximately parabolic, the equation 

 y a t a t a2 1
2

2 3      = + +  (6.6) 
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is fitted by a least-squares method to the signal maximum and the two samples either side of it.  

These three points are marked with crosses in Figure 6.7(e).  The actual peak of the impulse is 

assumed to occur at the parabola’s turning point, given by 

 
dy

dt
t

a

a
2 2

1

0
2

          = ⇒ = −  (6.7) 

This value of t usually falls between two samples. 

6.3.2  Conditioning the Acceleration Signals 

The steps in conditioning a typical acceleration record are illustrated in Figure 6.8.  The removal 

of the DC offset, the start-up exponential and the extraneous noise by windowing, Figures 6.8(a)-

(c), are carried out in the same way as described for the same operations on the recorded impulse 

signal.  These three steps may seem to be all that is required, but examination of the velocity 

reveals otherwise. 

The velocity ɺ( )y t  is the integral up to time t of the acceleration ɺɺ( )y t .  This integration can be 

performed numerically on the discrete acceleration record using the trapezoidal rule.  Thus the 

discrete sampled velocity ɺyk  can be written as a summation 

 ɺ ɺɺy y tk j
j

k

=
=
∑ ∆

1

 (6.8) 

of the discrete sampled acceleration ɺɺy j , where ∆t  is the sampling period.  Applying (6.8) to the 

windowed acceleration signal results in the velocity signal of Figure 6.8(d).  This shows a non-

zero final velocity, indicating a non-zero average of the recorded acceleration.  This does not 

tally with the observed behaviour of the tunnel system where responses obviously decayed to 

nothing very quickly.  The acceleration record needs to be corrected so that the final velocity is 

zero. 

When an impulsive force is applied to a system initially at rest, there is a step in the velocity 

and hence an impulse like a Dirac delta function in the acceleration.  It is postulated that this 

initial acceleration impulse was not properly captured with the sampling rate used.  This situation 

can be remedied by adding a corrective acceleration impulse at the time of the true peak of the 

input force, determined in the previous section.  The magnitude ɺɺyinit  of this corrective impulse is 

given by  
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Figure 6.8:  The various stages in conditioning an acceleration record (using that of Figure 6.6(b) 
as the example) are (a) subtracting the end mean, (b) subtracting the start-up exponential, (c) 
windowing the non-zero portion of the signal, (d) calculating the final velocity step arising when 
the windowed acceleration is integrated and (e) using this to apply a corrective initial impulse to 
the acceleration signal to give (f) a final velocity of zero. 
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 ɺɺ
ɺ ( ɺ ɺ )

y
y

t

y y

tinit
final init     = − = −

−∆
∆ ∆

 (6.9) 

that is, the negative of the (falsely non-zero) average acceleration, with the velocity step ∆ɺy  

calculated as the difference in amplitude between the two samples marked with crosses in Figure 

6.8(d).  The time interval for determining the average acceleration is ∆t  because the correction is 

applied across just one sample; if the mean acceleration were subtracted from the whole signal, 

the total sample time would be used instead. 

The peak force position where the correction should be applied in general falls between two 

samples, because of both the peak calculation (6.7) and the artificial sampling phase shifts.  Thus 

the acceleration correction (6.9) is implemented as the sum of two separate impulses applied at 

the two samples either side of the calculated force peak and weighted to have the resultant 

impulse centre in the correct position.  Figure 6.8(e) shows the corrected acceleration with the 

two altered samples marked with crosses.  Integrating the corrected acceleration gives a final 

velocity of zero, as shown in Figure 6.8(f). 

Figure 6.9 shows FRFs calculated from the time records of Figures 6.7 and 6.8 using various 

combinations of raw and conditioned impulse and acceleration data.  The three FRFs based on at 

least one raw data record all contain periodic variation of 5-10dB magnitude with a frequency 

interval of 2-3Hz.  The small-magnitude random noise apparent on either side of the transients in 

the time records probably contains frequencies above the Nyquist frequency, since no low-pass 

filter was used before sampling.  These frequencies will have been aliased to lower ones, 

resulting in the variation in the FRFs.  Nevertheless, this variation can be eliminated by 

windowing the non-zero portions of both the impulse and acceleration records, as shown by the 

one smooth FRF.  Conditioning the acceleration has a very significant effect on the calculated 

FRF, particularly below 40Hz.  This effect is due to the initial acceleration correction applied to 

give a zero final velocity.  Conditioning the impulse and acceleration records as described above 

results in usable data despite the sampling rate being too low to correctly capture some features 

of the sampled signals. 
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Figure 6.9:  FRF calculated as the ratio of the FFT of the acceleration in Figure 6.8 to the FFT of 
the input force in Figure 6.7, using: the raw unconditioned data in both cases; the fully 
conditioned impulse and the raw acceleration; the raw impulse and the fully conditioned 
acceleration; and the fully conditioned data in both cases. 

6.4  Results 

Some basic modelling can be considered before examining the measured track responses.  In 

Section 5.1.3 it was found that the driving-point response of a continuous simple slab beam on 

the tunnel is reasonably well approximated by a Winkler beam model (although other responses 

are not) if the slab bearings are soft compared to the tunnel invert.  The experimentally measured 

driving-point responses of the track can therefore be compared for similarities to the Winkler 

response Y x( , )ω  given by equation (5.15) with x = 0 , since the Heathrow Express track has an 

effectively continuous slab.  The slab-beam parameters given in Table 3.1 represent design 

values which were used for the floating-slab section of the Heathrow Express line: in the notation 

of (5.15), a mass per unit length of m= 3500 kg m, a bending stiffness of 

EI = ×1430 10 Pa.m6 4  and a foundation stiffness of kW = ×50 10 N m6 2 .  Thus the natural 

frequency that the floating slab was designed for is f k mn W= =1

2
19π Hz .  These parameters 



CHAPTER 6.  FIELD MEASUREMENTS     164  

 

can be used with (5.15) to calculate the expected driving-point displacement FRF of the track 

slab.  Since the measured responses are accelerations, it is also useful to examine the expected 

acceleration FRF, which is simply given by −ω ω2 0Y( , ) . 

The driving-point displacement and acceleration FRFs of the Winkler beam model are given 

in Figure 6.10 for various values of viscous damping factor ζ as used in Chapter 2.  This form of 

damping is frequency dependent such that a complex stiffness per unit length k k iW W
∗ = +( )1 ωζ  

is used in equation (5.15).  For small values of ζ, the displacement, Figure 6.10(a), shows a 

distinct resonance at the 19Hz natural frequency, but this peak is flattened and eventually 

depressed as the damping is increased.  Similar behaviour is shown by the acceleration in Figure 

6.10(b). 

Another way to describe damping is with a constant loss factor η as used in Chapters 4 and 5.  

In this case, a constant complex stiffness per unit length k k iW W
∗ = +( )1 η  is used in equation 

(5.15).  Figure 6.11 shows the driving-point displacement and acceleration FRFs for various 
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Figure 6.10:  The effect of varying viscous slab-bearing damping on the (a) displacement and (b) 
acceleration driving-point responses of a Winkler-beam model of the floating slab.  Slab-beam 
properties from Table 3.1. 
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values of loss-factor damping chosen to be equal to the viscous damping of Figure 6.10 at the 

19Hz natural frequency of the slab on its bearings.  The acceleration, Figure 6.11(b), looks very 

similar to that in Figure 6.10(b), with the resonance peak well and truly disappearing with 

increased damping.  However, the displacement response, Figure 6.11(a), is flatter than that in 

Figure 6.10(a) below about 40Hz for the two higher damping values, although the behaviour for 

low damping is very similar with a prominent resonance.  The most highly damped displacement 

response with η = 9 562.  is reminiscent of the response of the simple slab beam joined directly to 

the tunnel invert, shown in Figure 5.4.  In Figure 5.4, the Winkler beam model does not agree 

well with the slab-plus-tunnel model, but the damping in the “effective” Winkler stiffness of the 

tunnel invert does not take into account the radiation of energy into the surrounding soil in that 

case.  Figure 6.11 shows that the Winkler-beam driving-point response can represent that of a 

slab beam closely coupled to a tunnel if the Winkler foundation damping is high enough. 
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Figure 6.11:  The effect of varying loss-factor slab-bearing damping on the (a) displacement and 
(b) acceleration driving-point responses of a Winkler-beam model of the floating slab.  The loss-
factors are equivalent to the values of viscous damping in Figure 6.9 at the Winkler beam’s 
natural frequency of 19Hz.  Slab-beam properties from Table 3.1. 
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The experimentally determined track FRFs can now be considered.  They were obtained from 

a given set of conditioned impulse-response data by taking the ratio of the FFT of each of the five 

acceleration records to the FFT of the impulse record for that set.  Corrections were applied for 

the calibration factors of the instrumentation and the phase shifts due to the sampling by 

sequential channel polling.  A Matlab program was written to carry out these operations. 

6.4.1  FRFs Measured Across the Track Slab 

The accelerations measured across the floating slab with a force applied at the middle of the slab 

are given in Figure 6.12.  The driving-point acceleration 2 looks like the acceleration in Figures 

6.10(b) or 6.11(b) when the damping is high; the other positions across the slab look similar, 

with no 19Hz resonance peak apparent.  Acceleration 2 is highest being next to the input force, 

and the off-slab responses 0 and 4 are significantly lower than the on-slab ones.  Given the 

symmetric excitation, the edge accelerations 1 and 3 would be expected to have the same 

magnitude and be in phase with 2.  However, there is a difference of up to 10dB between 1 and 3, 
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Figure 6.12:  Vertical acceleration FRFs across the floating slab with a central vertical input 
force applied next to accelerometer 2.  The cross-section at right shows the accelerometer 
positions, with the thick line indicating the slab boundary; thus accelerometers 0 and 4 are on the 
tunnel invert either side of the slab. 
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and 1 is about 180° out of phase with 2 and 3.  Although the cause for the magnitude difference 

is unclear, it is possible that the recorded 180° phase difference is artificial.  The B&K 2813 line-

drive supplies have a slider switch for each channel which can be set at either “grounded” (only 

the AC component of the accelerometer signal is passed) or “floating” (the whole signal is 

passed).  It was found that for the same input, “floating” output is out of phase with “grounded” 

output.  While all these switches were checked to be in the “grounded” position before 

commencing measurements in one location, they are very easily accidentally knocked into the 

other position.  Therefore the observed phase difference between 1 and 3 could have been caused 

by accelerometer 1’s channel being in the “floating” position. 

The displacement Y( )ω  corresponding to a measured acceleration ɺɺ( )Y ω  can be obtained 

from the relation Y Y( ) ɺɺ( )ω ω ω= − 2 .  Figure 6.13 shows the displacement FRFs corresponding 

to the acceleration FRFs of Figure 6.12.  The same comments can be made about the magnitudes 

and the phases: the relative phases are now quite clear.  There are definitely no resonance peaks 

at 19Hz.  The shape of the driving-point displacement magnitude 2 looks very like the most 
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Figure 6.13:  Vertical displacement FRFs across the floating slab with a central vertical input 
force applied next to accelerometer 2.  These are derived from the acceleration FRFs shown in 
Figure 6.12. 
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highly viscously damped response (the chained line) in Figure 6.10(a), rather than any of the 

displacements in Figure 6.11(a).  This implies that the energy loss due to the combined effect of 

material damping and radiation into the soil increases with frequency, as does that modelled 

theoretically by viscous damping.  Also, as noted earlier, its loss-factor damped counterpart in 

Figure 6.11(a) resembles the driving-point response of the slab-plus-tunnel model with a directly 

joined slab, shown in Figure 5.4.  These factors suggest that the Heathrow Express floating slab 

is more closely coupled to the tunnel than taken into account by the original design calculations, 

which assumed a rigid tunnel invert. 

Figure 6.14 shows the vertical accelerations across the unisolated track with an input force at 

the middle.  Compared to the corresponding floating-slab results in Figure 6.12, they are all of 

similar magnitude, with accelerations 1, 2 and 3 reduced by about 10dB over the whole 

frequency range, and accelerations 0 and 4 are the same as before.  The phases are all similar and 

there are no out-of-phase discrepancies as discussed above.  The observed reductions in 

magnitude indicate that energy is being propagated more readily to the tunnel and soil than when 
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Figure 6.14:  Vertical acceleration FRFs across the unisolated track with a central vertical input 
force applied next to accelerometer 2.  The dotted line in the cross-section at right indicates 
where the slab boundary would be were it a floating slab.  
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the slab is floated, demonstrating that the FC75 rubber does alter the track dynamics. 

The responses to an off-centre force applied to the floating-slab track are shown in Figure 

6.15.  As for the central load case of Figure 6.12, the off-slab responses 0 and 4 are generally 

lower than the on-slab ones, but acceleration 0 is higher, being closer to the applied load at 1.  

Since the accelerations of both slab edges 1 and 3 are of similar magnitude, the higher response 

at 0 compared to 4 confirms that the slab is closely coupled to the tunnel.  Stiff coupling results 

in direct transfer of energy from the hammer input force at 1 to position 0 rather than an indirect 

transfer through the induced motion of the slab.  The latter would be implied by similar levels at 

0 and 4 given the similar levels of the respective adjacent slab edges 1 and 3.  Also note that with 

this off-centre input, the edges 1 and 3 move more than the centre 2.  This indicates a rocking 

motion, that is, torsion of the slab.  The phases are not entirely clear on this, but since this 

measurement set was done at the same time as that shown in Figure 6.11, the same artificial 180° 

phase difference could be present in acceleration 1.  If so, this would mean that the edges 1 and 3 

move nearly out-of-phase here, instead of nearly in-phase as recorded.  While the combination of 

bending and torsion expected to be induced by an off-centre input would not result in perfectly 
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Figure 6.15:  Vertical acceleration FRFs across the floating slab with an off-centre vertical input 
force applied next to accelerometer 1. 
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out-of-phase edge accelerations, a significant phase difference would confirm the presence of 

slab torsion.  If there is no phase error, then all positions on the slab (1, 2 and 3) move roughly 

together.  This could indicate that the pivot point for the rocking motion is not the centre of the 

slab, but this would not tally with the observed magnitudes where the centre 2 moves less than 

the two edges.  In either case, the important observation is that the relative phase between the 

slab edges is different from that for a central input as given in Figure 6.11. 

The equivalent accelerations for the unisolated track are given in Figure 6.16.  Like Figure 

6.14, the levels at 1, 2 and 3 are reduced by about 10dB compared to the floating slab.  The 

situation is now one of vibration propagation through the continuous concrete of the track slab 

and tunnel invert.  The magnitudes depend purely on distance from the excitation force, with no 

rocking motion manifesting itself in the responses.  The highest magnitude is at 1, closest to the 

impulse, and the magnitudes decrease with distance, 3 and 4 being the lowest as they are furthest 

away.  The phases confirm this.  The phase of 1 is near zero, since it is the driving point;  the 

phase becomes more negative (taking phase wrap-around into account) the further the 

measurement point is from the input force, indicating longer time lags.  These differences from 
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Figure 6.16:  Vertical acceleration FRFs across the unisolated track with an off-centre vertical 
input force applied next to accelerometer 1. 
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Figure 6.15 again show that the insertion of the FC75 rubber changes the track dynamics. 

Lateral slab acceleration is compared to vertical slab acceleration in Figure 6.17.  

Accelerometers 0 and 4 were fixed to the slab on their sides instead of vertically, placed next to 

accelerometers 1 and 3.  The lateral motion induced by a vertical force input is clearly 

significant, since the lateral accelerations 0 and 4 are of similar magnitude to the vertical 

accelerations 1 and 3 at the same positions. 

6.4.2  FRFs Measured Along the Track Slab 

Figure 6.18 shows the vertical accelerations along the centre of the slab excited by a central 

force.  Like the measurements across the slab, there are no clear resonance peaks, let alone one at 

19Hz.  The acceleration 2 of the rail next to the input follows that of the driving point 0 very 

closely.  This is because the relatively stiff rail pads give a natural frequency of the rail on the rail 

pads well above the 200Hz maximum frequency considered here, so that the rail moves with the 

slab when the slab is excited.  Acceleration 0 is also similar in both magnitude and phase to the 

corresponding slab-centre response 2 given in Figure 6.12, confirming the repeatability of this 
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Figure 6.17:  Vertical and lateral acceleration FRFs across the floating slab with an off-centre 
vertical input force applied next to accelerometer 1.  Accelerometers 0 and 4 were placed on the 
slab on their sides, next to accelerometers 1 and 3. 
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driving-point response.  The responses 1 at 5m down the slab from the input, 3 at 10m and 4 at 

20m show more variation than the driving point 0, but essentially they show that the response 

decreases with distance from the load.  The low levels between 30Hz and 120Hz compared to 

acceleration 0 indicate that less energy is propagated down the slab in this range than at higher 

frequencies. 

The corresponding responses along the unisolated track are shown in Figure 6.19.  The 

accelerations are smoother than in Figure 6.18.  Having the track slab fixed to the tunnel invert 

has suppressed some of the floating-slab dynamics.  The driving-point response 0 is significantly 

lower for frequencies above 40Hz, and the responses 1, 3 and 4 at increasing distance from the 

input are between 10dB and 15dB lower than those in Figure 6.18, particularly above 80Hz.  This 

is further confirmation that the FC75 rubber does influence the track response. 
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Figure 6.18:  Vertical acceleration FRFs along the middle of the floating slab with a central 
vertical input force applied next to accelerometer 0.  The plan view of the track at right shows the 
positions of the accelerometers, with the thick lines again indicating the edges of the slab; 
accelerometer 2 is mounted on one of the rails. 
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Figure 6.19:  Vertical acceleration FRFs along the middle of the unisolated track with a central 
vertical input force applied next to accelerometer 0.  The dotted lines in the plan view at right 
indicate where the edges of the slab would be were it a floating slab. 
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Figure 6.20:  Vertical and longitudinal acceleration FRFs along the middle of the floating slab 
with a central vertical input force applied opposite accelerometer 2.  Accelerometers 0 and 4 
were placed on their sides next to accelerometers 1 and 3. 
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Longitudinal accelerations of the floating slab are compared to vertical ones in Figure 6.20.  

As in obtaining the lateral accelerations given in Figure 6.17, accelerometers 0 and 4 were fixed 

to the slab on their sides next to accelerometers 1 and 3, but this time aligned along instead of 

across the slab.  The vertical accelerations 2, 1 and 3 show good repeatability compared to the 

same accelerations in Figure 6.18.  The longitudinal accelerations 0 and 4 are of similar 

magnitude to the vertical accelerations at the same positions.  Thus longitudinal motion of the 

slab is also significant. 

Figure 6.21 gives the vertical acceleration of the tunnel invert next to the floating slab at 

various longitudinal distances from a central slab force.  The slab-edge acceleration 0 is very like 

the rail acceleration 2 from Figure 6.18.  This confirms that the rail moves with the slab in the 

frequency range considered.  Since in Figure 6.18 the rail motion 2 and the central slab motion 0 

are comparable, Figure 6.21 shows that the edges and centre of the slab have roughly the same 

motion with the symmetric central loading, which accords with Figure 6.12.  The off-slab 

accelerations 2, 1, 3 and 4 look quite like the central accelerations for the unisolated track, Figure 

6.19.  The off-slab response decreases with longitudinal distance, although above 150Hz the 
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Figure 6.21:  Vertical acceleration FRFs along the tunnel invert next to the floating slab with a 
central vertical input force applied opposite accelerometers 0 and 2. 
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response 4 at 20m distance is greater than the others.  This could be due to numerical errors 

introduced by the low signal levels recorded at large distances from the input force, as shown in 

Figure 6.6(f).  Generally, the off-slab accelerations are 10-15dB lower than the corresponding on-

slab results given in 6.18, particularly above 80Hz. 

6.5  Conclusions 

The experimental results presented in this chapter illustrate several features of the dynamic 

behaviour of a real floating-slab railway track.  While comparisons to an equivalent unisolated 

track show that mounting the track slab on a rubber ballast mat does noticeably alter responses, 

no resonance peak corresponding to the theoretical natural frequency can be observed: all the 

responses are relatively smooth with no prominent resonances at all in the frequency range 

considered.  The measured driving-point response of the floating slab is similar to that of a 

Winkler beam with a highly damped foundation, which in turn resembles the response of a 

simple slab beam joined directly to a tunnel.  These factors suggest that the floating-slab track 

examined is closely coupled to the tunnel, in contrast to the design assumptions.  Other 

significant aspects of the floating-slab dynamics observed in the measured responses include 

torsion, lateral motion and longitudinal motion.  The measured floating-slab FRFs show that off-

slab accelerations are lower than on-slab ones for an input force applied to the track.  This might 

be taken as proof of vibration isolation, but as the theoretical results of Chapter 5 have shown, 

the actual soil response cannot be predicted by track response alone. 
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Chapter 7    

CONCLUSIONS AND FURTHER WORK 

This chapter summarises the conclusions reached from the work described in the previous 

chapters.  Based on these conclusions, suggestions for further work are given. 

7.1  Conclusions 

The results presented in this dissertation demonstrate that the simple mass-spring models 

commonly used in the design of floating-slab track are inadequate because they ignore the 

interacting three-dimensional dynamics of the track, tunnel and soil.  Such simple models give 

misleadingly large estimates of vibration reduction.  The results for complete track-tunnel-soil 

models as developed in this dissertation suggest that insertion-loss predictions greater than 6dB 

are exaggerated, and that floating the track slab may actually increase transmission of vibration 

unless resilient bearings which are very soft compared to the tunnel and soil are used.   

An infinitely long double-beam model of floating-slab track has been implemented by means 

of a repeating-unit method utilising a dynamic-stiffness approach.  A concept of total transmitted 

force has enabled investigation of the effect of slab length, axle mass and axle spacing on track 

performance.  Multiple track inputs at train axles have also been considered.  All these 

parameters significantly influence track dynamics.  However, this approach considers the tunnel 

invert to be rigid, an assumption which has been shown to have severe limitations. 

The objective of creating an analytical model of the three-dimensional track-tunnel-soil 

system has been realised by combining beam track models with a tunnel-in-soil model consisting 
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of an infinitely long thin cylindrical shell surrounded by an infinite viscoelastic soil medium.  

The equations of motion for the tunnel and soil are solved in a modal wavenumber-frequency 

domain, and the track models are coupled to the tunnel by a spatial convolution method, 

achieved by wavenumber-domain multiplication.  Final results are obtained by a spatial inverse 

Fourier transform.  Three different track models have been considered: a simple slab beam in 

bending only, a slab beam in bending and torsion, and a full track comprising a rail beam and 

slab beam in bending.  Random process theory has been used to calculate the power spectral 

density of soil vibration around a tunnel with the full track model; the track inputs due to a train 

are represented as roughness displacements between axle masses and the rail beam.  RMS soil 

vibration levels can easily be calculated from the spectra.  The effect of varying the slab-support 

stiffness has been investigated, showing as mentioned above that only modest vibration reduction 

is achievable and that using a “little bit of rubber” to isolate the slab can have adverse results. 

Various aspects of the dynamic behaviour of floating-slab track have been observed in 

frequency-response functions calculated from impulse-response measurements made in a railway 

tunnel.  This data confirms that track response can be highly damped due to radiation of energy 

into the surrounding soil and that track torsion is important.  Significant lateral and longitudinal 

slab motion has also been observed. 

7.2  Recommendations for Further Work 

The track-plus-tunnel models presented in this dissertation have only considered variation of 

slab-support stiffness.  A more comprehensive parametric study of the effect of track design, 

tunnel geometry and soil type (for instance) on transmitted vibration would be useful.  In this 

context the choice of appropriate material properties for the resilient track elements and the soil 

also deserves attention.  A calculation of power flow into the soil would check that all energy is 

accounted for in the current models and could also form a better basis for quantifying vibration-

isolation effectiveness of different track and tunnel designs.  There is scope for more extensive 

experimental investigations than those undertaken, including measurements of soil vibration 

levels with trains running in a tunnel. 
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To make the analytical approach presented more attractive for use as a comparative design 

tool, the programs used could be made more efficient.  This would facilitate multiple runs with 

different parameter values.  The programs were run in the interpreted Matlab environment, which 

is quite efficient for vectorised operations but relatively slow for looping procedures.  Despite 

extensive use of vectorised code, many looping iterations were still required, to solve matrix 

equations at each frequency and wavenumber step for example.  Compiling the programs would 

significantly increase computation speed.  While it is possible to use pre-compiled functions with 

Matlab, the greatest speed gains would probably be obtained by using a lower-level language 

such as C for all the program code.  This would also have the advantage of more subtle memory 

management to control the manipulation of large amounts of data such as the tunnel and soil 

modes. 

The track-plus-tunnel models could be extended to consider more complicated situations than 

covered in this dissertation.  Discrete rail pads and discrete resilient bearings in floating-slab 

track models would introduce parametric excitation like the sleeper-passage effects noted in the 

literature on ballasted railways.  The effect on soil vibration of discrete track slabs could be 

investigated.  The torsional slab model could be extended to a full track model including rails 

and wheels.  Lateral slab motion and the resulting tangential tunnel inputs could also be added to 

the model.  The simple train model of equally spaced axle masses could be extended to bogie 

pairs of axle masses; a more complete train model could be used to check the assumption that 

only the unsprung mass has a significant effect on ground vibration. 

Other factors which could be considered are a second tunnel nearby, the free surface of the 

soil and inhomogeneity in the soil.  Ultimately, the transmission of vibration from an 

underground railway into a nearby building could be modelled.  While analytical methods can be 

applied to some special cases, a numerical approach such as FEM-BEM would have to be used 

for many situations which take these extra factors into account.  The track-plus-tunnel models 

described in this dissertation could be used to validate a simple version of such a numerical 

model prior to introducing realistic but analytically intractable features into it. 



 

 179  

REFERENCES 
 [1] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973. 

 [2] J. Ackva and S. Niedermeyer, “Ganzheitliches Ausbreitungsgesetz für Erschütterungen aus dem 

Schienenverkehr – Ausgangslage und Möglichkeiten der Prognose [Comprehensive propagation law for soil 

waves resulting from rail traffic – conditions and possibilities of prediction]” in N. Chouw and G. Schmid 

(eds.), Wave Propagation and Reduction of Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, 

pp. 79-94. 

 [3] B. Alabi, “A parametric study on some aspects of ground-borne vibrations due to rail traffic”, Journal of 

Sound and Vibration, vol. 153, no. 1, pp. 77-87, 1992. 

 [4] D. Anderson, “Isolation of buildings from railway vibration: a case study”, Proceedings of ICSV5, December 

15-18, 1997, Adelaide, South Australia, vol. 5, pp. 2897-2904, paper no. 448, International Institute of 

Acoustics and Vibration, Adelaide, Australia, 1997 (on CD-ROM). 

 [5] K. Ando, T. Horiike, K. Kubomura, M. Hansaka and T. Nagafuji, “Present status on slab track and 

environmental countermeasure”, Quarterly Report of the Railway Technical Research Institute (Japan), vol. 

37, no. 4, pp. 204-209, 1996. 

 [6] D. Aubry and D. Clouteau, “A regularized boundary element method for stratified media” in G. Cohen, L. 

Halpern and P. Joly (eds.), Proceedings of the First International Conference on Mathematical and 

Numerical Aspects of Wave Propagation Phenomena, SIAM, 1991, pp. 660-668. 

 [7] D. Aubry, D. Clouteau and G. Bonnet, “Modelling of wave propagation due to fixed or mobile dynamic 

sources” in N. Chouw and G. Schmid (eds.), Wave Propagation and Reduction of Vibrations – Wave’94, 

Berg-Verlag, Bochum, Germany, 1994, pp. 109-122. 

 [8] L. Auersch, “Zur erschütterungsmindernden Wirkung von Schichten im Boden [On the vibration reduction 

effects of layers in the soil]” in N. Chouw and G. Schmid (eds.), Wave Propagation and Reduction of 

Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, pp. 189-200. 

 [9] L. Auersch, “Wave propagation in layered soils: theoretical solution in wavenumber domain and experimental 

results of hammer and railway traffic excitation”, Journal of Sound and Vibration, vol. 173, no. 2, pp. 233-

264, 1994. 

 [10] T. Balendra, K.H. Chua, K.W. Lo and S.L. Lee, “Steady-state vibration of subway-soil-building system”, 

Journal of Engineering Mechanics, ASCE, vol. 115, no. 1, pp. 145-162, 1989. 

 [11] T. Balendra, C.G. Koh and Y.C. Ho, “Dynamic response of buildings due to trains in underground tunnels”, 

Earthquake Engineering and Structural Dynamics, vol. 20, no. 3, pp. 275-291, 1991. 

 [12] P.M. Belotserkovskiy, “Forced oscillations of infinite periodic structures. Applications to railway track 

dynamics”, Vehicle System Dynamics Supplement, vol. 28, pp. 85-103, 1998. 

 [13] A. Bhaskar, K.L. Johnson, G.D. Wood and J. Woodhouse, “Wheel-rail dynamics with closely conformal 

contact, Part 1: dynamic modelling and stability analysis”, Proceedings IMechE, Part F: Journal of Rail and 

Rapid Transit, vol. 211, no. 1, pp. 11-26, 1997. 

 [14] A. Bhaskar, K.L. Johnson and J. Woodhouse, “Wheel-rail dynamics with closely conformal contact, Part 2: 

forced response, results and conclusions”, Proceedings IMechE, Part F: Journal of Rail and Rapid Transit, 

vol. 211, no. 1, pp. 27-40, 1997. 



REFERENCES      180  

 

 [15] D.R. Bland, The Theory of Linear Viscoelasticity, Pergamon Press, Oxford, 1960. 

 [16] T.E. Blejwas, C.C. Feng and R.S. Ayre, “Dynamic interaction of moving vehicles and structures”, Journal of 

Sound and Vibration, vol. 67, no. 4, pp. 513-521, 1979. 

 [17] R.D. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger, Malabar, Florida, USA, 1993. 

 [18] M. Bocciolone, A. Cigada and M. Falco, “Train-structure interaction: a measurement campaign in the subway 

of Milan”, Proceedings of the 4th Vehicle-Infrastructure Interaction Conference, Engineering Foundation, 

San Diego, USA, 1996. 

 [19] T. Boudjelal, M. Fafard and A. Gakwaya, “Modelling of damping and its applications to dynamic bridge-

vehicle interaction” in Augusti, Borri and Spinelli (eds.), Structural Dynamics – EURODYN’96, Balkema, 

Rotterdam, 1996, pp. 767-774. 

 [20] E.C. Bovey, “Development of an impact method to determine the vibration transfer characteristics of railway 

installations”, Journal of Sound and Vibration, vol. 87, no. 2, pp. 357-370, 1983. 

 [21] H. Braitsch, “Neues zum ‘Kölner Ei’ (Oberbau 1403/c) und zur kostensparenden Eindämmung von 

Körperschall an Nahverkehrsbahnen [Latest information on the ‘Cologne Egg’ (track 1403/c) and on 

economic reduction of structure-borne sound in urban railways]”, Vekehr und Technik, no. 11 & 12, 1981. 

 [22] British Geological Survey, Geological map of Windsor, Sheet 269, Solid & Drift Edition, 1:50 000 Series, 

1981. 

 [23] British Geological Survey, Geological map of South London, Sheet 270, Solid & Drift Edition, 1:50 000 

Series, 1998. 

 [24] British Standards Institution, “Guide to evaluation of human exposure to vibration in buildings (1Hz-80Hz)”, 

BS 6472: 1992. 

 [25] Z. Cai and G.P. Raymond, “Use of a generalized beam/spring element to analyze natural vibration of rail 

track and its application”, International Journal of Mechanical Sciences, vol. 36, no. 9, pp. 863-876, 1994. 

 [26] Z. Cai, G.P. Raymond and R.J. Bathurst, “Natural vibration analysis of rail track as a system of elastically 

coupled beam structures on Winkler foundation”, Computers and Structures, vol. 53, no. 6, pp. 1427-1436, 

1994. 

 [27] G.F. Capponi, “Vibrations in the Milan underground – types of tracks and train speeds”, Proceedings of the 

International Conference on Noise Control Engineering (Inter-noise 83), Edinburgh, 13-15 July 1983, vol. 1, 

pp. 479-482, Institute of Acoustics, Edinburgh, 1983. 

 [28] G. Capponi and M.H. Murray, “Reducing vibration in urban rail transport”, Transactions of Mechanical 

Engineering, IEAust, vol. ME23, no. 1, pp. 43-45, 1998. 

 [29] A. Castellani, G. Kajon, P. Panzeri and P. Pezzoli, “Elastomeric materials used for vibration isolation of 

railway lines”, Journal of Engineering Mechanics, ASCE, vol. 124, no. 6, pp. 614-621, 1998. 

 [30] T.-P. Chang, “Deterministic and random vibration of an axially loaded Timoshenko beam resting on an 

elastic foundation”, Journal of Sound and Vibration, vol. 178, no. 1, pp. 55-66, 1994. 

 [31] T.-P. Chang and Y.-N. Liu, “Dynamic finite element analysis of a nonlinear beam subjected to a moving 

load”, International Journal of Solids and Structures, vol. 33, no. 12, pp. 1673-1688, 1996. 

 [32] N. Chouw, “Wave propagation from the source via the subsoil into the building” in N. Chouw and G. Schmid 

(eds.), Wave Propagation and Reduction of Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, 

pp. 33-46. 

 [33] Y.K. Chow and I.M. Smith, “Static and periodic infinite solid elements”, International Journal for Numerical 

Methods in Engineering, vol. 17, no. 4, pp. 503-526, 1981. 



REFERENCES      181  

 

 [34] K.H. Chua, T. Balendra and K.W. Lo, “Groundborne vibrations due to trains in tunnels”, Earthquake 

Engineering and Structural Dynamics, vol. 21, no. 5, pp. 445-460, 1992. 

 [35] R.A. Clark, P.A. Dean, J.A. Elkins and S.G. Newton, “An investigation into the dynamic effects of railway 

vehicles running on corrugated rails”, Journal of Mechanical Engineering Science, IMechE, vol. 24, no. 2, 

pp. 65-76, 1982. 

 [36] D.E. Commins, C. Leneutre and S. Vanpeperstraete, “Vibration isolation of trains in a French arts complex”, 

Proceedings of the Institute of Acoustics, vol. 12, no. 7, pp. 31-38, 1990. 

 [37] W.M.G. Courage and P.C. van Staalduinen, “Vibration analysis of an elevated railway track” in Augusti, 

Borri and Spinelli (eds.), Structural Dynamics – EURODYN’96, Balkema, Rotterdam, Netherlands, 1996, pp. 

791-794. 

 [38] D.P. Cryer, “Modelling of Vibration in Buildings with Application to Base Isolation”, PhD thesis, University 

of Cambridge, July 1994. 

 [39] T. Dahlberg, B. Åkesson and S. Westberg, “Modelling the dynamic interaction between train and track”, 

Railway Gazette International, vol. 149, no. 6, pp. 407-412, 1993. 

 [40] M. Dalenbring, “A study of the effect of track parameter changes on vertical rail vibrations”, report no. 

KTH/FKT/FR-95/06-SE, Marcus Wallenberg Laboratory, Royal Institute of Technology, Stockholm, 

Sweden, 1995. 

 [41] T.M. Dawn, “Ground vibrations from heavy freight trains”, Journal of Sound and Vibration, vol. 87, no. 2, 

pp. 351-356, 1983. 

 [42] J.D. Deeks and M.F. Randolph, “Axisymmetric time-domain transmitting boundaries”, Journal of 

Engineering Mechanics, ASCE, vol. 120, no. 1, pp. 25-42, 1994. 

 [43] G. Degrande and G. De Roeck, “An absorbing boundary condition for wave propagation in saturated 

poroelastic media – Part I: Formulation and efficiency evaluation”, Soil Dynamics and Earthquake 

Engineering, vol. 12, no. 7, pp. 411-421, 1993. 

 [44] G. Degrande and G. De Roeck, “An absorbing boundary condition for wave propagation in saturated 

poroelastic media – Part II: Finite element formulation”, Soil Dynamics and Earthquake Engineering, vol. 

12, no. 7, pp. 423-432, 1993. 

 [45] J.P. Den Hartog, Mechanical Vibrations, 4th ed., Dover Publications, New York, 1985. 

 [46] D.G. Duffy, “The response of an infinite railroad track to a moving, vibrating mass”, Journal of Applied 

Mechanics, Transactions ASME, vol. 57, no. 1, pp. 66-73, 1990. 

 [47] P. Duval, “Ballastless track – a French approach”, Railway Technology International, vol. 1989, pp. 248-250, 

1989. 

 [48] G. Eason, J. Fulton and I.N. Sneddon, “The generation of waves in an infinite elastic solid by variable body 

forces”, Philosophical Transactions of the Royal Society of London, Series A, vol. 248, pp. 575-607, 1956. 

 [49] E. Esmailzadeh and M. Ghorashi, “Vibration analysis of beams traversed by uniform partially distributed 

moving masses”, Journal of Sound and Vibration, vol. 184, no. 1, pp. 9-17, 1995. 

 [50] C. Esveld, Modern Railway Track, Esveld Consulting Services, Zaltbommel, Netherlands, 1989. 

 [51] C. Esveld, J. van't Zand, P.N. Scheepmaker and A.S.J. Suiker, “Dynamic behaviour of railway track”, Rail 

Engineering International Edition, no. 2, pp. 17-20, 1996. 

 [52] W.M. Ewing, W.S. Jardetzky and F. Press, Elastic Waves in Layered Media, McGraw-Hill, New York, 1957. 

 [53] Å. Fenander, “Frequency dependent stiffness and damping of railpads”, Proceedings IMechE, Part F: 

Journal of Rail and Rapid Transit, vol. 211, no. 1, pp. 51-62, 1997. 



REFERENCES      182  

 

 [54] Å. Fenander, “A fractional derivative railpad model included in a railway track model”, Journal of Sound and 

Vibration, vol. 212, no. 5, pp. 889-903, 1998. 

 [55] R. Ferrari, “Spatially periodic structures” in T. Itoh, G. Pelosi and P.P. Silvester (eds.), Finite Element 

Software for Microwave Engineering, Wiley, New York, 1996, pp. 25-51. 

 [56] W. Flügge, Viscoelasticity, Blaisdell Publishing Company, Waltham, Massachusetts, USA, 1967. 

 [57] W. Flügge, Stresses in Shells, 2nd ed., Springer-Verlag, Berlin, 1973. 

 [58] E. Forchap and B. Verbic, “Field tests on wave propagation and reduction of foundation vibrations” in N. 

Chouw and G. Schmid (eds.), Wave Propagation and Reduction of Vibrations – Wave’94, Berg-Verlag, 

Bochum, Germany, 1994, pp. 165-178. 

 [59] R.A.J. Ford, “Track and ground vibrations: summary of work to October 1991”, report no. 1991/AM/1, 

School of Mechanical and Industrial Engineering, University of New South Wales, Sydney, Australia, 

November 1991. 

 [60] R.A.J. Ford, “Response of a simple model of a vehicle to measured track profiles, Part 1: Proposed CRAMP 

analysis of track condition”, report no. 1993/AM/1, School of Mechanical and Industrial Engineering, 

University of New South Wales, Sydney, Australia, February 1993. 

 [61] J.A. Forrest, “Floating slab railway track for isolation of vibration: models of infinite length”, Proceedings of 

DETC'97, September 14-17, 1997, Sacramento, California, paper no. VIB-4085, American Society of 

Mechanical Engineers, New York, 1997 (on CD-ROM). 

 [62] F. Frederich, “Die Gleislage – aus fahrzeugtechnischer Sicht [Effect of track geometry on vehicle 

performance]”, Zeitschrift für Eisenbahnwesen und Vekehrstechnik – Glasers Annalen, vol. 108, no. 12, pp. 

355-362, 1984. 

 [63] R.D. Fröhling, “Measurement, interpretation and classification of South African track geometry”, Vehicle 

System Dynamics Supplement, vol. 24, pp. 133-145, 1995. 

 [64] R.D. Fröhling, “Low frequency dynamic vehicle/track interaction: modelling and simulation”, Vehicle System 

Dynamics Supplement, vol. 28, pp. 30-46, 1998. 

 [65] T. Fujikake, “A prediction method for the propagation of ground vibration from railway trains”, Journal of 

Sound and Vibration, vol. 111, no. 2, pp. 357-360, 1986. 

 [66] T. Fujikake, “A prediction method for the propagation of ground vibration from railway trains on level tracks 

with welded rails”, Journal of Sound and Vibration, vol. 128, no. 3, pp. 524-527, 1989. 

 [67] H. Fujimoto, K. Tanifuji and M. Miyamoto, “Comparision between data from test train running on track 

irregularities artificially set and results of vehicle dynamics simulation (influence of track gauge variation on 

rail vehicle dynamics)”, Vehicle System Dynamics Supplement, vol. 28, pp. 59-72, 1998. 

 [68] S. Gade and N.J. Wismer, “Improved method for the estimation of complex modulus and damping”, 

Proceedings of ICSV5, December 15-18, 1997, Adelaide, South Australia, vol. 3, pp. 1391-1398, paper no. 

55, International Institute of Acoustics and Vibration, Adelaide, Australia, 1997 (on CD-ROM). 

 [69] V.K. Garg and R.V. Dukkipati, Dynamics of Railway Vehicle Systems, Academic Press, Toronto, Canada, 

1984. 

 [70] D.C. Gazis, “Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. 

Analytical foundation”, Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 568-573, 1959. 

 [71] D.C. Gazis, “Three-dimensional investigation of the propagation of waves in hollow circular cylinders. II. 

Numerical results”, Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 573-578, 1959. 



REFERENCES      183  

 

 [72] L. Girardi and P. Recchia, “Use of a computational model for assessing dynamical behaviour of a railway 

structure”, Vehicle System Dynamics Supplement, vol. 20, pp. 185-194, 1992. 

 [73] K.F. Graff, Wave Motion in Elastic Solids, Oxford University Press, London, 1975. 

 [74] S.L. Grassie, “A contribution to dynamic design of railway track”, Vehicle System Dynamics Supplement, vol. 

20, pp. 195-209, 1992. 

 [75] S.L. Grassie and S.J. Cox, “The dynamic response of railway track with unsupported sleepers”, Proceedings 

of the Institution of Mechanical Engineers, vol. 199, no. D2, pp. 123-135, 1985. 

 [76] S.L. Grassie, R.W. Gregory, D. Harrison and K.L. Johnson, “The dynamic response of railway track to high 

frequency vertical excitation”, Journal of Mechanical Engineering Science, IMechE, vol. 24, no. 2, pp. 77-

90, 1982. 

 [77] R.J. Greer and C.J. Manning, “Vibration isolation for railways”, Acoustics Bulletin, vol. 23, no. 3, pp. 13-17, 

1998. 

 [78] P. Grootenhuis, “Floating track slab isolation for railways”, Journal of Sound and Vibration, vol. 51, no. 3, 

pp. 443-448, 1977. 

 [79] F. Guan and I.D. Moore, “Three-dimensional dynamic response of twin cavities due to travelling loads”, 

Journal of Engineering Mechanics, ASCE, vol. 120, no. 3, pp. 637-651, 1994. 

 [80] T.G. Gutowski and C.L. Dym, “Propagation of ground vibration: a review”, Journal of Sound and Vibration, 

vol. 49, no. 2, pp. 179-193, 1976. 

 [81] H. Hao and T.C. Ang, “Analytical modeling of traffic-induced ground vibrations”, Journal of Engineering 

Mechanics, ASCE, vol. 124, no. 8, pp. 921-928, 1998. 

 [82] M. Heckl, G. Hauck and R. Wettschureck, “Structure-borne sound and vibration from rail traffic”, Journal of 

Sound and Vibration, vol. 193, no. 1, pp. 175-184, 1996. 

 [83] K. Hempelmann, B. Ripke and S. Dietz, “Modelling the dynamic interaction of wheelset and track”, Railway 

Gazette International, vol. 148, no. 9, pp. 591-594, 1992. 

 [84] W.D. Henn, “System comparison: ballasted track – slab track”, Rail Engineering International Edition, no. 2, 

pp. 6-9, 1993. 

 [85] M. Hetényi, Beams on Elastic Foundation, University of Michigan Press, Ann Arbor, Michigan, USA, 1946. 

 [86] R.A. Hood, R.J. Greer, M. Breslin and P.R. Williams, “The calculation and assessment of ground-borne noise 

and perceptible vibration from trains in tunnels”, Journal of Sound and Vibration, vol. 193, no. 1, pp. 215-

225, 1996. 

 [87] H.V.C. Howarth and M.J. Griffin, “Human response to simulated intermittent railway-induced building 

vibration”, Journal of Sound and Vibration, vol. 120, no. 2, pp. 413-420, 1988. 

 [88] H.V.C. Howarth and M.J. Griffin, “The annoyance caused by simultaneous noise and vibration from 

railways”, Journal of Sound and Vibration, vol. 89, no. 5, pp. 2317-2323, 1991. 

 [89] H.E.M. Hunt, “Measurement and Modelling of Traffic-induced Ground Vibration”, PhD thesis, University of 

Cambridge, July 1988. 

 [90] H.E.M. Hunt, “Modelling of road vehicles for calculation of traffic-induced ground vibration as a random 

process”, Journal of Sound and Vibration, vol. 144, no. 1, pp. 41-51, 1991.  

 [91] H.E.M. Hunt, “Stochastic modelling of traffic-induced ground vibration”, Journal of Sound and Vibration, 

vol. 144, no. 1, pp. 53-70, 1991. 



REFERENCES      184  

 

 [92] H.E.M. Hunt, “Prediction of vibration transmission from railways into buildings using models of infinite 

length”, Vehicle System Dynamics Supplement, vol. 24, pp. 234-247, 1995. 

 [93] H.E.M. Hunt, “Modelling of rail vehicles and track for calculation of ground-vibration transmission into 

buildings”, Journal of Sound and Vibration, vol. 193, no. 1, pp. 185-194, 1996. 

 [94] H.E.M. Hunt and J.E. May, “Vibration generated by underground railway trains”, Proceedings of ICSV5, 

December 15-18, 1997, Adelaide, South Australia, vol. 5, pp. 2653-2660, paper no. 525, International 

Institute of Acoustics and Vibration, Adelaide, Australia, 1997 (on CD-ROM). 

 [95] H. Isaksson, “Ballast-mats for railway bridges: insertion loss for different types”, report no. KTH/FKT/EX-

97/26-SE, Marcus Wallenberg Laboratory, Royal Institute of Technology, Stockholm, Sweden, 1997. 

 [96] M. Ishida, S. Miura and A. Kono, “The influence of track stiffness on track dynamic behaviour”, Quarterly 

Report of the Railway Technical Research Institute (Japan), vol. 38, no. 3, pp. 129-134, 1997. 

 [97] T. Jaquet and D. Heiland, “Erschütterungsprognose mittels Antwortspektrumverfahren [Prediction of 

vibrations applying the response spectra method]” in N. Chouw and G. Schmid (eds.), Wave Propagation and 

Reduction of Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, pp. 179-188. 

 [98] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985. 

 [99] C.J.C. Jones, “Use of numerical models to determine the effectiveness of anti-vibration systems for railways”, 

Proceedings of the Institution of Civil Engineers, Transport, vol. 105, no. 1, pp. 43-51, 1994. 

[100] C.J.C. Jones and J.R. Block, “Prediction of ground vibration from freight trains”, Journal of Sound and 

Vibration, vol. 193, no. 1, pp. 205-213, 1996. 

[101] D.V. Jones and M. Petyt, “Ground vibration in the vicinity of a strip load: a two-dimensional half-space 

model”, Journal of Sound and Vibration, vol. 147, no. 1, pp. 155-166, 1991. 

[102] D.V. Jones and M. Petyt, “Ground vibration in the vicinity of a strip load: an elastic layer on a rigid 

foundation”, Journal of Sound and Vibration, vol. 152, no. 3, pp. 501-515, 1992. 

[103] D.V. Jones and M. Petyt, “Ground vibration in the vicinity of a strip load: an elastic layer on an elastic half-

space”, Journal of Sound and Vibration, vol. 161, no. 1, pp. 1-18, 1993. 

[104] L.F. Kallivokas, J. Bielak and R.C. MacCamy, “Symmetric local absorbing boundaries in time and space”, 

Journal of Engineering Mechanics, ASCE, vol. 117, no. 9, pp. 2027-2048, 1991. 

[105] D.L. Karabalis and D.E. Beskos, “Dynamic response of 3-D rigid surface foundations by time domain 

boundary element method”, Earthquake Engineering and Structural Dynamics, vol. 12, no. 1, pp. 73-93, 

1984. 

[106] A.D. Kerr, “On the vertical modulus in the standard railway track analysis”, Rail International, vol. 18, no. 

11, pp. 37-45, 1987. 

[107] V. Knall, “Railway noise and vibration: effects and criteria”, Journal of Sound and Vibration, vol. 193, no. 1, 

pp. 9-20, 1996. 

[108] H.W. Koch, “Propagation of vibrations and structure-borne sound caused by trains running at a maximum 

speed of 250 km/h”, Journal of Sound and Vibration, vol. 51, no. 3, pp. 441-442, 1977. 

[109] S.A. Kostarev, “An analysis of vibrational field, generated by an underground tunnel in soil”, Journal of Low 

Frequency Noise and Vibration, vol. 15, no. 4, pp. 151-156, 1996. 

[110] U.G. Köpke, “Transverse vibration of buried pipelines due to internal excitation at a point”, Proceedings 

IMechE, Part E: Journal of Process Mechanical Engineering, vol. 207, no. E1, pp. 41-58, 1993. 

[111] S. Kraemer, “Noise and Vibration in Buildings from Underground Railway Lines”, PhD thesis, University of 

London, 1984. 



REFERENCES      185  

 

[112] E. Kreyszig, Advanced Engineering Mathematics, 6th ed., Wiley, New York, 1988. 

[113] V.V. Krylov, “Low-frequency ground vibrations from underground trains”, Journal of Low Frequency Noise 

and Vibration, vol. 14, no. 1, pp. 55-60, 1995. 

[114] V.V. Krylov, “Vibrational impact of high-speed trains. I. Effect of track dynamics”, Journal of the Acoustical 

Society of America, vol. 100, no. 5, pp. 3121-3134, 1996. 

[115] V.V. Krylov, “Effect of layered ground on ground vibrations generated by high-speed trains”, Conference 

Papers – Ground Dynamics and Man-made Processes, 20 November 1997, London, paper no. 5, Institution 

of Civil Engineers, London, 1997. 

[116] V.V. Krylov, “Ground vibration boom from high-speed trains: prediction and reality”, Acoustics Bulletin, vol. 

23, no. 4, pp. 15-22, 1998. 

[117] V.V. Krylov and C.C. Ferguson, “Calculation of low-frequency ground vibrations from railway trains”, 

Applied Acoustics, vol. 42, no. 3, pp. 199-213, 1994. 

[118] H. Lamb, “On the propagation of tremors over the surface of an elastic solid”, Philosophical Transactions of 

the Royal Society of London, Series A, vol. 203, pp. 1-42, 1904. 

[119] R.S. Langley, “Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method”, 

Journal of Sound and Vibration, vol. 136, no. 3, pp. 439-452, 1990. 

[120] R.K. Livesley, Matrix Methods of Structural Analysis, 2nd ed., Pergamon Press, Oxford, 1975. 

[121] K.T. Lo, “Measurement and Modelling of Vibration Transmission through Piled Foundations”, PhD thesis, 

University of Cambridge, October 1994. 

[122] J.C. Lucas, “Dynamic loading and response of track components”, 1979 (unpublished). 

[123] Y. Luo, H. Yin and C. Hua, “The dynamic response of railway ballast to the action of trains moving at 

different speeds”, Proceedings IMechE, Part F: Journal of Rail and Rapid Transit, vol. 210, no. 2, pp. 95-

101, 1996. 

[124] J. Lysmer and R.L. Kuhlemeyer, “Finite dynamic model for infinite media”, Journal of the Engineering 

Mechanics Division, Proceedings ASCE, vol. 95, no. EM4, pp. 859-877, 1969. 

[125] C. Madhus, B. Bessason and L. Hårvik, “Prediction model for low frequency vibration from high speed 

railways on soft ground”, Journal of Sound and Vibration, vol. 193, no. 1, pp. 195-203, 1996. 

[126] C. Madhus, A.M. Kaynia, L. Harvik and J.K. Holme, “A numerical ground model for railway-induced 

vibration”, Conference Papers – Ground Dynamics and Man-made Processes, 20 November 1997, London, 

paper no. 3, Institution of Civil Engineers, London, 1997. 

[127] C.E. Maloney, N.G. Kingsbury and M.D. Macleod, “Electrical and Information Data Book”, Cambridge 

University Engineering Department, 1995. 

[128] C.J. Manning, “Air rights buildings”, Proceedings of the Institute of Acoustics, vol. 12, no. 7, pp. 23-30, 

1990. 

[129] K.R. Massarsch, “Massnahmen zur passiven Isolierung von Baugrunderschütterungen [Passive ground 

vibration isolation measures]” in N. Chouw and G. Schmid (eds.), Wave Propagation and Reduction of 

Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, pp. 21-32. 

[130] D.J. Mead, “A general theory of harmonic wave propagation in linear periodic systems with multiple 

coupling”, Journal of Sound and Vibration, vol. 27, no. 2, pp. 235-260, 1973. 

[131] D.J. Mead, “Wave propagation and natural modes in periodic systems: I. Mono-coupled systems”, Journal of 

Sound and Vibration, vol. 40, no. 1, pp. 1-18, 1975. 



REFERENCES      186  

 

[132] D.J. Mead, “Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and 

without damping”, Journal of Sound and Vibration, vol. 40, no. 1, pp. 19-39, 1975. 

[133] D.J. Mead, “Wave propagation in continuous periodic structures: research contributions from Southampton, 

1964-1995”, Journal of Sound and Vibration, vol. 190, no. 3, pp. 495-524, 1996. 

[134] D.J. Mead and Y. Yaman, “The response of infinite periodic beams to point harmonic forces: a flexural wave 

analysis”, Journal of Sound and Vibration, vol. 144, no. 3, pp. 507-530, 1991. 

[135] F. Medina and J. Penzien, “Infinite elements for elastodynamics”, Earthquake Engineering and Structural 

Dynamics, vol. 10, no. 5, pp. 699-709, 1982. 

[136] L. Meirovitch, Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, 1986. 

[137] J. Melke, “Noise and vibration from underground railway lines: proposals for a prediction procedure”, 

Journal of Sound and Vibration, vol. 120, no. 2, pp. 391-406, 1988. 

[138] J. Melke and S. Kraemer, “Diagnostic methods in the control of railway noise and vibration”, Journal of 

Sound and Vibration, vol. 87, no. 2, pp. 377-386, 1983. 

[139] J. Melke and B. Switaiski, “Elastomer rail support systems: problems in dynamic testing”, Journal of Sound 

and Vibration, vol. 120, no. 2, pp. 421-429, 1988. 

[140] M. Mohammadi and D.L. Karabalis, “Dynamic 3-D soil-railway track interaction by BEM-FEM”, 

Earthquake Engineering and Structural Dynamics, vol. 24, no. 9, pp. 1177-1193, 1995. 

[141] P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953. 

[142] A.D. Nashif, D.I.G. Jones and J.P. Henderson, Vibration Damping, Wiley, New York, 1985. 

[143] D.E. Newland, Mechanical Vibration Analysis and Computation, Longman, Harlow, Essex, England, 1989. 

[144] D.E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, 3rd ed., Longman, 

Harlow, Essex, England, 1993. 

[145] D.E. Newland and H.E.M. Hunt, “Isolation of buildings from ground vibration: a review of recent progress”, 

Proceedings IMechE, Part C: Journal of Mechanical Engineering Science, vol. 205, no. 1, pp. 39-52, 1991. 

[146] S.L.D. Ng, “Transmission of Ground-borne Vibration from Surface Railway Trains”, PhD thesis, University 

of Cambridge, October 1995. 

[147] A. Nordborg, “Vertical rail vibrations: pointforce excitation”, Acustica, vol. 84, no. 2, pp. 280-288, 1998. 

[148] A. Nordborg, “Vertical rail vibrations: parametric excitation”, Acustica, vol. 84, no. 2, pp. 289-300, 1998. 

[149] Y. Okumura and K. Kuno, “Statistical analysis of field data of railway noise and vibration collected in an 

urban area”, Applied Acoustics, vol. 33, no. 4, pp. 263-280, 1991. 

[150] K. Ono and M. Yamada, “Analysis of railway track vibration”, Journal of Sound and Vibration, vol. 130, no. 

2, pp. 269-297, 1989. 

[151] ORE D 151 Specialists Committee, “An assessment of vibration counter-measures in current use”, report no. 

2, Question D 151: Vibrations transmitted through the ground, Office for Research & Experiments of the 

International Union of Railways, Utrecht, Netherlands, April 1982. 

[152] ORE D 151 Specialists Committee, “Effect of vibration on buildings and their occupants – Analysis of the 

literature and commentary”, report no. 4, Question D 151: Vibrations transmitted through the ground, Office 

for Research & Experiments of the International Union of Railways, Utrecht, Netherlands, September 1982. 

[153] J. Oscarsson and T. Dahlberg, “Dynamic train/track/ballast interaction – computer models and full-scale 

experiments”, Vehicle System Dynamics Supplement, vol. 28, pp. 73-84, 1998. 



REFERENCES      187  

 

[154] E. Öhrström, “Effects of exposure to railway noise – a comparison between areas with and without vibration”, 

Journal of Sound and Vibration, vol. 205, no. 4, pp. 555-560, 1997. 

[155] S.P. Patil, “Response of infinite railroad track to vibrating mass”, Journal of Engineering Mechanics, ASCE, 

vol. 114, no. 4, pp. 688-703, 1988. 

[156] C.L. Pekeris and H. Lifson, “Motion of the surface of a uniform elastic halfspace produced by a buried 

pulse”, Journal of the Acoustical Society of America, vol. 29, no. 11, pp. 1233-1238, 1957. 

[157] C. Peng and N.M. Toksöz, “An optimal absorbing boundary condition for elastic wave modelling”, 

Geophysics, vol. 60, no. 1, pp. 296-301, 1995. 

[158] A.T. Peplow, C.J.C. Jones and M. Petyt, “Vibration transmission in a layered ground with a wave impedance 

block”, Conference Papers – Ground Dynamics and Man-made Processes, 20 November 1997, London, 

paper no. 4, Institution of Civil Engineers, London, 1997. 

[159] F.E. Richart, J.R. Hall and R.D. Woods, Vibrations of Soils and Foundations, Prentice-Hall, Englewood 

Cliffs, New Jersey, USA, 1970. 

[160] J.W. Rudnicki, “Energy radiation from a spherically symmetric homogeneous source”, Bulletin of the 

Seismological Society of America, vol. 73, no. 4, pp. 901-908, 1983. 

[161] W.F. Rücker and S. Said, “Einwirkung von U-Bahnerschütterungen auf Gebäude; Anregung, Ausbreitung und 

Abschirmung [Effect of underground tunnel vibrations on buildings; propagation and screening]” in N. 

Chouw and G. Schmid (eds.), Wave Propagation and Reduction of Vibrations – Wave’94, Berg-Verlag, 

Bochum, Germany, 1994, pp. 59-78. 

[162] J. Sadeghi and R. Kohoutek, “Analytical modelling of railway track system”, Journal of the Rail Track 

Association Australia, pp. 20-26, 1995. 

[163] G. Samavedam and P. Cross, “Dynamic analyses of vibration isolating tracks for tunnels”, report no. TN TS 

38, Railway Technical Centre, British Rail Research, Derby, England, July 1980. 

[164] B.I. Singal, “Design of non-ballasted track for underground mass transit railways”, report submitted to Hong 

Kong Institution of Engineers, Hong Kong, March 1985. 

[165] V.P. Singh, P.C. Upadhyay and B. Kishor, “On the dynamic response of buried orthotropic cylindrical 

shells”, Journal of Sound and Vibration, vol. 113, no. 1, pp. 101-115, 1987. 

[166] V.P. Singh, P.C. Upadhyay and B. Kishor, “A comparison of thick and thin shell theory results for buried 

orthotropic cylindrical shells”, Journal of Sound and Vibration, vol. 119, no. 2, pp. 339-345, 1987. 

[167] J. Sochacki, “Absorbing boundary conditions for the elastic wave equations”, Applied Mathematics and 

Computation, vol. 28, pp. 1-14, 1988. 

[168] S.D. Stearns, Digital Signal Analysis, Hayden Book Company, Rochelle Park, New Jersey, USA, 1975. 

[169] H. Takemiya, “Traffic induced vibrations and wave propagation” in N. Chouw and G. Schmid (eds.), Wave 

Propagation and Reduction of Vibrations – Wave’94, Berg-Verlag, Bochum, Germany, 1994, pp. 151-164. 

[170] H. Takemiya, G. Fei and Y. Sukeyasu, “2-D transient soil-surface foundation interaction and wave 

propagation by time domain BEM”, Earthquake Engineering and Structural Dynamics, vol. 23, no. 9, pp. 

931-945, 1994. 

[171] H. Takemiya and K. Goda, “Prediction of ground vibration induced by high-speed train operation”, 

Proceedings of ICSV5, December 15-18, 1997, Adelaide, South Australia, vol. 5, pp. 2681-2688, paper no. 

354, International Institute of Acoustics and Vibration, Adelaide, Australia, 1997 (on CD-ROM). 



REFERENCES      188  

 

[172] D.J. Thompson, W.J. van Vliet and J.W. Verheij, “Developments of the indirect method for measuring the 

high frequency dynamic stiffness of resilient elements”, Journal of Sound and Vibration, vol. 213, no. 1, pp. 

169-188, 1998. 

[173] R.M. Thornely-Taylor, “Comparison between results of numerical modelling of railway tunnel vibration and 

field measurements”, November 1997 (unpublished). 

[174] S. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970. 

[175] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 

1959. 

[176] T. Triantafyllidis and B. Prange, “Mitgeführte Biegelinie beim Hochgeschwindigkeitszug ‘ICE’ – Teil I: 

Theoretische Grundlagen [Live deflection line of the railway track caused by the high-speed train ‘ICE’ – 

Part I: Theoretical model]”, Archive of Applied Mechanics, vol. 64, no. 3, pp. 154-168, 1994. 

[177] T. Triantafyllidis and B. Prange, “Mitgeführte Biegelinie beim Hochgeschwindigkeitszug ‘ICE’ – Teil II: 

Vergleich zwischen theoretischen und experimentellen Ergebnissen [Live deflection line of the railway track 

caused by the high-speed train ‘ICE’ – Part II: Comparison between theoretical and experimental results]”, 

Archive of Applied Mechanics, vol. 64, no. 3, pp. 169-179, 1994. 

[178] A. Trochides, “Ground-borne vibrations in buildings near subways”, Applied Acoustics, vol. 32, no. 4, pp. 

289-296, 1991. 

[179] A. Tuchinda, “Underground Vibration”, 4th-year project report, Department of Engineering, University of 

Cambridge, April 1998. 

[180] G. Volberg, “Propagation of ground vibrations near railway tracks”, Journal of Sound and Vibration, vol. 87, 

no. 2, pp. 371-376, 1983. 

[181] A.S. Volmir, Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972 (in Russian). 

[182] P.H. Waarts and W.M.G. Courage, “Traffic loads on bridges – dynamic amplification factors on parts of 

bridges” in Augusti, Borri and Spinelli (eds.), Structural Dynamics – EURODYN’96, Balkema, Rotterdam, 

Netherlands, 1996, pp. 795-800. 

[183] R.-T. Wang and T.-Y. Lin, “Random vibration of multi-span Timoshenko beam due to a moving load”, 

Journal of Sound and Vibration, vol. 213, no. 1, pp. 127-138, 1998. 

[184] T.-L. Wang and D. Huang, “Cable-stayed bridge vibration due to road surface roughness”, Journal of 

Structural Engineering, vol. 118, no. 5, pp. 1354-1374, 1992. 

[185] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, London, 

1966. 

[186] R. Wettschureck, “Vibration and structure-borne noise insulation by means of cellular polyurethane (PUR) 

elastomers in railway track applications”, Rail Engineering International Edition, no. 2, pp. 7-14, 1995. 

[187] R. Wettschureck, “Measures to reduce structure-borne noise emissions induced by above-ground, open 

railway lines”, Rail Engineering International Edition, no. 1, pp. 12-16, 1997. 

[188] R. Wettschureck and U.J. Kurze, “Insertion loss of ballast mats”, Acustica, vol. 58, no. 3, pp. 177-182, 1985. 

[189] W. White, S. Valliappan and I.K. Lee, “Unified boundary for finite dynamic models”, Journal of the 

Engineering Mechanics Division, Proceedings ASCE, vol. 103, no. EM5, pp. 949-964, 1977. 

[190] T.H. Wilmhurst, Signal Recovery from Noise in Electronic Instrumentation, Adam Hilger, Bristol, England, 

1985. 

[191] G.P. Wilson, H.J. Saurenman and J.T. Nelson, “Control of ground-borne noise and vibration”, Journal of 

Sound and Vibration, vol. 87, no. 2, pp. 339-350, 1983. 



REFERENCES      189  

 

[192] J.P. Wolf, Foundation Vibration Analysis Using Simple Physical Models, Prentice-Hall, Englewood Cliffs, 

New Jersey, USA, 1994. 

[193] J.P. Wolf and G.R. Darbre, “Dynamic-stiffness matrix of soil by the boundary-element method: conceptual 

aspects”, Earthquake Engineering and Structural Dynamics, vol. 12, no. 3, pp. 385-400, 1984. 

[194] J.P. Wolf and G.R. Darbre, “Dynamic-stiffness matrix of soil by the boundary-element method: embedded 

foundation”, Earthquake Engineering and Structural Dynamics, vol. 12, no. 3, pp. 401-416, 1984. 

[195] J.P. Wolf and C. Song, “Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal 

finite element cell method”, Earthquake Engineering and Structural Dynamics, vol. 23, no. 11, pp. 1181-

1198, 1994. 

[196] J.P. Wolf and C. Song, “Doubly asymptotic multi-directional transmitting boundary for dynamic unbounded 

medium-structure-interaction analysis”, Earthquake Engineering and Structural Dynamics, vol. 24, no. 2, pp. 

175-188, 1995. 

[197] Y.-B. Yang and H.-H. Hung, “A parametric study of wave barriers for reduction of train-induced vibrations”, 

International Journal for Numerical Methods in Engineering, vol. 40, no. 20, pp. 3729-3747, 1997. 

[198] Y.-B. Yang, J.-D. Yau and L.-C. Hsu, “Vibration of simple beams due to trains moving at high speeds”, 

Engineering Structures, vol. 19, no. 11, pp. 936-944, 1997. 

[199] A. Yoshimura, T. Anami, Y. Okumura and M. Kamiyama, “A new method of repairing railway track 

irregularity using the restored waveform and its application”, Quarterly Report of the Railway Technical 

Research Institute (Japan), vol. 38, no. 1, pp. 13-18, 1997. 

[200] O. Yoshioka, “Prediction analysis of train-induced ground vibrations using the equivalent excitation force”, 

Quarterly Report of the Railway Technical Research Institute (Japan), vol. 37, no. 4, pp. 216-224, 1996. 

[201] O. Yoshioka and K. Ashiya, “Effects of masses and axle arrangement of rolling stock on train-induced ground 

vibrations”, Quarterly Report of the Railway Technical Research Institute (Japan), vol. 31, no. 3, pp. 145-

152, 1990. 

[202] W.C. Young, Roark's Formulas for Stress and Strain, 6th ed., McGraw-Hill, New York, 1989. 

[203] C.-B. Yun, J.-M. Kim and C.-H. Hyun, “Axisymmetric elastodynamic infinite elements for multi-layered half-

space”, International Journal for Numerical Methods in Engineering, vol. 38, no. 22, pp. 3723-3743, 1995. 

[204] A. Zach and G. Rutishauser, “Measures against structure borne noise and vibrations: Experience from 

projects carried out by Swiss Federal Railways (SBB).”, report no. DT 217, Question D 151: Vibrations 

transmitted through the ground, Office for Research and Experiments of the International Union of Railways, 

Utrecht, Netherlands, April 1989. 

[205] W. Zhai and Z. Cai, “Dynamic interaction between a lumped mass vehicle and a discreetly supported 

continuous rail track”, Computers and Structures, vol. 63, no. 5, pp. 987-997, 1997. 

[206] H.S. Zibdeh and R. Rackwitz, “Response moments of an elastic beam subjected to Poissonian moving loads”, 

Journal of Sound and Vibration, vol. 188, no. 4, pp. 479-495, 1995. 



 

 190  

Appendix A    

BOUNDARY-CONDITION MATRICES FOR DOUBLE-

BEAM UNIT 

If the 8x8 matrices [M ] and [N] of equations (3.6) in Chapter 3 are partitioned as follows 
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then each 4x4 submatrix is as given below.  The eigenvector components are defined by 

V1 11 12= { }V V T  and V2 21 22= { }V V T . 
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Appendix B    

SHELL EQUATIONS AND COEFFICIENT MATRICES 

FOR CYLINDRICAL SHELL & ELASTIC CONTINUUM 

B1.  Volmir’s Shell Equations 

The general dynamic shell equations as presented by Volmir [181] are given below.  

Consideration of dynamic equilibrium in the x, y and z directions yields equations (B.1), (B.2) 

and (B.3) respectively.  The nomenclature is the same as in Chapter 4 with the addition of kx  and 

ky , the principal curvatures of the shell.  For a cylindrical shell kx = 0  and k ay = 1 .  Noting 

also that ∂ ∂θy a= , (B.1) to (B.3) can be simplified to equations (4.1) – (4.3). 
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B2.  Coefficients for the Cylindrical Shell 

The elements of the matrix [A] used in equation (4.6) to calculate the displacements of the 

cylindrical shell are given below.  These coefficients are the full ones derived from the Volmir 

[181] or Flügge [57] shell equations.  The terms in these which are additional to those in the 

coefficients derived from the simplified shell theory used by Timoshenko and Woinowsky-

Krieger [175] are double-underlined. 
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B3.  Coefficients for the Elastic Continuum 

The elements of the matrix [U] used to determine the displacement components of the continuum 

in equations (4.20) are: 
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The elements of the matrix [T] used to determine the stress components of the continuum in 

equations (4.20) are: 
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Appendix C    

ROW AND COLUMN NORMALISATION 

Kreyszig [112] discusses some of the issues surrounding the numerical of solution of systems of 

linear equations using matrix methods.  A system is ill-conditioned if small changes in the 

coefficients cause large changes in the computed solution; such small changes can be introduced 

by round-off errors.  The matrix representing the system can be singular to machine working 

precision if it is very ill-conditioned.  One way a matrix becomes ill-conditioned is when the 

relative scale of its largest to smallest elements is many orders of magnitude.  The condition of a 

badly-scaled matrix can be improved by row or column normalisation.  Row normalisation 

divides each row by the magnitude of its maximum element, ensuring that the maximum 

magnitude in any row of the normalised matrix is then unity, reducing the overall numerical 

range of the elements.  Column normalisation does the same thing over the columns of the 

matrix.  As an example, consider the 3 3×  system of linear equations described by 
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where the object is to solve for the variables { }x x x1 2 3
T .  If row normalisation is applied to 

this system, (C.1) becomes 
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where m1 , m2  and m3  are the absolute row maxima of the matrix in (C.1).  If column 

normalisation is applied to the system, (C.1) becomes 
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where n1 , n2  and n3  are the absolute column maxima of the matrix in (C.1).   

If the row maxima all fall in different columns, then row normalisation by itself will also 

achieve column normalisation, as the row-normalised matrix of (C.2) will also have a single 

element of unit magnitude in each column with all other magnitudes less than unity, so that the 

column normalisation of (C.3) will not change any values.  Similarly, column normalisation 

alone will also achieve row normalisation if the column maxima all fall in different rows.  

Generally, however, these special cases will not occur, leaving some columns (or some rows) 

unnormalised after only one operation.  Thus row normalisation followed by column 

normalisation (or vice versa) scales the original matrix as well or better than either procedure 

alone. 

If the matrix of (C.1) is optimally scaled by performing row then column normalisation, the 

scaling effect of (C.2) then (C.3) must be accounted for in the solution.  The original solution 
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   (C.4) 

where ′n1 , ′n2  and ′n3  are the absolute column maxima of the row-normalised matrix in (C.2). 

Numerically, Gaussian elimination would be used instead of the matrix inverse in (C.4). 

Matlab has a function RCOND which returns a reciprocal condition estimator.  RCOND is 

near 1.0 for well-conditioned matrices and near 0.0 for ill-conditioned ones.  The matrix in 

equation (4.42), used to calculate tunnel and soil displacements, typically has RCOND values of 

the order of 10 21−  (which is singular to working precision) before any normalisation, 10 11−  after 

either row or column normalisation alone, and 10 3−  after both row and column normalisation, for 

the parameters of Table 4.3.  Thus the matrix scaling scheme of (C.4) is most suitable for 

overcoming the numerical difficulties encountered in this situation. 
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