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SUMMARY 

This dissertation introduces fault identification methods using vibration data.  The pseudo 

modal energies, defined as the integrals of the real and imaginary components of the frequency 

response functions over various frequency ranges, are proposed for fault identification in 

structures.  Equations that formulate the pseudo modal energies in the modal domain and their 

respective sensitivities are derived in receptance and inertance form. 

When tested on a simulated cantilevered beam, the pseudo modal energies are found to be 

more resistant to noise than the mode shapes while natural frequencies are found to be more 

resistant to noise than the pseudo modal energies.  The pseudo modal energies are found to be 

better indicators of faults than natural frequencies and equally as good indicators of faults as the 

mode shapes.  They are also found to be faster to compute than the modal properties. 

The committee-of-neural-networks technique, which employs both the pseudo modal 

energies and modal properties simultaneously to identify faults, is proposed.  Neural networks 

are formulated in the maximum-likelihood framework and trained using the scaled-conjugate-

gradient method.  When tested on a simulated cantilevered beam, the committee-of-networks 

method gives more accurate classification of faults than the individual methods. 

To test the proposed methods experimentally, vibration data from a population of 20 steel 

cylinders are measured.  Holes of 10-15 mm diameter are introduced in each of the cylinders. 

The networks are subsequently formulated in the Bayesian framework and trained using the 

hybrid Monte Carlo method.  The committee-of-networks is observed to provide more accurate 

classification of faults than the individual methods, when the maximum-likelihood and Bayesian 

methods are used.  The Bayesian approach is, on average, found to give more accurate 

classification of faults than the maximum likelihood method and to allow the calculation of 

confidence levels.   
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 1  

Chapter 1 

INTRODUCTION TO FAULT IDENTIFICATION IN 

MECHANICAL SYSTEMS 

1.1 INTRODUCTION 

The process of monitoring and identifying faults in structures is of great importance in 

aerospace, civil and mechanical engineering.  Aircraft operators must be sure that aircraft are free 

from cracks.  Bridges nearing the end of their useful life must be assessed for load-bearing 

capacities.  Cracks in turbine blades lead to catastrophic failure of aero-engines and must be 

detected early.  Many techniques have been employed in the past to locate and identify faults.  

Some of these are visual (e.g. dye penetrant methods) and others use sensors to detect local faults 

(e.g. acoustics, magnetic field, eddy current, radiographs and thermal fields).  These methods are 

time consuming and cannot indicate that a structure is fault-free without testing the entire 

structure in minute detail.  Furthermore, if a fault is buried deep within the structure it may not be 

visible or detectable by these localised techniques.  The need to detect faults in complicated 

structures has led to the development of global methods, which are able to utilise changes in the 

vibration characteristics of the structure as a basis of fault detection [Doebling et al., 1996]. 

The vibration characteristics of any structure can be described in terms of its distributed 

mass, damping and stiffness properties.  Through the use of vibration modelling and using 

differential equations, an eigenvalue problem can be formulated and the mode shapes and the 
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natural frequencies of the structure calculated.  If a fault is introduced to the structure, the model 

changes.  This results in changes in the vibration characteristics of the structure. 

For a fault detection procedure to be useful, it should be able to detect small faults at an early 

stage of their development.  Within the sensor resolution, it should be possible to estimate the 

magnitudes of faults and to predict the remaining life cycle of the structure.  An ideal procedure 

would be automated, and would not rely on the engineering judgement of the user.  Such 

procedures do not exist at present because sufficiently robust mathematical tools needed to solve 

complex fault identification problems have not been clearly identified.  A more realistic goal is to 

develop a process that uses measured response of a faultless structure as a baseline for future 

comparisons of measured response.  Two issues need to be considered in developing such a fault 

identification procedure.  First, any fault identification method must be subject to operational 

constraints, such as those dictated by the size and location of the structure.  For instance, it is not 

possible to isolate an offshore oil platform from the sea as well as the seabed and therefore there 

will be a great deal of background noise.  In addition the procedure will need to be insensitive to 

the technique of individual operators and the results need to be repeatable.  Second, any fault 

identification methods must be able to discriminate changes caused by faults from measurement 

inaccuracy. 

The effects of faults in structures may be classified as either linear or non-linear.  In the linear 

case, faults do not alter the linearity of the structure.  The changes in vibration data are a result of 

changes in geometry and/or the material properties, but the structure may still be modelled by a 

linear equation of motion.  Non-linear cases occur when introducing faults changes the linearity 

of the structure.  One example is the opening and closing of a crack, which may be caused by 

fatigue damage.  Other examples include loose connections and non-linear material behaviour.  

A robust fault detection method should be able to detect both types of faults.  To date most 

research has concentrated on the problem of linear fault detection [Doebling et al., 1996]. 

In this chapter, different ways of presenting and using vibration data for fault identification 

are reviewed.  The applications of these methods to engineering scenarios are investigated.  In 

conclusion, questions not previously tackled are addressed and the contributions of this work are 

discussed. 
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1.2 VIBRATION DATA TO BE USED 

There are four main methods by which vibration data may be represented: time, modal, 

frequency and time-frequency domains.  Raw data are measured in the time domain.  In the time 

domain, Fourier transform techniques may be used to transform data into the frequency domain.  

From the frequency domain data, and sometimes directly from the time domain, the modal 

properties may be extracted.  All of these domains theoretically contain similar information but 

in reality this is not necessarily the case.  Because the time domain data are relatively difficult to 

interpret, they have not been used extensively for fault identification, and for this reason, this 

chapter reviews only the modal, frequency and time-frequency domains. 

1.2.1 Modal domain data 

The modal domain data are expressed as natural frequencies, damping ratios and mode 

shapes. The most popular technique of extracting the modal properties is through the use of 

modal analysis [Ewins, 1995].  This type of data has been used individually and concurrently for 

fault identification.  In this study, methods that use this type of data individually and concurrently 

are reviewed. 

(a) Natural frequencies 

The analysis of shifts in natural frequencies caused by faults has been used to identify 

structural damage.  As the changes in natural frequencies caused by average damage levels are of 

small magnitudes, an accurate measurement technique is required for this approach to be 

successful.  This problem limits the level of damage that natural frequencies are able to identify 

to that of high magnitude. 

Cawley and Adams (1979) used changes in natural frequencies to detect damage in 

composite materials.  In order to calculate the ratio between frequency shifts for two modes, they 

considered a grid between possible damage points and constructed an error term that related 

measured frequency shifts to those predicted by a model based on a local stiffness reduction.  

Farrar et al. (1994) applied the shifts in natural frequencies to detect damage on an I-40 bridge 

and observed that shifts in the natural frequencies are not sufficient to be used for detecting 
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damage of small faults.  To improve the accuracy of natural frequency method, it was found to be 

more feasible to conduct the experiment in controlled environments where the uncertainties of 

measurements are relatively low.  One example of such a controlled environment used resonance 

ultrasound spectroscopy to measure the natural frequencies and determine the out-of-roundness 

of ball bearings [Migliori et al., 1993]. 

Damage in different regions of a structure may result in different combinations of changes in 

the natural frequencies.  As a result, multiple shifts in the natural frequencies can indicate the 

location of damage.  Messina et al. (1996; 1997) successfully used the natural frequencies to 

locate single and multiple damage in a simulated 31-bar truss and tabular steel offshore platform.  

Damage was introduced to the two structures by reducing the stiffness of the individual bars by 

up to 30%.  This technique was experimentally validated on an aluminium rod test structure, 

where damage was introduced by reducing the cross-sectional area of one of the members from 

7.9 mm to 5.0 mm. 

To improve the ability of the natural frequencies to detect faults of small magnitude, high-

frequency modes, which are associated with local responses, may be used.  There are two main 

problems with working with high frequency modes.  Firstly, modal overlap is high; and secondly, 

high frequency modes are more sensitive to environmental conditions than low frequency modes. 

 (b) Damping ratios 

The use of damping ratios to detect the presence of damage in structures has been applied 

most often to composite materials.  Lifshitz and Rotem (1969) investigated changes caused by 

damage to dynamic moduli and damping of quartz particle filled resin specimens having either 

epoxy or polyester as the binder.  They introduced damage by applying a static load and it was 

observed that damping was more sensitive to damage than to the dynamic moduli.  Schultz and 

Warwick (1971) also observed that damping was more sensitive to faults than natural frequencies 

in glass-fiber-reinforced epoxy beams.  Lee et al. (1987) studied the damping loss factors for 

various types of damage cases in Kevlar/epoxy composite cantilevered beams.  It was found that 

damping changes were difficult to detect where damage was introduced by milling two notches 

of less than 5% of the cross-sectional area.  However, it was also found that the damping factors 
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were sensitive when damage was introduced through the creation of delaminations by gluing 

together two pieces of glass/epoxy and leaving particular regions unglued. 

Lai and Young (1995) observed that the delamination of graphite/epoxy composite materials 

increases the damping ratio of the specimen.  They also observed that the damping ratios 

decrease significantly when the specimen is exposed to humid environments for a prolonged 

period. 

(c) Mode shapes 

West (1984) used the Modal Assurance Criterion (MAC) [Allemang and Brown, 1982], a 

criterion that is used to measure the degree of correlation between two mode shapes, to locate 

damage on a Space Shuttle Orbiter body flap.  By applying the MAC, the mode shapes before 

damage were compared to those after damage.  Damage was introduced using acoustic loading.  

The mode shapes were partitioned and changes in the mode shapes across various partitions were 

compared. 

Kim et al. (1992) used the Partial MAC (PMAC) and the Co-ordinate Modal Assurance 

Criterion (COMAC) proposed by Lieven and Ewins (1988) to isolate the damaged area of a 

structure.  Mayes (1992) used the mode shape changes for fault localisation by using the 

Structural Translational and Rotational Error Checking (STRECH).  STRECH is obtained by 

taking the ratios of the relative modal displacements from undamaged and damaged structures 

and is a measure of the accuracy of the structural stiffness between two different structural 

degrees of freedom. 

Salawu (1995) introduced a global damage integrity index, based on a weighted-ratio of the 

natural frequencies of damaged to undamaged structures.  The weights were used to indicate the 

sensitivity of each mode to damage. 

The main drawbacks of the modal properties are: 

� they are computationally expensive to identify; 

� they are susceptible to additional noise due to modal analysis; 

� they do not take into account out-of-frequency-bandwidth modes; 

� they are only applicable to lightly damped and linear structure.   
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However, the modal data have the following advantages:  

� they are easy to implement for damage identification; 

� they are most suitable for detecting large faults; 

� they are directly linked to the topology of the structure; 

� they highlight important features of the dynamics of the structure. 

1.2.2. Frequency domain data 

The measured excitation and response of the structure are transformed into the frequency 

domain using Fourier transforms [Ewins, 1995].  The ratio of the response to excitation in the 

frequency domain at each frequency is called the Frequency Response Function (FRF).  Recently, 

the direct use of the FRFs to identify faults has become a subject of research [Sestieri and 

D’Ambrogio, 1989].  D’Ambrigio and Zobel (1994) directly applied the FRFs to identify the 

presence of faults in a truss-structure. 

Imregun et al. (1995) observed that the direct use of FRFs to identify faults in simulated 

structures offers certain advantages over the use of modal properties.  Lyon (1995) and Schultz et 

al. (1996) have advocated the use of measured FRFs for structural diagnostics. 

FRFs are difficult to use in that they contain more information than is needed for damage 

identification.  There is also no method to choose the frequency bandwidth of interest, and they 

are generally noisy in the anti-resonance regions.  Yet, FRF-methods have the following 

advantages: 

� measured data include the effects of out-of-frequency-bandwidth modes; 

� one measurement provides abundant data; 

� modal analysis is not required and therefore modal identification errors are avoided; 

� FRFs are applicable to structures with high damping and modal density.   

 

These techniques have shown some promise but extensive research still needs to be 

conducted on how FRFs could best be used for fault identification. 
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1.2.3. Time-frequency data 

Some types of damage, such as cracks caused by fatigue failures, cause linear structures to 

become non-linear.  In these cases, methods such as linear finite element analysis and modal 

analysis are no longer applicable and non-linear approaches are needed.  Non-linear structures 

give vibration data that are non-stationary.  A non-stationary signal is the one whose frequency 

components vary as a function of time. 

Examples of non-stationary signal include noise and vibration from accelerating traffic.  In 

order to analyse non-stationary signal the use of Fast Fourier Transform (FFT) method, which 

only shows the frequency components of the signal and is adequate for analysing stationary 

signals, is not sufficient.  As a result, time-frequency methods that simultaneously show the time 

and frequency components of the signals are required.  Some of the time-frequency methods that 

have been used for damage identification are: the Short-Time Fourier Transform (STFT) 

[Newland, 1993], Wavelet Transform (WT) [Daubechies, 1987] and Wigner-Ville Distribution 

(WVD) [Wigner, 1932].   

The STFT essentially transforms a small time window into frequency domain.  The time 

window is shifted to a new position and the transform is repeated again.  By so doing a time-

frequency spectrum is obtained.  The shorter the time window, the better the time domain 

resolution and the worse the frequency resolution and vice versa.  The time-frequency spectrum 

obtained from the STFT is therefore limited in that any increase in the frequency resolution is at 

the expense of the time resolution.  This limitation describes a principle called the Uncertainty 

Principle, which is analogous to Heisenberg Uncertainty Principle [Wheeler and Zurek, 1983], 

and in the context of signal processing it may be understood as the consequence of generating a 

linear representation of a potentially non-linear signal.  The STFT is said to be linear because 

when calculating it the integral includes a single, linear function of the signal and it is said to be 

time-invariant because the time shifted version of the signal results only in the time shifting of 

the time-frequency representation.  Furthermore, the STFT is optimal for signals with a linearly 

increasing phase. 

The WVD was developed by Wigner (1932) in the context of quantum mechanics and was 

brought to signal processing by Ville (1947).  The WVD is based on the calculation of a 
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correlation of a signal with itself (autocorrelation) to give an energy density.  The Fourier 

transform of the calculated energy density gives the WVD. The WVD is said to be bilinear 

because it uses two linear functions of the signal being analysed, as opposed to one for the STFT, 

when calculating it.  It provides optimal representation of linear frequency modulation signals 

such as stationary frequency case.  The advantages of the WVD are that it is optimised in the 

time and frequency domain and that non-stationary signals exhibit reduced distortion.  The 

disadvantages of the WVD are that it does not cover the local behaviour of the data at a given 

time and introduces cross-terms when the signal being analysed has many frequency components.  

The other disadvantage, which is reported by Cohen [1989], is that this distribution propagates 

noise.  It has been shown that if there is noise present in a small section of a signal, it appears 

again within the WVD spectrum and this is related to the interference caused by cross-terms.  

The other problem with the WVD is that negative amplitude values may be obtained in the 

results and this is physically irrelevant making the results obtained from the WVD difficult to 

interpret. 

The WT breaks down the signal into a series of basis functions called wavelets located at 

different positions in the time axis the same way that the Fourier transform decomposes the 

signal into harmonic components.  A given wavelet decays to zero at a distance away from its 

centre.  Local features of a signal can be identified from the scale, which is similar to frequency, 

and the position in the time axis of the wavelets into which it is decomposed.  The wavelet 

analysis permits the construction of orthonormal bases with good time-frequency resolution.  

Wavelets have an advantage that they are able to identify local features of a signal from the 

frequency and the position in the time axis of the wavelets while the WVD does not truly 

describe the character of a signal at a given time because it gives equal degree of importance 

between the far away times and the near times making it non-local.  The limitation of the wavelet 

approach is that frequency is logarithmically scaled and, as a result, low resolution is obtained at 

high frequencies [Barschdorf and Femmer, 1995]. 

Surace and Ruotolo (1994) applied complex Morlet WTs to identify damage in a finite 

element simulation of a cantilevered beam.  The authors found that for damage simulated by the 
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reduction of 20% to 45% of the beam thickness, the amplitude of the WTs exhibited modulations 

that were consistent with the opening and closing of the crack. 

Prime and Shevitz (1996) studied experimental data of a cantilevered beam with fatigue 

cracks of various magnitudes and found that the ‘harmonic mode shapes’ are more sensitive to 

crack depth and location than conventional mode shapes.  The harmonic mode shapes are 

calculated using the magnitudes of harmonic peaks in the cross-power spectra.  They observed 

that the Wigner-Ville transforms are more sensitive to non-linearity than the Fourier transforms. 

One weakness of the time-frequency approach is that there are many types, including WT, 

WVD and STFT, and there is no systematic method to choose the most appropriate type for 

damage identification.  However, comparative studies have shown that wavelet transforms are 

better suited for a damage detection problem than the WVD and STFT [Newland, 1994].   

Nevertheless, time-frequency approaches have the following advantages:  

� one measurement provides abundant data; 

� they are effective in identifying damage resulting in the loss of linearity of a structure. 

 

In this section three different domains in which vibration data may be presented were 

reviewed.  The main outstanding question is whether these data contain similar information, and 

if they do not contain the same information, how the information should be integrated such that it 

provides the best identification of faults. 

1.3. STRATEGIES IMPLEMENTED 

This section describes the most common strategies that have been used for damage 

identification in structures using vibration data in various domains.  The three strategies reviewed 

are the non-model methods, finite element updating methods and neural network methods. 

1.3.1. Non-model based methods 

Non-model based methods use vibration data in the frequency or modal domains in order to 

identify faults without the use of mathematical models.  They are computationally cheaper to 

implement than the methods that use mathematical models.  The MAC [Allemang and Brown, 
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1982] and the COMAC [Lieven and Ewins, 1988], which are a measure of correlation between 

mode shapes, have been used to identify damage [West, 1984; Fox, 1992; Kim et al., 1992; Ko et 

al., 1994; Salawu and Williams, 1995; Lam et al., 1995].  Pandey et al. (1991) used absolute 

changes in the displacement mode shape curvature to indicate faults in a finite element model of 

a beam.  The curvature was calculated using a central difference approximation method.  

Messina et al. (1998) introduced the Multiple Damage Location Assurance Criterion (MDLAC), 

which used the correlation between the natural frequencies from undamaged and damaged 

structures to identify the location and size of damage. 

A different method was employed by Maia et al. (1997) and Silva et al. (1998), whose 

Frequency-Response-Function-Curvature-Method used the difference between curvatures of 

damaged and undamaged structures to identify damage.  The Response-Function-Quotient-

Method used quotients between the FRFs at different locations for damage detection [Maia et al., 

1999].  Gawronski and Sawicki (2000) used modal norms to successfully locate damage in 

structures.  The modal norms were calculated from the natural frequencies, modal damping and 

modal displacements at the actuator and sensor locations of healthy and damaged structures.  

Finally, Worden et al. (2000) applied outlier analysis to detect damage on various simulated 

structures and a carbon fibre plate by comparing the deviation of a transmissibility-function-

signal from what is considered normal. 

1.3.2. Finite element updating methods 

Finite element (FE) model updating has been used to detect damage on structures [Friswell 

and Mottershead, 1995; Mottershead and Friswell, 1993, Maia and Silva, 1996].  When 

implementing FE updating methods for damage identification, it is assumed that the FE model is 

a true dynamic representation of the structure.  This means that changing any physical parameter 

of an element in the FE model is equivalent to introducing damage in that region.  There are two 

approaches used in FE updating: direct methods and iterative methods.  Direct methods, which 

use the modal properties, are computationally efficient to implement and reproduce the measured 

modal data exactly.  They do not take into account the physical parameters that are updated.  
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Consequently, even though the FE model is able to predict measured quantities, the updated 

model is limited in the following ways: 

� it may lack the connectivity of nodes − connectivity of nodes is a phenomenon that occurs 

naturally in finite element modelling because of the physical reality that the structure is 

connected; 

� the updated matrices are populated instead of banded − the fact that structural elements are 

only connected to their neighbours ensures that the mass and stiffness matrices are diagonally 

dominated with few couplings between elements that are far apart; 

� there is a possible loss of symmetry of the matrices. 

Iterative procedures use changes in physical parameters to update FE models and produce 

models that are physically realistic.  In this section, direct and indirect methods that use the FRFs 

or modal properties for FE updating are examined. 

(a) Matrix update methods 

Matrix update methods are based on the modification of structural model matrices, for 

example the mass, stiffness and damping matrices, to identify damage in structures [Baruch, 

1978].  They are implemented by minimising the distance between analytical and measured 

matrices.  The difference between updated matrices and original matrices identifies damage.  One 

way of implementing this procedure is to formulate the objective function to be minimised, place 

constraints on the problem such as retaining the orthogonal relations of the matrices [Ewins, 

1995] and choose an optimisation routine.  These methods are classified as iterative because they 

are implemented by iteratively modifying the relevant parameters until the error is minimised. 

Ojalvo and Pilon (1988) minimised the Euclidean norm of the residual force for the ith mode 

of the structure by using the modal properties.  The residual force, Ei, is defined by the following 

equation of motion: 

}]){K[]C[j]M[(}E{ duu
i

u
ii i

φ+ω+ω−= 2     (1.1) 

where subscripts u and d indicate undamaged and damaged respectively. 

The residual force is the harmonic force with which the undamaged structure will have to be 

excited at a frequency of ωi, so that the structure will respond with the mode shape }{ d
iφ .  In 
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Equation 1.1 [Mu], [Cu] and [Ku] are the mass, damping and stiffness matrices of the undamaged 

structure.  The Euclidean norm is minimised by updating physical parameters in the model. 

D’Ambrogio and Zobel (1994) minimised the residual force in the equation of motion in the 

frequency domain as: 

( ) ]F[]X[]K[]C[j]M[]E[ dduuu −+ω+ω−= 2   (1.2) 

where [Xd] and [Fd] are the Fourier transformed displacement and force matrices respectively 

from the damaged structure.  Each column corresponds to a measured frequency point.  The 

Euclidean norm of the error matrix [E] is minimised by updating the physical parameters in the 

model. 

The methods described in this subsection are computationally expensive.  In addition, it is 

difficult to find a global minimum through the optimisation technique, due to the multiple 

stationary points, which are caused by its non-unique nature [Janter and Sas, 1990].  Techniques 

such as the use of genetic algorithms and multiple starting design variables have been applied to 

increase the probability of finding the global minimum [Mares and Surace 1996; Levin and 

Lieven, 1998a; Larson and Zimmerman, 1993; Friswell et al., 1996; Dunn, 1998]. 

(b) Optimal matrix methods 

Optimal matrix methods are classified as direct methods and employ analytical, rather than 

numerical, solutions to obtain matrices from the damaged systems.  They are normally 

formulated in terms of Lagrange multipliers and perturbation matrices.  The optimisation 

problem is posed as: 

{ })∆Κ ,∆ ,∆Μλ+ )∆Κ ,∆ ,∆Μ CR(  CE( Minimise  (1.3) 

where E, λ and R are the objective functions, Lagrange multiplier and constraints equations, 

respectively; and ∆ is the perturbation of system matrices.  In equation 1.3, different 

combinations of perturbations are experimented with until the difference between the FE model 

and the measured results is minimised. 

Baruch and Bar Itzhack (1978), Berman and Nagy (1983) and Kabe (1985) formulated 

equation 1.3 by minimising the Frobenius norm of the error while retaining the symmetry of the 

matrices.  McGowan et al. (1990) added an additional constraint that maintained the connectivity 



CHAPTER 1. INTRODUCTION      13   

of the structure and used measured mode shapes to update the stiffness matrix to locate structural 

damage. 

Zimmerman et al. (1995) used a partitioning technique in terms of matrix perturbations as 

sums of element or sub-structural perturbation matrices in order to reduce the rank of unknown 

perturbation matrices.  The result was a reduction in the modes required to successfully locate 

damage.  One limitation of these methods is that the updated model is not always physically 

realistic. 

(c) Sensitivity based methods 

Sensitivity based methods assume that experimental data are perturbations of design data 

about the original FE model.  Due to this assumption, experimental data must be close to the FE 

data for these methods to be effective.  This formulation only works if the structural modification 

is small (i.e. the magnitude of damage is small). 

These methods are based on the calculation of the derivatives of either the modal properties 

or the frequency response functions.  There are many methods that have been developed to 

calculate the derivative of the modal properties and frequency response functions.  One such 

method was proposed by Fox and Kapoor (1968) who calculated the derivatives of the modal 

properties of an undamped system.  Norris and Meirovitch (1989), Haug and Choi (1984) and 

Chen and Garba (1980) proposed other methods of computing the derivatives of the modal 

properties to ascertain parameter changes.  They utilised orthogonal relations with respect to the 

mass and stiffness matrices to compute the derivatives of the natural frequencies and mode 

shapes with respect to parameter changes.  Ben-Haim and Prells (1993) and Prells and Ben-Haim 

(1993) proposed selective FRF sensitivity to uncouple the FE updating problem.  Lin et al. 

(1995) improved the modal sensitivity technique by ensuring that these methods were applicable 

to large magnitude faults. 

Hemez (1993) proposed a method that assesses the sensitivity at an element level.  The 

advantage of this method is its ability to identify local errors.  In addition, it is computationally 

efficient.  Alvin (1996) modified this approach to improve the convergence rate by utilising a 



CHAPTER 1. INTRODUCTION      14   

more realistic error indicator and by incorporating statistical confidence measurements for both 

initial model parameters and measured data. 

(d) Eigenstructure assignment methods 

Eigenstructure assignments methods are based on control system theory.  The structure under 

investigation is forced to respond in a predetermined manner.  During damage detection, the 

desired eigenstructure is the one that is measured in the test.  Zimmerman and Kaouk (1992) 

applied these methods to identify the elastic modulus of a cantilevered beam using measured 

modal data.  Schultz et al. (1996) improved this approach by utilising measured FRFs. 

The one limitation of the methods outlined in this section is that the number of sensor 

locations is less than the degrees of freedom in the FE model.  This is especially problematic 

since it renders the integration of the experimental data and FE model − the very basis of finite 

element updating fault identification methods − difficult.  To compensate for this limitation, the 

mode shapes and FRFs are either expanded to the size of the FE model or the mass and stiffness 

matrices of the FE model are reduced to the size of the measured data.  Among the reduction 

methods that have been applied are the static reduction [Guyan, 1965], dynamic reduction [Paz, 

1984], improved reduced system [O’Callahan, 1989] and system-equivalent-reduction-process 

[O’Callahan et al., 1989]. The system-equivalent-expansion-process proposed has been used to 

expand the measured mode shapes and FRFs.  Techniques that expand the mass and stiffness 

matrices have also been employed [Gysin 1990; Imregun and Ewins, 1993; Friswell and 

Mottershead, 1995]. 

It has been shown that FE updating techniques have numerous limitations.  Most importantly, 

they rely on an accurate FE model, which may not be available.  Even if the model is available, 

the problem of the non-uniqueness of the updated model makes the problem of damage 

identification using FE updating non-unique.  Non-uniqueness in fault identification is a 

phenomenon that describes a situation where more than one fault diagnosis is suggested. 
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1.3.3.  Neural network methods 

Recently, there has been increased interest in applying artificial neural networks to identify 

faults in structures.  Neural networks approximate functions of arbitrary complexity using given 

data.  Supervised neural networks are used to represent a mapping from an input vector onto an 

output vector, while unsupervised networks are used to classify the data without prior knowledge 

of the classes involved.  The most common neural network architecture is the multilayer 

perceptron (MLP), trained using the back-propagation technique [Bishop, 1995].  An alternative 

network is the radial basis function (RBF) [Bishop, 1995]. 

Kudva et al. (1991) used MLP neural networks to identify damage on a plate.  The inputs to 

the neural network were the readings from a strain gauge, obtained by applying a static uniaxial 

load to the structure, while the output was the location and size of a hole.  Damage was modelled 

by cutting holes of diameters that varied from 12.7 mm to 63.5 mm.  The authors found that 

neural network was able to predict the error location without failure, although difficulty was 

experienced in predicting the size of a hole.  In cases where the neural network successfully 

identified the size of a hole, there was approximately 50% error. 

Wu et al. (1992) used an MLP neural network to identify damage in a model of a three-story 

building.  Damage was modelled by reducing member stiffness by between 50% to 75%.  The 

input to the neural network was the Fourier transform of the acceleration data, while the output 

was the level of damage in each member.  The network was able to diagnose damage within 25% 

accuracy. 

Leath and Zimmerman (1993) applied MLP to identify damage on a four-element 

cantilevered beam, which was modelled by reducing the Young’s modulus by up to 95%.  The 

inputs to the neural network were the first two natural frequencies and the output was the 

Young’s modulus.  The neural network could identify damage to within 35% accuracy. 

Worden et al. (1993) used an MLP neural network to identify damage in a twenty-member 

structure, which was modelled by removing each member.  The input to the neural network was 

the strain in twelve members.  The network was trained by using data from the FE model.  When 

applied to experimental data, the network was usually able to detect the location of damage. 
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Levin and Lieven (1998b) applied a RBF neural network and modal properties to identify 

errors in the FE model of a cantilevered beam.  The method was found to give good 

identification of faults even with a limited number of experimentally measured degrees of 

freedom and modes.  Atalla and Inman (1998) trained a RBF neural network using FRFs in order 

to identify faults in structures. 

The finite element updating methods discussed in Section 1.3.2 require the availability of an 

accurate finite element model to perform damage identification, which may not be available.  

Methods in section 1.3.1 avoid the need of a finite element model but are mostly only able to 

detect faults and do not seem to be able to locate and quantify faults well.  The implementation 

of neural network methods does not necessarily require the availability of a finite element model 

but requires that the vibration data be available to train the network and are able to detect, locate 

and quantify faults.  The use of neural network techniques circumvents the reduction of finite 

element degrees-of-freedom as well as the expansion of measured data, procedures that are 

usually implemented when finite element updating is used to identify faults.  One problem that 

has not been covered widely in the damage identification literature is how to use neural networks 

to give the confidence levels on the fault identification results obtained. 

1.4. ENGINEERING APPLICATIONS 

The ultimate goal of a fault identification procedure is to apply the methods to real structures.  

These methods have been applied to beams, trusses, plates, frames, bridges, offshore structures 

and composite structures [Yeun, 1985; Ju and Mimovitch, 1986; Kashangaki, 1991; Kondo and 

Hamamoto, 1994; Wolff and Richardon, 1989; Friswell et al., 1994; Saitoh and Takei, 1996; 

Biswas et al., 1990; Mazurek and DeWolf, 1990; Vandiver, 1975, 1977; Loland and Dodds, 

1976; Mayes, 1992; Grygier, 1994; Lifshitz and Rotem, 1969]. 

Srinivasan and Kot (1992) investigated the feasibility of assessing damage in structural 

systems by measuring changes in the dynamics of a freely suspended thin cylindrical shell.  A 

notch was machined into the shell to simulate a small amount of damage.  A comparison between 

modal parameters before and after damage had occurred was performed and it was found that the 

natural frequencies were not sensitive to the crack introduced.  Some of the mode shapes showed 
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significant changes, suggesting that they were more sensitive parameters for damage detection 

than natural frequencies.  Royton et al. (2000) proposed a damage localisation procedure based 

on the split-mode phenomenon that occurs when modes of an axisymmetric structure are 

separated due to faults on the structure.  Further research needs to be conducted on how fault 

identification might be performed in axisymmetric structures.  An important question to be 

answered is whether fault identification is more successful when symmetry is retained than when 

mass is added to the structure to break the symmetry. 

1.5  CONTRIBUTION OF THIS WORK 

The literature indicates that using the FRFs directly eliminates errors associated with modal 

analysis.  It is not clear how the FRF data should be presented in order to enhance their ability to 

identify faults.  In this study, a parameter called pseudo modal energy, defined as the integral of 

the FRF over a chosen frequency bandwidth, is proposed for damage identification.  This 

parameter and its derivative with respect to parameter changes are mathematically derived. 

The above literature review suggests that it is unclear which domain (frequency, modal or 

time-frequency) should be used to present the data in order to achieve successful fault 

identification.  It is clear that the time-frequency domain is most suitable for faults that cause the 

structure to become non-linear.  Furthermore, there has been little research into the effects when 

data, which theoretically should give identical fault identification when the data are presented in 

different domains, actually give conflicting results. 

This study proposes a committee of neural networks, which employs the pseudo modal 

energies and modal properties to identify faults in structures.   Conditions on how the individual 

networks should be weighted to give an optimum committee-of-networks are mathematically 

derived.  First, the proposed approach is tested on simulated data from a cantilevered beam, 

which is substructured into three regions.  Substructuring is applied to reduce the number of 

possible regions where faults could be located.  The effect of adding noise to the simulated data 

on the performance of the proposed approach is investigated.  Second, the committee-of-

networks is used to identify damage in a population of cylindrical shells.  Population of 

cylindrical shells are used because the literature suggests that there has been little research on 
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fault identification in a population of structures.  This is important for identifying faults in an 

assembly line during the production of nominally identical structures. 

All the neural network based fault identification techniques that have been reviewed above 

are deterministic in that they give the identity of faults only.  This is because they have been 

formulated using the maximum-likelihood framework.  This framework maximises the capacity 

of neural networks to predict the correct identification of faults when presented with data.  This 

study proposes a neural network-based fault identification strategy, which formulates the neural 

network problem in a Bayesian framework.  The Bayesian framework ensures that neural 

networks give the identities of faults and their respective confidence intervals.  The Bayesian 

approach generates a population of feasible models and from the variance of these models the 

confidence level are determined. 

1.6  STRUCTURE OF THIS THESIS 

Chapter 2 introduces pseudo modal energies for fault identification in mechanical structures.  

The pseudo modal energies are mathematically derived and their sensitivities to changes in 

physical parameters are calculated.  The pseudo modal energies are compared to the classical 

modal properties. 

In Chapter 3 a committee-of-networks employing the pseudo modal energies and modal 

properties, for identification of faults, is proposed.  Equations that show how each method should 

be weighted are derived.  Neural networks are formulated using a maximum-likelihood 

framework and the committee-of-networks is tested on a simulated cantilevered beam.  The 

neural networks are trained using the scaled conjugate gradient method. 

Chapter 4 assesses the feasibility of using vibration data measured from a population of 

cylinders to identify faults in structures.  This chapter outlines all the experiments conducted in 

this thesis and pertinent signal processing issues that are involved. 

In Chapter 5 the experimental data measured in Chapter 4 are used to test the committee of 

neural networks formulated in the maximum-likelihood framework.  The neural networks are 

trained using the scaled conjugate gradient method. 
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Chapter 6 proposes the Bayesian-formulated neural networks to perform probabilistic fault 

identification in a population of cylindrical shells.  The neural networks are trained using the 

hybrid Monte Carlo method. 

Chapter 7 concludes this study and recommends issues for further research.  From this thesis, 

the papers listed in Appendix A have been published. 
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Chapter 2 

FAULT IDENTIFICATION USING PSEUDO MODAL 

ENERGIES AND MODAL PROPERTIES 

2.1 INTRODUCTION 

As noted in Chapter 1, vibration data have been used with varying degrees of success to 

identify damage in structures.  Three types of signals have been used to this end: modal domain 

e.g. the modal properties, frequency domain e.g. Frequency Response Functions (FRFs) and 

time-frequency domain e.g. the Wavelet Transforms (WTs).  In this thesis, the FRFs and the 

modal properties are studied because of the class of faults considered, which does not change the 

linearity of the structure [Doebling et al., 1996].  In this chapter, a parameter called pseudo 

modal energy, defined as the integral of the FRF over a chosen frequency bandwidth, is 

introduced for fault identification in structures.  Previously, a parameter similar to this was used 

for finite element model updating [Atalla, 1996] and was treated as a numerical convenience 

rather than a physical parameter that is related mathematically to the modal properties.  In this 

study, a formal use of this parameter is made in order to identify faults in structures. 

The structure of this chapter is as follows: first, the analytical expressions defining the 

pseudo modal energies in receptance and inertance form are calculated as functions of the modal 

properties for the case where damping is low.  Second, the expressions, which describe the 

sensitivities of the pseudo modal energies with respect to any structural modification, are 
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derived.  Finally, the pseudo modal energies are used to identify faults on a simulated 

cantilevered beam and are compared to the modal properties.  In addition the sensitivities of 

these parameters to noise and faults are investigated. 

One issue raised in this study is how to choose the frequency bandwidths for calculating the 

pseudo modal energies.  This issue is discussed in qualitative terms and suggestions are made on 

how to optimise the choice of these bandwidths.  Faults are introduced to the cantilevered beam 

by reducing the cross-sectional area of one of the elements of the beam.  Simulating faults by 

reducing the cross-sectional areas of the structure does not cover all possible types of faults that 

may occur in structures.  Nonetheless, the literature suggests that it has been used successfully 

[Surace and Ruotolo, 1994; Manning, 1994; Rizos et al., 1990; Stubbs and Osegueda, 1990]. 

2.2 MODAL PROPERTIES 

Before the pseudo modal energy is introduced, the modal properties, which have been used 

extensively in fault identification in mechanical systems, are reviewed [Doebling et al, 1996].  

The modal properties are related to the physical properties of the structure.  All elastic structures 

may be described in terms of their distributed mass, damping and stiffness matrices in the time 

domain through the following expression: 

}F{}X]{K[}'X]{C[}''X]{M[ =++   (2.1) 

where [M], [C] and [K] are the mass, damping and stiffness matrices respectively, and X, X′ and 

X′′ are the displacement, velocity and acceleration vectors respectively.  F is the applied force. 

If equation 2.1 is transformed into the modal domain to form an eigenvalue equation for the 

ith mode, then [Ewins, 1995]: 

}{}]){K[]C[j]M[( iii 0
2

=φ+ω+ω−   (2.2) 

where 1−=j , iω  is the ith complex eigenvalue, with its imaginary part corresponding to the 

natural frequency ωi, and i}{φ  is the ith complex mode shape vector with the real part 

corresponding to the normalized mode shape {φ}i. 

Fox and Kapoor (1968) derived the sensitivities of the modal properties for undamped case to 

be: 
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In equations 2.3 and 2.4, N is the number of modes, ωi,p=∂{ω}i/∂gp, {φ}i,p=∂{φ}i/∂gp, 

[K],p=∂[K]/∂gp, [M],p=∂[M]/∂gp and gp represents changes in the pth structural parameters.  

Adhikari (2000) has calculated the damped version of equations 2.3 and 2.4. 

The introduction of damage in structures changes the mass and stiffness matrices.  Equations 

2.3 and 2.4 demonstrate that changes in the mass and stiffness matrices cause changes in the 

modal properties of the structure. 

2.3 PSEUDO MODAL ENERGIES 

The pseudo modal energies are defined as the integrals of the real and imaginary components 

of the FRFs over various frequency ranges that bracket the natural frequencies.  The FRFs may 

be expressed in receptance and inertance form [Ewins, 1995].  On the one hand, receptance 

expression of the FRF is defined as the ratio of the Fourier transformed displacement to the 

Fourier transformed force.  On the other hand, inertance expression of the FRF is defined as the 

ratio of the Fourier transformed acceleration to the Fourier transformed force.  This section 

expresses the pseudo modal energies in terms of receptance and inertance forms in the same way 

as the FRFs are expressed in these forms. 

2.3.1 Receptance and inertance pseudo modal energies 

The FRFs may be expressed in terms of the modal properties by using the modal summation 

equation [Ewins, 1995].  From the FRFs expressed as a function of modal properties, pseudo 

modal energies may be calculated as a function of the modal properties.  This is done in order to 

infer the capabilities of pseudo modal energies to identify faults from those of modal properties.   

The FRFs may be expressed in terms of the modal properties using the modal summation 

equation as follows [Ewins, 1995]: 



CHAPTER 2. PSEUDO MODAL ENERGIES AND MODAL PROPERTIES 23   

�
= ω+ωωζ+ω−

φφ
=ω

N

i iii

i
l

i
k

kl j
)(H

1
22 2

  (2.5) 

Here Hkl is the FRF due to excitation at k and measurement at l and ζi is the damping ratio 

corresponding to the ith mode.  Here it is assumed that the system is proportionally damped.  This 

assumption is valid if the structure being analysed is lightly damped.  Proportional damping is 

defined as a situation where the viscous damping matrix [C] (see equation 2.2) is directly 

proportional to the stiffness [K] or mass [M] matrix or to the linear combination of both. 

The Receptance pseudo Modal Energy (RME) is calculated by integrating the receptance FRF 

in equation 2.5 as follows: 
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In equation 2.6, aq and bq represent respectively the lower and the upper frequency bounds for 

the qth pseudo modal energy.  The lower and upper frequency bounds bracket the qth natural 

frequency.  By assuming light damping (ζi<<1), equation 2.6 is simplified to give [Gradshteyn et 

al., 1994]: 
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The most commonly used techniques to measure vibration data measure the acceleration 

response instead of the displacement response [Doebling et al., 1996].  In such a situation, it is 

better to calculate the Inertance pseudo Modal Energies (IMEs) as opposed to the RMEs 

calculated in equation 2.7. 

The inertance pseudo modal energy is derived by integrating the inertance FRF (see [Ewins, 

1995] for the definition of inertance) written in terms of the modal properties by using the modal 

summation equation as follows: 
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Assuming that damping is low, equation 2.8 becomes [Gradshteyn et al., 1994]: 
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Equation 2.9 reveals that the inertance pseudo modal energy may be expressed as a function of 

the modal properties.  The inertance pseudo modal energies may be calculated directly from the 
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FRFs using any numerical integration scheme.  This avoids going through the process of modal 

extraction and using equation 2.9. 

 

The advantages of using the pseudo modal energies over the use of the modal properties are: 

� all the modes in the structure are taken into account as opposed to using the modal properties, 

which are limited by the number of modes identified; 

� integrating the FRFs to obtain the pseudo modal energies smoothes out the zero-mean noise 

present in the FRFs. 

 

In this section the pseudo modal energies have been mathematically derived.  The next step is 

to calculate their sensitivities to structural changes the same way Fox and Kapoor (1968) 

calculated the sensitivities of the modal properties with respect to parameter changes. 

2.3.2 Sensitivities of pseudo modal energies  

In this section the sensitivity of pseudo modal energies to parameter changes is assessed.  

This gives some insights into how these parameters are affected by the presence of faults in 

structures.  Because the pseudo modal energies have been derived as functions of the modal 

properties, these sensitivities are calculated as functions of the sensitivities of the modal 

properties.  The sensitivity of the RMEs are determined by calculating the derivative of equation 

2.7 with respect to the pth structural changes to give the following expression: 
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Equation 2.10 is obtained by assuming that ∂ζi/∂gp=0 and that ζ2
i≈0.  In this chapter, faults are 

introduced by reducing the cross-sectional area of the beam and in later chapters by drilling holes 

in structures.  Introducing faults this way has been found not to change the damping properties of 
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the structure, thereby justifying the assumption that damping is independent of faults, which is 

used to derive equation 2.10. 

Equation 2.10 shows that the sensitivity of the RME is a function of the natural frequencies, 

the damping ratios, the mode shapes and the derivatives of the natural frequencies and mode 

shapes.  Substituting the derivatives of the modal properties [Adhikari, 2000] into equation 2.10 

gives the sensitivity of the pseudo modal energies in terms of the mass and stiffness matrices, 

which are directly related to the physical properties of the structure. 

The derivative of the IME [equation 2.9] with respect to the pth parameter changes may be 

written as follows as derived in Appendix B: 
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Similarly, equation 2.11 may be expressed in terms of the mass and stiffness matrices by 

substituting the derivatives of the modal properties [Adhikari, 200] into equation 2.11. 

In this section the receptance pseudo modal energies and the inertance pseudo modal energies 

have been derived (see Appendix B) and their respective sensitivities have been calculated.  It is 

shown how these parameters are related to the modal properties as well as the mass and stiffness 

matrices.  It is found that the sensitivities of the receptance pseudo modal energies and the 

inertance pseudo modal energies depend upon the sensitivities of the modal properties.  From 

here onwards the word pseudo modal energy (PME) will be used mainly to describe the inertance 

pseudo modal energy. 

By analysing the pseudo modal energies it is observed that if the frequency bandwidth is too 

narrow, they are dominated by the behaviour of the peaks of the FRFs.  This is undesirable 

because near the peaks, factors such as damping ratios, which show high degrees of uncertainty, 

dominate the dynamics of the pseudo modal energies.  At the same time, if the bandwidth is too 

wide, the influence of the anti-resonances, which are sensitive to noise, dominates the 



CHAPTER 2. PSEUDO MODAL ENERGIES AND MODAL PROPERTIES 26   

characteristics of the pseudo modal energies.  An optimal bandwidth is that which is sufficiently 

narrow to capture the characteristics of the peaks but adequately wide to smooth out the zero-

mean noise in the FRFs.  It must not be so wide, however, that it includes the anti-resonances. 

Equations 2.7, and 2.9-2.11 show that the pseudo modal energies depend on the modal 

properties and the frequency bounds chosen.  This implies that as long as the FRF information 

contain the modal properties, then it does not matter how many frequency points are included in 

the calculation of the pseudo modal energies.  Here it should be noted that the number of 

frequency points is a separate issue from the frequency bandwidth.  On calculating the pseudo 

modal energies the smallest number of frequency points must be used and this minimises the 

errors in the FRFs that are propagated into the pseudo modal energies.  In other words, for a 

given frequency bandwidth for calculating the pseudo modal energies, increasing the number of 

frequency points in the bandwidth beyond a certain threshold does not necessarily add any 

additional information about the dynamics of the system.  It should be noted that the dynamics of 

the system is the source of information that indicate the presence or the absence of faults.  The 

details of the calculations performed in this section are shown in Appendix B. 

Now that expressions for the pseudo modal energies and their respective sensitivities have 

been derived, as shown in Appendix B, the next objective is to verify these equations.  This is 

done by comparing their sensitivities with respect to the presence of faults in structures 

calculated directly from the FRFs to those calculated from the modal properties. 

2.4 CANTILEVERED BEAM 

A simulated aluminium beam, studied in this section, is shown in Figure 2.1.  The beam is 

fixed on one end and free on the other end.  The motion of the beam is restricted to displacement 

in the y-axis and rotation about the z-axis.  A finite element model with 9 standard Bernoulli-

Euler elements based on linear interpolations for traction and torsion and cubic interpolations for 

flexion is constructed using the Structural Dynamics Toolbox [Balmès, 1997a] which runs in 

MATLAB [Mathworks, 1992].  Using this toolbox, the geometry of the beam is specified by 

defining the nodes of the beam and an arbitrary reference node to allow a distinction between the 

principal directions of the beam cross-section.  Since the beam has been divided into 9 elements, 



CHAPTER 2. PSEUDO MODAL ENERGIES AND MODAL PROPERTIES 27   

11 nodes are defined (this includes the reference and clamped nodes).  The model description 

indicating the connections between the nodes as well as the material description and section 

properties between the nodal connections are specified.  From these properties the mass [M] and 

stiffness [K] matrices are assembled.  Since there are 9 active nodes (node 1 is clamped and node 

11 is a reference point), each with 2 degrees of freedom (displacement in the y-axis and rotation 

about the z-axis), the mass [M] and stiffness [K] matrices are of size 18 by 18.  The MATLAB 

eig function is used to calculate the eigenvalues and eigenvectors of equation 2.2.  It should be 

noted that on calculating these eigenproperties in equation 2.2 the damping matrix [C] is set to a 

null matrix.  This assumption is valid for structures where damping is low, which covers quite a 

great deal of structures.  If [M] is positive definite and [K] is positive semi-definite, then solving 

the eigenvalue problem (equation 2.2 with [C]=[0]) gives N independent eigenvectors i}{φ and 

eigenvalues ωi
2 (where ωi

2 forms a diagonal matrix).  Here N = 18 because the structure under 

consideration has been constructed such that it has 18 degrees of freedom.  The eigenvalues are 

mass normalised such that I]][M[][ T =φφ  and [ ]
�

� 2
i

T ]][K[][ ω=φφ , where I is the identity matrix 

and [ ]
�

� 2
iω  is a diagonal matrix.                       

           

 

 

 

Figure 2.1. A cantilevered beam modelled with 9 Euler beam elements. 
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The first 5 of the 18 natural frequencies calculated by solving an eigenvalue equation are 

31.4, 197.1, 551.8, 1081.4 and 1787.6 Hz.  Using the 18 calculated modal properties the FRFs 

are computed using the modal summation equation, which is an expression inside the integral in 

equation 2.8.  The total number of FRFs that may be calculated from the modal properties is 324 

(18 by 18).  In this study the FRFs corresponding to excitation at node 10 and acceleration 

measurements at nodes 2 to 10 are used.  It should be noted that because of the principle of 

reciprocity [Ewins, 1995], the acceleration point and excitation point are interchangeable.   

The calculated FRFs are transformed into the time domain, in which the data are 

contaminated with noise.  The data are then transformed back to the frequency domain and the 

modal properties are extracted using the frequency domain modal extraction technique described 

in Appendix C.  In summary, the FRFs are calculated from the finite element model by following 

this procedure: 

(1) Using the mass and stiffness matrices from the finite element model, calculate the first 18 

modal properties by solving the eigenvalue problem in equation 2.2 while assuming that 

[C]=[0]. 

(2) Assuming the damping ratios (ζi) of 0.001, use the modal summation equation [Ewins, 1995] 

to generate the FRFs of frequency bandwidth [0.8545 7000] Hz (the size of the FRFs is 

8192).   

(3) Generate the mirror image of the FRFs centered on 0Hz (new frequency bandwidth is [–7000 

7000] Hz).   

(4) On the FRFs generated in 3, perform the inverse Fast Fourier Transform [Cooley and Tukey, 

1965] to obtain the impulse response function (of size 16384).  

(5) Add Gaussian noise levels (±0%, ±1%, ±2%, ±3% and ±4 %) to the impulse response data.  

(6) Perform the Fast Fourier Transform to the impulse response function to obtain the FRFs (of 

size 8192). 

 

From the FRFs calculated in step 6, the modal properties are extracted as follows [See Appendix 

C]:  

(1) Choose the frequency bandwidth for mode extraction ([17 1880] Hz) (first five modes).  
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(2) Obtain the initial estimates of the natural frequencies and damping ratios.  Here it is assumed 

that the natural frequencies and damping ratios are known (the natural frequencies are 

calculated from the finite element model and damping ratios are set to be 0.001).  

(3) Using the natural frequencies and the damping ratios in step 2, calculate the mode shapes. 

 

Various fault cases are simulated by reducing the cross-sectional area of element 8 [Figure 

2.1] by 5%, 10%, and 15%.  For each fault case and the undamaged case the FRFs are generated.  

From these FRFs, the modal properties are extracted as described in the previous paragraph, and 

the pseudo modal energies are calculated by integrating over the FRFs using the trapezoidal rule 

technique.  On calculating the pseudo modal energies, the following bandwidths are chosen in 

order to bracket the natural frequencies of the beam: 18-44, 155-240, 484-620, 1014-1151 and 

1726-1863 Hz.  It should be noted that these frequency ranges are chosen following the general 

guidelines outlined in Section 2.3. 

Finite element model is run 1000 times with a fault case and the maximum noise level chosen 

and varying the cross-sectional area of all nine elements by ±1% about a mean following a 

Gaussian distribution.  This introduces uncertainties to the data, which are typically observed in 

real measurements [Maia and Silva, 1997].  The same procedure is performed when element 8 is 

reduced by 5%, 10% and 15%.  In other words, the abilities of the modal properties and the 

pseudo modal energies to detect faults of 5%, 10% and 15% reduction in the cross-sectional area 

of element 8, [see Figure 2.1] are assessed despite the presence of ±1% perturbations in the 

cross-sectional areas of all nine elements. 

The sensitivities of the pseudo modal energies and the modal properties to damage are 

investigated in the presence of various noise levels by using the statistical overlap factor (SOF).  

The SOF between two distributions is defined as the ratio of the distance between the averages of 

the two distributions, to the mean of the two standard deviations.  The SOF may be written 

mathematically as follows: 
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  (2.12) 
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Here 1x
−

 and 2x
−

 are the means of distributions; 1σ  and 2σ  are their respective standard 

deviations; and |•| stands for the absolute value of •. 

The statistical overlap factor was inspired by the modal overlap factor, which is widely 

used in modal analysis to assess the degree of modal overlap between two modes [Langley, 

1999].   The higher the SOF, the better is the degree of separation between the two distributions.  

The influence of noise on the pseudo modal energies and modal properties, as well as the effect 

of excluding high-frequency modes when identifying these parameters, is investigated. 

2.5 RESULTS AND DISCUSSIONS 

The sample of real and imaginary parts of the FRF from the cantilevered beam, and the 

frequency bandwidths of integration are shown in Figure 2.2.  The next subsection verifies 

equations 2.9 and 2.11. 

2.5.1 Confirmation of equations 2.9 and 2.11 

This section verifies the accuracy of equations 2.9 and 2.11.  In order to do this, the pseudo 

modal energies are calculated from the equations using the modal properties extracted from the 

FRFs and from numerical integration of the FRFs.  It should be noted that the FRFs used in this 

section are not contaminated with noise.  The results of the real and imaginary parts of the 

pseudo modal energies are shown in Figure 2.3. These graphs show that the real and imaginary 

parts of the pseudo modal energies from equation 2.9 are similar to those from numerical 

integration. The absolute percentage errors of the real part of pseudo modal energies shown in 

Figure 2 is 8% for the first mode, 1% for the second mode, 0% for the third mode, 3% for the 

fourth mode, and 30% for the fifth mode. These errors are obtained by calculating the difference 

between the results obtained from direct integration and those estimated from equation 2.10 and 

dividing the difference by the direct integration results.  The imaginary part shows the absolute 

percentage differences of 4% for the first mode and 0% for the second to fifth mode. 

Likewise, to confirm the accuracy of equation 2.11, the sensitivities of the pseudo modal 

energies obtained through the use of equation 2.11 are compared to those from numerical 
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integration of the FRFs and the results are shown in Figure 2.4.  Figure 2.4 indicates that the two 

procedures give similar results of the real and imaginary parts of these sensitivities. 
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Figure 2.2. Real and imaginary parts of the FRF with no faults introduced and no noise added 
(the dotted lines indicate the bounds of integration).  This figure shows the third to the 5th modes. 
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Figure 2.3. Real and imaginary parts of the pseudo modal energies obtained using direct 
integration of the FRF and calculated from the modal properties using equation 2.9 (the FRF is 
noise-free). 
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Figure 2.4. Real and imaginary parts of the sensitivities of the pseudo modal energies due to 1% 
reduction in the cross-sectional area of element 8, calculated from direct integration of the FRF 
and from equation 2.11 (the FRF is noise-free). 
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The absolute percentage errors between the real parts of the sensitivities of the pseudo modal 

energies are approximately 0% for all modes. For the imaginary part the difference is 

approximately 0% for the first three modes as well as 2% and 4% for the fourth and fifth modes.  

The reasons why some modes have higher differences than others is because of the numerical 

errors encountered when calculating the sensitivities of the pseudo modal energies and the 

assumptions made on deriving these equations.  In this section, equations 2.9 and 2.11 were 

proven to give similar results to those obtained through direct integration of the FRFs. 

Equations 2.10 and 2.11 may be used to calculate the uncertainties of the pseudo modal 

energies from the uncertainties of the modal properties, the extracted modal properties and the 

chosen frequency bandwidths.  This is shown in Section B.2 in Appendix B and the results 

obtained show that for the chosen frequency bandwidths, the pseudo modal energies give lower 

uncertainties than the mode shapes and higher uncertainties than the natural frequencies. 

Choosing the frequency bandwidth of integration carefully when calculating the pseudo modal 

energies may reduce the level of uncertainties on the pseudo modal energies calculated. 

2.5.2 Influence of noise on the pseudo modal energies and the modal properties  

One issue that is important in fault identification is that the inevitable presence of noise in the 

data must be such that their effects are less influential than those of faults.  It has been observed 

in the literature [Doebling et al., 1996], that for some fault types, the changes in the modal 

properties due to faults are more visible than the variations in measured data due to noise.  This 

makes the modal properties viable data for fault identification.  The modal properties and the 

pseudo modal energies before damage are calculated with various noise levels added to the time 

domain data as explained in Section 2.4.  It should be noted that the first five modes are used for 

this analysis.  Figure 2.5 shows the sample FRF with various noise levels added to the time 

domain data.  Figure 2.5 indicates that the effects of noise on the FRFs are mostly observable in 

the anti-resonances. 

The other issue to be resolved is to assess the effect of the presence of noise in the data on the 

modal properties and pseudo modal energies.  To achieve this goal, the finite element model is 
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run 1000 times and each time introducing noise in the vibration data.  From these data, the modal 

properties and the pseudo modal energies are calculated.  The noise levels added to the vibration 

data are 1-4% Gaussian noise. 

The statistical overlap factors between the distributions of the simulated data with zero noise 

added and those from the data simulated with 1-4% noise added are shown in Figure 2.6. 
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Figure 2.5. Magnitudes of the FRFs obtained using the time domain data contaminated with 
±0%, ±1%, ±2% and ±3% noise. 
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Figure 2.6. Statistical overlap factors for undamaged cases between 0% noise and various noise 
levels for the natural frequencies, mode shapes, and imaginary and real part of the pseudo modal 
energies. 

∆    1% noise         +    2% noise             x    3% noise                  �     4% noise 

Imaginary Part of PME Coordinate Real Part of PME Coordinate 
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Figure 2.6 indicates that the pseudo modal energies are, on average, at least two times more 

resistant to noise than the mode shapes.  Natural frequencies are found to be the most resistant to 

noise than the other three parameters.  It is noted below that the natural frequencies are not only 

resistant to noise as demonstrated in Figure 2.6, but are also insensitive to faults [Figure 2.7].   

 

The pseudo modal energies are more resistant to noise than the mode shapes because:  

� performing numerical integration on the FRFs to obtain the pseudo modal energies smoothes 

out the zero-mean-noise; 

� the optimisation nature of modal analysis introduces additional uncertainties.   

 

In addition, the mode shapes show high susceptibility to noise because of the inclusion of 

mode 1, which is noisier than other modes [Figures 2.5].  This illustrates the main limitation of 

modal analysis where the inclusion of a mode with high noise level compromises the 

identification of other modes [Balmès, 1997b].  This problem does not arise for pseudo modal 

energies because they are calculated independent of one another. 

The noise in the measured data may be minimised by averaging the FRFs before the pseudo 

modal energies and modal properties are extracted.  The averaging process improves the 

accuracy of the measured FRFs.  The main drawback with this process is that several tens of 

samples need to be acquired before a smooth FRF is obtained.  This may be economical if only a 

handful of sets of measurements are needed, but for most applications of modal analysis a great 

deal of measurements are required. 

In this section the pseudo modal energies are found to be, on average, more resistant to noise 

than the mode shapes.  The natural frequencies are observed to be more resistant to noise than the 

other three parameters.  The resistance to noise of the measured data is one of the essential 

requirements in fault identification even though it is not a sufficient condition for successful fault 

identification in structures.  The most essential feature is the sensitivity of faults to parameter 

changes, which is the subject of the next section. 
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2.5.3 Changes in pseudo modal energies and modal properties due to damage 

In this section the pseudo modal energies are compared to the modal properties using data 

simulated from the cantilevered beam.  It is demonstrated in equation 2.11, that the sensitivity of 

the pseudo modal energies, are functions of the sensitivities of the modal properties implying that 

these parameters are not necessarily independent of the modal properties.  The cross-sectional 

area of element 8 in Figure 2.1 is reduced by 0%, 5%, 10% and 15%.  In the presence of these 

reductions in the cross-sectional area of element 8, a simulation with 1000 samples is performed 

by perturbing the cross-sectional area of all the elements by 1% Gaussian scatter.  In this chapter 

the word “scatter” is used to refer to the perturbation of cross-sectional area while “noise” refers 

to the noise added directly to the vibration data. 

The four distributions of the pseudo modal energies and modal properties from the simulation 

are used to calculate the statistical overlap factors between 0% and 5%, 0% and 10% as well as 

0% and 15% reductions in the cross- sectional areas.  The pseudo modal energies and modal 

properties correspond to the first five modes.  The results are shown in Figure 2.7.  Figure 2.7 

shows that the pseudo modal energies and mode shapes are sensitive to faults and that the pseudo 

modal energies about equally indicate faults as the mode shapes.  However, the pseudo modal 

energies are more resistant to noise that the mode shapes (see Figure 2.6).  The natural 

frequencies are found to be less sensitive to faults than the other three parameters.  Figure 2.7 

shows that, on average, the more severe the faults are the higher the statistical overlap factors. 

The sample distributions of the modal properties and pseudo modal energies used to calculate 

the statistical overlap factors shown in Figure 2.7 are shown in Figure 2.8.  Figure 2.8 indicates 

that the reduction in cross-sectional area of element 8 does not change the natural frequencies 

significantly enough to show separate distributions.  Figure 2.8 shows that the mode shapes, as 

well as the real and imaginary parts of the PMEs, show four different distributions, which 

indicates that these fault cases are separable.  Figure 2.8 shows that the reduction in the cross-

sectional area of element 8 increases the mode shapes co-ordinate and decreases the real and 

imaginary part of the pseudo modal energies.  The distributions of the imaginary part of the 

PMEs for various fault cases are the most separable followed by that of the real part of the PMEs, 

then the mode shapes, and finally the natural frequencies. 
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Figure 2.7.  Statistical overlap factors between 0% reduction and various reductions (5, 10 and 
15%) in cross-sectional area of element 8 for the natural frequencies, mode shapes, and 
imaginary and real parts of the pseudo modal energies due to damage. Key: PME = pseudo 
modal energy 

 

 

 

∆ 5% reduction     + 10% reduction      x 15% reduction 

Imaginary Part of PME Coordinate Real Part of PME Coordinate 
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Figure 2.8. Distributions of the first natural frequency, mode shape co-ordinate, and imaginary 
and real parts of the pseudo modal energies for various reductions in the cross-sectional area of 
element 8. Key: PMEs = pseudo modal energies 
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The mode shapes and the pseudo modal energies in Figure 2.8 correspond to mode 4 and co-

ordinate corresponding to node 3.  Note that in real measurements natural frequencies are 

measured to the accuracy of 0.125% and mode shapes to the accuracy of 10% [Maia and Silva, 

1997].  Natural frequency shown in Figure 2.8 will not be able to diagnose even 15% reduction 

in cross-sectional area of element 8.  However, Figure 2.8 is shown to highlight the differences 

between various types of data. 

This section has demonstrated that the pseudo modal energies are on average better indicators 

of faults than the natural frequencies and are equally as good indicators of faults as the mode 

shapes.  

2.5.4 Effects of excluding high frequency modes 

This section assesses the ability of the pseudo modal energies and modal properties to capture 

the information from the frequencies that lie outside the frequency bandwidth of interest.  In this 

study the FRFs are calculated from the modal properties.  In physical structures the FRFs are 

constructed from all excited modes in the structure.  For simulated beam used in this work, 

constructing the FRFs using 18 modes is assumed to represent the real structure.  Because high 

frequency modes are required, the FE model is re-meshed so that it contains 50 elements.  This is 

done to improve the accuracy of high frequency modes. 

The results showing the effect of excluding high frequency modes on the identification of 

pseudo modal energies and modal properties are shown in Figure 2.9.  Figure 2.9 shows the 

average absolute percentage difference between data obtained using FRFs that are calculated 

using the first 18 modes and those obtained using the first 5 to 17 modes.  The natural 

frequencies are not shown here because they are not sensitive to the inclusion of high frequency 

modes.  Figure 2.9 shows that the exclusion of high frequency modes does not affect the 

identified mode shapes and imaginary parts of the pseudo modal energies.  However, the real 

parts of the pseudo modal energies are found to be sensitive to the exclusion of high frequency 

modes.  This is because as the frequency of excitation of the structure approaches infinity the real 

part of inertance FRF dominates the imaginary part.  Due to the fact that using inertance pseudo 
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modal energies takes into account high frequency modes it is tempting to think that using 

mobility would reduce the effect of high frequency modes.   However, in this thesis an anti-

aliasing filter, which eliminates the effect of high frequency modes such as those observed on the 

real part of the pseudo modal energies, is used and therefore using mobility PMEs instead of 

inertance PMEs will not make any difference.  The details on the use of an anti-aliasing filter are 

in Chapter 4. 
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Figure 2.9. Percentage differences between the mode shapes and pseudo modal energies 
identified from the FRFs calculated using the first 5-17 modes and from the first 18 modes. Key: 
PMEs = pseudo modal energies. 
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2.5.5 Computational load 

The time taken to compute the mode shapes using the Structural Dynamics Toolbox is 3.19 

(computer process unit) CPU seconds (this does not include the time taken to obtain the first 

estimates of the natural frequencies) while the time taken to compute the pseudo modal energies 

is 0.11 CPU seconds.  Running the finite element model 1000 times requires 270 CPU minutes.  

All the computations were performed on a Pentium 200MHz Personal Computer with 32RAM. 

 

In this chapter the following issues are addressed: 

� The pseudo modal energies are mathematically derived in terms of the modal properties. 

� The sensitivities of the pseudo modal energies are derived in terms of the sensitivities of the 

modal properties. 

� The expressions of the pseudo modal energies and their respective sensitivities are 

numerically verified. 

� The inertance pseudo modal energies are found to be more resistant to noise than the mode 

shapes and more sensitive to faults than the natural frequencies. 

� The pseudo modal energies are found to be computationally cheaper to calculate than the 

modal properties. 

2.6 CONCLUSION 

In this chapter, the pseudo modal energies are proposed and used to detect faults in a 

simulated cantilevered beam.  They are then compared to the modal properties by using the 

statistical overlap factors and various noise levels added to the data.  The pseudo modal energies 

are, on average, found to be more resistant to noise than the mode shapes and more sensitive to 

faults than the natural frequencies.  Furthermore, the pseudo modal energies are, on average, 

found to be about equally sensitive to faults as the mode shapes.  The pseudo modal energies are 

found to be at least 30 times faster to compute than the modal properties and are found to be a 

viable alternative, for fault identification, to the most widely used modal properties.  The next 
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question to be answered is how these data could be used simultaneously in a way that combines 

the advantages of both these data which is the subject of the next chapter. 
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Chapter 3 

FAULT IDENTIFICATION USING A COMMITTEE OF 

NEURAL NETWORKS 

3.1 INTRODUCTION 

Damage in structures often leads to failure.  The detection, identification and quantification 

of faults may prevent such failures and the detrimental consequences thereof.  As discussed in 

Chapter 1, D’Ambrogio and Zobel (1994) used the Frequency Response Functions (FRFs) 

directly to update a finite element model and subsequently detect faults in structures by 

minimising the error in the equation of motion.  Baruch (1978) applied the modal property 

approach to identify faults in a finite element model.  Marwala and Heyns (1998) introduced the 

multiple criterion approach, which employs both the modal properties and frequency response 

functions simultaneously in a finite element framework for the identification of faults.  The 

implementation of the multiple criterion method was found to give results that are more accurate 

than the results obtained when either the frequency response function approach or the modal 

property approach is utilised in isolation. 

Most recently, several researchers have focused their attention on the application of neural 

networks and finite element models to identify faults in structures.  Levin and Lieven (1998b) 

applied a neural network employing modal property data to identify errors in a finite element 

model of a cantilevered beam.  The method was found to work well even with limited numbers 
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of experimentally measured degrees of freedom and modes.  This suggests that neural network 

approach does not require the implementation of reduction or expansion techniques such as the 

Guyan reduction method (1965).  In addition, they observed that when data used to train a neural 

network are contaminated with noise, the method is robust and therefore resistant to 

experimental noise. 

Atalla (1996) applied neural network successfully for the identification of faults in 

mathematical models of structures.  In one experiment, the data similar to the measured pseudo 

modal energies studied in Chapter 2, rather than the modal data, were used to identify faults in a 

three-degree-of-freedom truck suspension.  The results obtained suggest that the use of neural 

networks is an accurate method of identifying faults in finite element models. 

In this chapter, a multiple criterion method [Marwala and Heyns, 1998] is extended to a 

neural network framework by applying the concept of a committee-of-networks.  A committee-of-

networks is a strategy, which integrates information from independently trained networks.  

Perrone and Cooper (1993) observed that a committee method usually performs with more 

accuracy than the networks used in isolation.  Perrone and Cooper’s as well as Marwala and 

Heyns’ observations provide the motivation for combining both these approaches to identify 

faults in structures by using vibration data. 

When a finite element model is applied to detect faults in structures, the ideal approach is to 

use all the physical parameters of every element as design variables and perturb the design 

variables until the model predicts the response of the faulty structure.  The changes in the design 

variables are then utilised to infer faults in the structure.  There are usually more than one set of 

design variables that make the model predict the measured data and this makes the problem of 

identifying faults from the measured vibration response non-unique [Janter and Sas, 1990].  In 

the context of neural networks, the problem of uniqueness has not been widely addressed, but 

some preliminary studies by Williamson and Helmke (1995) and Coetzee and Stonick (1996) 

demonstrate that for some limited classes of neural network architectures uniqueness can be 

mathematically proven.  Williamson and Helmke (1995) studied a single input, single output and 

one hidden layer feedforward neural networks by reformulating this class of network in terms of 

rational functions of a single variable.  They managed to derive conditions for the existence of a 
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unique best mapping between the input and the output.  Coetzee and Stonick (1996) used the 

geometric formulation of a single layer perceptron weight optimization to describe sufficient 

conditions for uniqueness of weight solutions.  In the present work, measures such as 

regularisation techniques, described later in the chapter, are implemented to improve the quality 

of the solutions given by the networks, which is the objective of seeking a unique solution. 

Essentially, the use of finite element models to identify faults is an optimisation problem 

[Wei and Janter, 1988].  In optimisation, generally the greater the number of design variables, the 

greater the number of local optimum points.  In order to avoid the high incidence of local optima 

making the determination of the global optimum more difficult, it is often desirable to reduce the 

number of design variables.  The method that is proposed here to achieve this objective is the 

method of global substructuring. 

This chapter unifies the approach formulated by Levin and Lieven (1998b) with that of Atalla 

and Inman (1998) by utilising a committee of neural networks.  The proposed committee 

approach implements the method of global substructuring and is tested on the data from a 

simulated cantilevered beam.  In subsequent chapters, this technique is tested on experimentally 

measured data from a population of cylindrical shells.  The input data to the neural networks are 

both the pseudo modal energies and modal properties, while the output from the neural networks 

consists of the parameters that correspond to the level of fault in each substructure.  The 

parameters that correspond to each substructure form a vector space, also known as the identity 

of faults, and this information is defined as substructure space.  In other words, the information 

from the pseudo modal energies and modal properties are transformed into substructure space 

using two independent neural networks.  The new procedure transforms the information from 

both the pseudo modal energies and modal properties into substructure space using a committee 

of neural networks. 

The mathematical proof for applying the pseudo modal energies and modal properties [Levin 

and Lieven, 1998b; Atalla and Inman, 1998] as input basis simultaneously is demonstrated.  The 

method is then generalised for more than two sets of input data.  The effect of adding noise on 

simulated vibration data is subsequently examined and the behaviour of the mean- and variance-

of-square-of-errors in predicting the simulated faults is investigated. 
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3.2 NEURAL NETWORK 

In this thesis, neural networks are viewed as parameterised graphs that make probabilistic 

assumptions about data.  Learning algorithms are viewed as methods for finding parameter values 

that look probable in the light of the data.  Learning processes may occur by training the network 

through either supervised or unsupervised learning.  Unsupervised learning is used when only the 

input data are available.  To illustrate the unsupervised learning route in the context of structural 

dynamics, one may consider two kinds of failures in structures: failure due to loosening of joints or 

due to cracks in the structure.  If the responses of the two failures are inherently different, an 

unsupervised learning scheme may be employed to distinguish these types of failures as either 

belonging to class 1 or 2.  Supervised learning is the case where the input (x) and the output (y) are 

both available and neural networks are used to approximate the functional mapping between the 

two.  In this thesis, supervised learning is applied. 

There are several types of neural network procedures, some of which will be considered later, 

for example, multi-layer perceptron (MLP) and radial basis function (RBF) [Bishop, 1995; 

Tarassenko, 1998].  In this chapter, the MLP is used because it provides a distributed 

representation with respect to the input space due to cross-coupling between hidden units, while 

the RBF provides only local representation.  In this study, the MLP architecture contains a 

hyperbolic tangent basis function in the hidden units and logistic basis functions in the output 

units [Bishop, 1995].  A schematic illustration of the MLP is shown in Figure 3.1 [Jordan and 

Bishop, 1996]. 

This network architecture contains hidden units and output units and has one hidden layer.  

The bias parameters in the first layer are shown as weights from an extra input having a fixed 

value of x0=1.  The bias parameters in the second layer are shown as weights from an extra 

hidden unit, with the activation fixed at z0=1.  The model in Figure 3.1 is able to take into 

account the intrinsic dimensionality of the data.  Models of this form can approximate any 

continuous function to arbitrary accuracy if the number of hidden units M is sufficiently large.  

The MLP may be expanded by considering several layers but it has been demonstrated by the 

Universal Approximation Theorem [Haykin, 1999] that a two-layered architecture is adequate for 



CHAPTER 3. COMMITTEE-OF-NETWORKS   

 

49 

 

the multi-layer perceptron.  As a result of this theorem, in this study a two-layered network 

shown in Figure 3.1 is chosen. 

                        Output Units 

        y1                                        yc 

          

 

       

 z0  bias 

z1         zM        Hidden units 

 

              

              

        bias       

  

      x0 

x1               xd   

        Input Units 

Figure 3.1 Feed-forward network having two layers of adaptive weights. 

 

In Figure 3.1, the output of the jth hidden unit is obtained by calculating the weighted linear 

combination of the d input values to give: 
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jij wxwa
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0

1   (3.1) 

Here, )(
jiw 1 indicates weight in the first layer, going from input i to hidden unit j while )(

jw 1
0  

indicates the bias for the hidden unit j.  The activation of the hidden unit j is obtained by 

transforming the output aj in equation 3.1 into zj, which is shown in Figure 3.1, as follows: 

)a(fz jinnerj =   (3.2) 

The output of the second layer is obtained by transforming the activation of the second hidden 

layer using the second layer weights.  Given the output of the hidden layer zj in equation 3.2, the 

output of unit k may be written as: 
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Similarly, equation 3.3 may be transformed into the output units by using some activation 

function as follows: 

)a(fy kouterk =   (3.4) 

If equations 3.1, 3.2, 3.3 and 3.4 are combined, it is possible to relate the input x to the output y 

by a two-layered non-linear mathematical expression that may be written as follows: 
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The biases in equation 3.5 may be absorbed into the weights by including extra input variables 

set permanently to 1 making x0= 1 and z0= 1, to give: 
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In this thesis, the function fouter(•) is logistic while finner is a hyperbolic tangent function.  The 

logistic function is defined as follows: 

ν−+
=ν

e
)(fouter 1

1
  (3.7) 

The logistic activation function maps the interval (-∞,∞) onto a (0,1) interval and can be 

approximated by a linear function provided the magnitude of ν is small.  In other words, the 

linear activation function may be viewed as a special case of a logistic function.  The hyperbolic 

tangent function is: 

)tanh()(finner ν=ν   (3.8) 

Training the neural network identifies the weights in equations 3.6.  There are several different 

ways in which these neural networks may be trained.  For example, the maximum-likelihood 

approach or the Bayesian methods [Bishop, 1995] may be used.  In maximum-likelihood 

training, optimisation methods are used to identify a set of weights that maximises the ability of a 

network to predict the output whenever presented with the input data.  The Bayesian method uses 

Bayes’s theorem [Bishop, 1995] to identify the probability distribution of weights in the light of 

the training data.  The maximum-likelihood method may be treated as a special case of the 

Bayesian method.  In this chapter the maximum-likelihood method is implemented. 
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3.2.1 Maximum-likelihood-based cost function 

An optimisation procedure is used to identify the weights and biases of the neural networks 

in equation 3.6 using the maximum-likelihood framework.  A cost function must be chosen in 

order to use the optimisation technique.  A cost function is a mathematical representation of the 

overall objective of the problem.  In this thesis, the main objective, this is used to construct a cost 

function, is to identify a set of neural network weights given vibration data and identity of faults.  

If the training set N
kkk }t,x{D 1==  is used and assuming that the targets t are sampled 

independently given the inputs xk and the weight parameters, wkj, the cost function, E, may be 

written as follows: 

{ } ���
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  (3.9) 

In equation 3.9, n is the index for the training pattern, k is the index for the output units, N is the 

number of training patterns, K is the number of output units and W is the number of weights.  

The sum-of-square-of-errors cost function, which is the first term in equation 3.9, tends to give 

similar absolute error for each pattern.  As a result it performs poorly on target values of small 

magnitude.  The second term in equation 3.9 is the regularisation parameter and it penalises 

weights of large magnitudes [Vapnik, 1995]. This regularisation parameter is called the weight 

decay and its coefficient, α, determines the relative contribution of the regularisation term to the 

training error. This regularisation parameter ensures that the mapping function is smooth. 

The other cost function that has been used is the cross-entropy function [Hopfield, 1987; 

Hinton, 1989].  Minimisation of the cross-entropy function tends to give the same relative errors 

for small and large targets.  The cross-entropy cost function plus the weight decay regularisation 

parameters may be written as follows: 
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The cost function in 3.10 has been found to be suited for classification problems while the one in 

equation 3.9 has been found to be suited for regression problems [Bishop, 1995]. 

Including the regularisation parameter has been found to give significant improvements in 

network generalisation [Hinton, 1987].  In neural networks, to produce an over-fitted mapping 
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with regions of large curvature requires large weights.  The weight decay regularisation penalises 

large weights thereby encouraging the weights to be small and avoiding an over-fitted mapping 

between the inputs and the outputs.  If α is too high then the regularisation parameter over-

smoothes the network weights giving inaccurate results.  If α is too small then the effect of the 

regularisation parameter is negligible and unless other measures that control the complexity of 

the model, such as the early stopping method [Bishop, 1995], are implemented then the trained 

network becomes too complex and thus performs poorly on the validation set. 

Before minimisation of the cost function is performed, the network architecture needs to be 

constructed by choosing the number of hidden units, M.  If M is too small, the neural network 

will be insufficiently flexible and will give poor generalisation of the data because of high bias.  

However, if M is too large, the neural network will be unnecessarily flexible and will give poor 

generalisation due to a phenomenon known as overfitting caused by high variance [Geman et al., 

1992]. 

The weights (wi) and biases (with subscripts 0 in Figure 3.1) in the hidden layers are varied 

using optimisation methods until the cost function is minimised.  Gradient descent methods are 

implemented and the gradient of the cost function is calculated using the back-propagation 

method [Bishop, 1995].  The details of the back-propagation method are found in Appendix D.  

Both the conjugate gradient [Shanno, 1978] and the scaled conjugate gradient methods [Møller, 

1993] were implemented at the preliminary stage of this research.  It was decided to pursue the 

scaled conjugate gradient method because it was found to be computationally efficient and yet 

retains the essential advantages of the conjugate gradient technique.  The reason behind higher 

computational efficiency of the scaled conjugate gradient method over the conjugate gradient 

method are not the subject of this thesis but may be obtained in [Haykin, 1999].  The details of 

these optimisation techniques are explained in Appendix E. 

3.3 THEORETICAL FORMULATION 

This section is composed of the following: 

(1) A brief examination of the pseudo modal energy and modal property based fault 

identification methods.  
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(2) An outline of how the substructuring method is used to reduce the order of the fault 

identification problem. 

(3) An explanation of the relevance of a committee of neural networks for structural dynamics. 

(4) An adaptation of the committee-of-networks used previously in situations where the inputs to 

each of the networks are the same, to a multiple criterion idea, where the inputs to the 

networks, the pseudo modal energies and modal properties are different. 

(5) A mathematical proof that a committee-of-networks gives more accurate results than using 

either the modal-property-network or the pseudo-modal-energy-network individually. 

(6) A derivation of the optimal weighting conditions for the two methods. 

3.3.1 Pseudo modal energy method 

When a fault is introduced to a structure, the dynamic properties of the structure will change.  

These changes may be observed on the pseudo modal energies, and were mathematically derived 

in Chapter 2 [see equation 2.11].  Sufficient data that defines the relationship between changes in 

physical parameters and changes in the pseudo modal energies may be generated from a 

mathematical model or from experiment.  From this set of data, a functional mapping between 

the identity of fault y1 and the pseudo modal energy vector ψ may be represented in the following 

form: 
( )ψ= hy1   (3.11) 

Atalla and Inman (1998) employed neural networks to quantify the relationship between the 

identity of fault and the parameter that is similar to the pseudo modal energies and used it for 

finite element updating.  In this thesis, this relationship is used to identify mechanical faults in 

structures. 

3.3.2 Modal property method 

There is an implicit relationship between the physical properties of a structure and its modal 

properties.  This relationship may be used to identify faults in structures and was calculated by 

Fox and Kapoor (1968).  Baruch (1978) applied the modal properties to identify the correct 

physical properties for given measured modal data.  When faults are introduced to the structure, 
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the physical parameters of the elements in the finite element model will change.  This will result 

in changes in the natural frequencies and mode shapes.  If a finite element model is available 

then sufficient data defining the relationship between changes in physical parameters and 

changes in the modal properties may be generated.  A functional mapping between the identity of 

fault y2 and the modal property vector χ may therefore be quantified by the following equation: 
 

( )χ= hy 2    (3.12) 

where χ={ωj {φj}}. 

Levin and Lieven (1998b) applied neural network to identify the mapping function that gives the 

relationship between the identity of the faults and the modal properties for finite element 

updating.  In this thesis, this relationship is used to identify faults in structures. 

3.3.3 Method of substructuring 

In this section, the method of substructuring is outlined and its advantages are discussed.  

Throughout this chapter it is assumed that the initial finite element model has been updated 

subsequent to the introduction of faults and that it is able to reproduce the measured dynamic 

properties.  Therefore, perturbing the finite element model is equivalent to introducing faults in 

the structure. 

For notational convenience a model with two substructures is considered.  If one was 

interested in locating damage in substructure 1 or 2, the equation of motion might be partitioned 

into two super elements as follows: 
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The substructure framework could be easily extended to the case where equation 3.13 contains 

the damping matrix.  If substructure 1 was faulty, this would be reflected by changes in the nth 

natural frequency and mode shape vectors {φn1} and {φn2}.  If a fault was in substructure 1, vector 

{φn1} would be affected more than vector {φn2}.  By comparing the relative changes in these two 

vectors as a result of a fault, it is possible to deduce that a fault is in substructure 1.  Equation 

3.13 might be decomposed into the following equations: 
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If the changes in the natural frequencies as a result of damage are negligible, then equation 3.14 

ensures that the changes are primarily in the partition of the mode shape vector containing a fault.  

This occurs because the presence of faults affect the mode shapes more than the natural 

frequencies.  The analysis in equation 3.14 may be similarly performed for the frequency 

response functions, and thus the pseudo modal energies and should be taken into account before 

training the network. 

Methods that use only finite element updating to identify faults are not effective in locating 

faults in a small area of the structure.  In this section it is demonstrated that the substructuring 

method might be used as a first step in fault diagnostics by pointing to a large location before 

localised methods such as ultrasonic methods are applied.  The purpose of this thesis is not to 

study substructuring per se, but to illustrate its role in the effective use of a committee-of-

networks method. 

3.4 COMMITTEE-OF-NETWORKS 

The committee-of-networks is a strategy in which more than one network is used to tackle a 

problem.  This strategy is inspired by the rule of divide-and-conquer, which has found many 

applications in different areas.  Examples of the practical implementation of this strategy include 

car assembly line where individuals are trained to perform a small task towards the overall 

assembly of a complete car.  From this example it could be deduced that there are two main 

components of this strategy: (1) training the individuals to become experts in their individual 

tasks and (2) integrating the individual tasks together to form a solid structure.  In a car example 

the sum of these individual tasks form a complete car.  In this study, the strategy of using a 

collection of networks to solve a particular task is applied to fault identification using neural 

networks.  In this thesis, instead of dividing the tasks, neural networks are trained with data that 

have been processed differently and their outputs are combined. 
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The foundation of the idea of a committee of neural networks may be traced back to Nilsson 

(1965) and a literature review on this subject can be found in Haykin (1999) and Sharkey (1999).  

There are various ways in which a committee-of-networks can be framed.  Here two types are 

discussed: (1) static and (2) dynamic structures.  In a static committee structure the output are 

combined without any direct participation of the input data.  The dynamic structure is the case 

where the input data are involved in the decision on how the outputs of the networks are 

combined.  An important question in the area of a committee-of-networks is how to combine the 

output of the members of the committee in an optimal way.  Some of the methods that have been 

implemented to combine the outputs of networks to form a committee are the averaged or 

weighted-averaged and non-linear combination methods.  In the averaged approach, the outputs 

of the members of the committee are averaged to form a single output.  This method may be 

modified to take into account the relative accuracy of the individual networks by calculating the 

weighted average.  In the non-linear combination method, a non-linear function is used to 

combine the outputs of the networks. 

An example of the framework that uses a static structure is the ensemble averaging method 

where the output of the committee-of-networks is an average or weighted average of the outputs 

of the individual networks [Perrone and Cooper, 1993; Wolpert, 1992 and Hashem, 1997].  This 

procedure has been found to reduce the output error, and this is explained in detail later in the 

chapter.  Another example of a static committee is the boosting method [Schapire, 1990; Freund, 

1995; Breiman, 1996] where a network that generalises poorly is converted into one that 

generalises well.  In this chapter the two types that are discussed are boosting by filtering and 

adaptive boosting.  Schapire (1990) first proposed boosting by filtering.  The implementation of 

this technique involves training a network with the data that have been filtered by previously 

trained members of the committee.  The filtered data are those that the previously trained 

networks do not generalise well.  This method requires an abundance of training data, making it 

inaccessible to many engineering applications where there is no abundance of training data.  To 

compensate for the limited number of the training data adaptive boosting (AdaBoost) technique, 

proposed by Freund and Schapire (1996), may be used.  In this technique, the training sets are 
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adaptively resampled according to a probability distribution such that the contribution of the part 

of the training data that was most often misclassified is increased. 

As mentioned earlier the other framework for creating a committee is the dynamic structure.  

In this structure, the input data are directly involved in deciding how the outputs of the members 

of the committee are combined.  An example of a dynamic committee is a mixture of experts 

[Nowlan, 1990; Jacobs, 1990].  In this committee framework a gating network, that uses the 

input data and has as many outputs as the number of networks that form a committee, mediates 

the outputs of the networks. 

In this section a static committee framework illustrated schematically in Figure 3.2 is adopted 

and developed.  The reason for choosing such a framework is because of its simplicity yet 

containing powerful properties such as the ability to reduce the mean squared errors and 

variance.  In this section it is proven that a committee-of-networks that uses both the pseudo 

modal energies and modal properties, gives results that are more reliable than networks that use 

the pseudo modal energies and modal properties separately. This section presents an adaptation 

and extension of the work by Perrone and Cooper (1993).  In this section, three advantages of the 

committee method as compared to the individual methods are outlined and mathematically 

proven, namely:  

(1) the committee gives lower mean-of-square-of-error than the individual method; 

(2) the committee gives lower variance-of-square-of-error than the individual method;  

(3) the committee is a more reliable fault identification procedure than the individual method. 

3.4.1 The committee gives the least mean-of-square-of-error 

The mapping between the identity of faults and the pseudo modal energies, as indicated by 

equations 3.11 and 3.12, is written as the desired function plus an error as follows:   
( ) ( ) ( )
( ) ( ) ( )χ+χ=χ

ψ+ψ=ψ

22

11

ehy
ehy

   (3.15) 

Here y1 is the identity of the fault when the pseudo modal energy data are used, y2 is the 

identity of the fault when the modal property data are utilised, h(•) is the approximated mapping 

function and e(•) is the error. For notational convenience the mapping functions are assumed to 
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have single outputs y1 and y2.  Equations 3.15 can be easily adapted to multiple outputs.  The 

average of squares of errors for model y1 (ψ) and y2(χ) may be written as follows: 
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   (3.16) 

where ε[•] indicates the expected value and corresponds to an integration over the input data, 

defined as follows: 
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and where p[•] indicates the probability density function and d[•] is the differential operator.  

 

The average expected squared errors made by the two networks [Atalla and Inman, 1998; Levin 

and Lieven, 1998b] acting individually may be written as follows: 
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Figure 3.2 Illustration of a committee-of-networks.  Here γ1 and γ2 are the committee-weights 
given to the pseudo-modal-energy-network and modal-property-network, respectively. 
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In the next subsection some aspects of the committee obtained by giving the two approaches 

in Figure 3.2 equal weights are examined. 

(a) Equal weights 

Now the relationship between the mean-of-square-of-error (MSE) given by the committee 

and given by the individual networks is investigated.  The output of the committee is the average 

of the outputs of the individual networks.  The committee prediction may be written in the 

following form by giving equal weighting functions: 

( ))(y)(yyCOM χ+ψ= 212
1

   (3.19) 

The error due to the committee can be written as follows: 
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If it is assumed that the errors e1 and e2 have a zero mean and are uncorrelated then: 

021 =ε ]ee[    (3.21) 

The error of the committee [equation 3.20 assuming equation 3.21] can be related to the average 

error of the networks acting individually [equation 3.18] as follows: 
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Equation 3.22 indicates that the average expected squares of errors is reduced by a factor of 2 by 

employing the committee of the two approaches [Atalla and Inman, 1998; Levin and Lieven, 

1998b].  In equation 3.22 and 3.18, it is observed that the committee error is always less than or 

equal to the averaged error and this is written as follows: 

AVCOM EE ≤    (3.23) 



CHAPTER 3. COMMITTEE-OF-NETWORKS   

 

60 

 

In reality the assumption in equations 3.21 does not usually hold because the errors are usually 

highly correlated and therefore the error in the committee is higher than the one predicted by 

equation 3.22. 

The analysis conducted above leads to a need for a criterion that could be used to assess the 

effectiveness of the committee.  In this thesis, a committee factor defined as a measure of the 

effectiveness of the committee method is introduced.  This factor is defined as the ratio of the 

average of the expected errors of the two independent methods acting individually to the 

expected error of the committee.  By assuming that the two networks have equal weights, the 

Committee factor (CF) may be written as follows: 
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In equation 3.24 it is observed that if the assumption that the two methods are uncorrelated 

[equation 3.21] is applied then the committee factor is equal to 2.  When the individual methods 

are correlated then the committee factor is less than 2.  Equation 3.24 may be generalised for n-

trained network to give: 
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 (b) Variable weights 

In realistic situations, the two networks might not necessarily have the same predictive 

capacity, for example, the modal properties are extracted from the frequency response functions 

using an optimisation-based modal analysis technique while the pseudo modal energies are 

calculated using a direct integration scheme.  As a result, the pseudo modal energy data may give 
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more accurate results than the modal properties.  Consequently, each network should be given 

appropriate weighting functions as follows: 
)(y)(yyCOM χγ+ψγ= 2211    (3.26) 

where γ1 and γ2 are the weighting functions and γ1+γ2 =1. 

The error due to the committee can be written as follows: 
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Equation 3.27 may be rewritten in Lagrangian form as: 
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where λ = Lagrangian multiplier. 

The derivative of the error in equation 3.28 with respect to γ1 may be calculated and equated to 

zero as: 
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Solving equation 3.29 and assuming equation 3.21, the minimum errors are obtained when the 

weights are: 
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The second derivative of the error in equation 3.27 [assuming equation 3.21] with respect to γ1 is: 
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Equation 3.31 shows that this stationary point is a minimum point.  In other words the optimal 

committee is always lower than the individual methods.  Equation 3.31 may be generalised for a 

committee of n-trained networks.  Thus equation 3.31 for network i may be rewritten as follows: 
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From equation 3.32, the following conditions may be derived: 
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   (3.33) 

Conditions in equations 3.33 show that if the predictive capacity of the pseudo modal energy 

approach is equal to that of the modal property approach then each method should be given equal 

weights.  If the pseudo modal energy approach gives smaller errors than the modal property 

approach, then the pseudo modal energy method should be given more weight and vice versa.  

These conditions are trivial but have been derived in this study to confirm the effectiveness of the 

method.  The strength of each method may be obtained by assessing how robust the methods are 

in the presence of noise.  From this section the following theorem is derived: 

 
Theorem 3.1: If n uncorrelated networks are combined to form a committee, there exists an 
optimal committee which gives the least mean-of-square-of-error, lower than any individual 
network and this is obtained by assigning to the ith network a weight of: 
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3.4.2 Committee gives the least variance-of-square-of-error 
The variance of the committee method may be derived as follows: 
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Finding the derivative of the variance in equation 3.34 by substituting γ2 =1-γ1, the following is 

obtained: 

0122122 2
21211

2
11

1

=γ−−γ−+γ=
γ

]e[V)(]ee[V)(]e[V
d

dVCOM   (3.35) 

Solving equation 3.35 in the same manner that equation 3.27 is solved gives the optimum 

weights of: 
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If it is assumed that V[e1e2] = 0, then equation 3.36 may be simplified to become: 
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Similarly, equations in 3.37 may be generalised for n-trained networks, and the ith network is 

given the weight:  
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Differentiating 3.35 and assuming that V[e1e2] = 0, the following is obtained: 
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Similarly, equation 3.39 shows that the stationary point is a minimum point. 

From equation 3.38, the following conditions may be derived: 
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From this section the following theorem may be deduced: 

 
Theorem 3.2: If n independent networks are combined to form a committee, there exists an 
optimal committee which gives a lower variance-of-square-of-error than any individual network 
and this is achieved by assigning to the ith network a weight of: 
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From equations 3.32 and 3.38 the following theorem may be deduced:  
 
Theorem 3.3: The weight parameters of the n-trained networks that give the optimum mean-of-
square-of-error are equal to those that give the optimum variance-of-square-of-error if 
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This theorem suggests that the weights that give the least mean-of-square-of-error do not 

necessarily give the least variance-of-square-of-error.  This implies that a decision has to be 

made as to which is the more important attribute.  In this chapter, the average of the weights that 

give the least mean-of-square-of-error and those that give the least variance-of-square-of-error 

are used as the optimal committee.  The average weight given to the individual methods to give 
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the optimal committee that takes into account of the mean- and variance-of-square-of-error may 

be written from equations 3.30 and 3.37 as follows: 
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Substituting equation 3.41 into equation 3.26 the optimal committee output is obtained to be: 
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The properties of averaging the weights that give the least MSEs and variance of errors are 

illustrated by Figure 3.3. 
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Figure 3.3. Illustration of the effect of averaging the committee-weights that give the least 
MSEs and variance of squared errors 
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In equation 3.27 it may be deduced that provided that the errors of the two methods are 

uncorrelated, the committee error versus the committee-weight is a parabola with a minimum 

point.  The same can be deduced for variance of square of errors from equation 3.34.  If these two 

parabolas are plotted together, Figure 3.3 is obtained.  This figure is for illustrative purposes, and 

therefore the values in the y-axis are not essential for demonstrating the properties of equation 

3.42.  In this figure the minimum MSE occurs at A.  This corresponds to a variance shown in D, 

which is higher than that of B where the two committee-weights are averaged.  By looking at the 

same figure, the minimum variance is at C.  This corresponds to the MSE shown in E, which is 

higher than that of B where the two committee-weights are averaged.  From this figure it is clear 

that the average of the two methods is the best compromise between the two minimum values.  

Additionally, B is still better than when the methods are used in isolation. 

3.4.3 Committee gives a more reliable solution 

One of the main advantages of the committee method is its reliability.  Reliability is a 

criterion that is used in industry, together with economic factors, to choose the appropriate 

method.  This section seeks to demonstrate that the committee method is more reliable than using 

individual networks. 

Suppose that the probabilities of success for the pseudo-modal-energy-network and the 

modal-property-network are P(x1) and P(x2) respectively.  The reliability of the two methods 

acting in parallel is: 
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   (3.43) 

From equation 3.43, it can be deduced that the reliability of the committee, is at least, as good as 

either of the individual networks [McColl, 1995].  Note that equation 3.43 has been formulated 

to accommodate two neural networks even though it can be generalised to any number of 

networks, in order to put this equation in the context of this thesis.  From the analysis above the 

following theorem is deduced: 

 
Theorem 3.4: If n independent (uncorrelated) networks are used simultaneously, the reliability 
of the committee is at least as good as when the networks are used individually. 
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3.5 CASE STUDY: SIMULATED CANTILEVERED BEAM 

The committee approach outlined in the previous sections is applied to identify faults in a 

cantilevered beam shown in Figure 3.4.  The beam is the same as the one used in Chapter 2 and 

is made of aluminium with the following dimensions: the length of the beam of 1.0 m, the width 

of 50 mm and the thickness of 6 mm.  The beam is free on one end and clamped on the other end 

and is restricted to translation in the y-axis and rotation about the z-axis.  It is partitioned into 

three substructures and modelled with 50 elements (51 nodes) using the Structural Dynamics 

Toolbox [Balmès, 1997a] in MATLAB [Mathworks, 1992].  Node 51 is located at the free end of 

the beam and node 1 is located at the clamped part of the beam.  Since the beam is restricted to 

translation in the y-axis and rotation about the z-axis, the beam has 50 active nodes (because 

node 1 is clamped).   

       

Using the Structural Dynamics Toolbox the mass and stiffness matrices of size 100 by 100 

are assembled.  Here 50 active nodes, each with two degrees of freedom corresponding to 

translation in the y-plane and rotation about the z-axis, give 100 degrees of freedom and thus the 

mass and stiffness matrices of size 100 by 100.  From the mass and stiffness matrices, 100 modal 

properties are calculated.  From the calculated modal properties, inertance FRFs are calculated 

                  Acceleration 
direction 

 

Excitation point 

Figure 3.4 The cantilevered beam modelled with 50 elements and divided into 5 substructures 
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using the modal summation equation (an expression inside the integral in equation 2.6), by 

assuming that the beam is lightly damped and fixing the damping ratios to 0.001.  The FRFs 

calculated correspond to excitation at node 51, as shown in Figure 3.4, and acceleration 

measurements in the direction shown in the same figure for all 50 active degrees of freedom.  

From the 50 FRFs calculated, 9 FRFs that correspond to nodes 3, 7, 13, 17, 23, 27, 33, 43 and 51 

are selected.  The FRFs that are selected exclude those corresponding to rotational degrees of 

freedom.  This is due to the fact that in practical situations measuring the rotational degrees of 

freedom is difficult. 

The 9 FRFs are converted into the time domain and Gaussian noise levels of ±0%, ±1%, 

±2%, ±3% and ±4 % are added to the time domain data.  Using the Fourier transform technique, 

as described in Section 2.4, the FRFs are calculated from the time domain data. The effect of 

these noise levels on the FRFs was shown in Chapter 2, Figure 2.5.  From the FRFs calculated 

from the time domain data, 5 modal properties are extracted using the procedure outlined in 

Appendix C and the pseudo modal energies are calculated by integrating the FRFs at various 

frequency bandwidths.  On calculating the pseudo modal energies, the following bandwidths are 

chosen in order to bracket each of the first 5 natural frequencies of the beam: 18-44, 155-240, 

484-620, 1014-1151 and 1726-1863 Hz.  These bandwidths are the same as those chosen in 

Chapter 2.  The procedure implemented in this paragraph was described in detail in Chapter 2, 

Section 2.4. 

Ninety pseudo modal energies are extracted from one set of simulation (45 imaginary and 45 

real parts of the pseudo modal energies).  Here it should be noted that 45 conform to 9 co-

ordinates corresponding to translation in the y-direction and 5 modes.  The total number of modal 

properties calculated is 50 (45 mode shape co-ordinates and 5 natural frequencies). 

In order to generate different fault cases, the structure is divided into three substructures. 

Substructure 1 contains elements 1 to 16; substructure 2 contains elements 17 to 32 and 

substructure 3 elements 33 to 50.  A fault is introduced to a substructure by simultaneously 

reducing the cross-sectional areas of four elements in a substructure by 5 to 10%.  This is defined 

as a presence of a fault in a substructure.  These reductions are sampled from a uniform 

distribution.  The absence of a fault in a substructure is defined as the simultaneous reductions of 

four elements in a substructure by 0 to 2% sampled from a uniform distribution.   A fault present 
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in substructure 1 is restricted to elements 7 to 10; for substructure 2 elements 24 to 27; and 

substructure 3 elements 42 to 45.  For a given fault in a substructure the maximum reduction in 

cross-sectional area corresponds to a reduction of 0.8% of the total volume of the beam. 

Each fault case is assigned a fault identity, corresponding to a location of a fault in a 

substructure.  For example, a fault existing in substructure 1 indicating a reduction of 8% of the 

cross-sectional areas of four elements in substructure 1 yields an identity of [1 0 0].  In this study 

the presence of faults in one substructure e.g. [1 0 0] is defined as a single fault and the presence 

of faults in more than one substructures e.g. [1 1 0] as a multiple fault case.  The types of fault 

cases simulated are a zero-fault case [0 0 0]; one-fault cases [1 0 0], [0 1 0] and [0 0 1]; two-fault 

cases [1 1 0], [1 0 1] and [0 1 1]; and three fault case [1 1 1].   Thus 8 different fault cases are 

generated.  For each noise contamination of the data 2400 data are simulated, 300 for each of the 

8 fault cases. 

 

3.5.1 Normalisation of the measured data 

Since the modal properties and pseudo modal energies extracted are to be used for neural 

network training, it is important to normalise them so that those inputs that have higher 

magnitudes do not dominate the training.  Here the scaling technique that is implemented ensures 

that all parameters fall within the interval [0,1].  To achieve this, the following scaling method is 

used: 
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where xm is a row of the input parameters. 

 

3.5.2 Statistical overlap factor and principal component analysis 

In the previous section a simulated beam was found to give more vibration data that needed 

for fault identification, and all these could not be possibly used for neural network training.  

These data must therefore be reduced and the reason for this reduction is discussed in this 

section. 

In statistics there is a phenomenon called the curse of dimensionality [Bellman, 1961], which 

refers to the difficulties associated with the feasibility of density estimation in many dimensions.  
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It is therefore a good practice to reduce the dimension of the data, hopefully without the loss of 

essential information.  This section deals with the techniques implemented in this thesis to 

reduce the input space.  The techniques implemented in this thesis reduce the dimension of the 

input data by removing the parts of the data that do not contribute significantly to the dynamics 

of the system being analysed or those that are too sensitive to irrelevant parameters such as slight 

changes in temperatures.  To achieve this, the statistical overlap factor introduced in Chapter 2 is 

implemented to select those data that show high sensitivity to faults.   Here the statistical overlap 

factors are calculated between undamaged and damaged beam and those input values that show 

higher statistical overlap factors are selected.  It should be noted than on calculating the statistical 

overlap factors, one-fault cases are used as data from a damaged structure.  There is a possibility 

that the data selected using the statistical overlap factor may be correlated and therefore a 

procedure that would reduce the data already reduced using the statistical overlap factor into 

independent input space is required. 

In this thesis the principal component analysis (PCA) [Jolliffe, 1986] is implemented to 

reduce the input data into independent components.  The PCA orthogonalizes the components of 

the input vector so that they are uncorrelated with each other.  When implementing the PCA for 

data reduction, correlations and interactions among variables in the data are summarised in terms 

of a small number of underlying factors.  The PCA was introduced by Pearson (1901) to recast 

linear regression analysis in a new framework and was developed further by Hotelling (1933) 

who applied it to Psychometry and was subsequently generalised by Lo�ve (1963).  The PCA has 

been successfully used to reduce the dimension of the data [Bishop, 1995].  Some of the 

researchers who have successfully applied this technique include Partridge and Calvo (1998) who 

used the PCA to reduce the dimensions of two high-dimensional image databases, one of 

handwritten digits and one of handwritten Japanese characters. 

The variant of the PCA implemented in this thesis finds the directions in which the data 

points have the most variance.  These directions are called principal directions.  The data are then 

projected onto these principal directions without the loss of significant information of the data.  

Here a brief outline of the implementation of the PCA adopted in this thesis is described.  The 
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first step in the implementation of the principal component analysis is to construct a covariance 

matrix defined as follows [Tarassenko, 1998]: 
Tp

P

p

p )x)(x( µ−µ−=� �
=1

  (3.45) 

Here � is the covariance matrix, T is for transpose, P is the number of vectors in the training set, 

µ is the mean vector of the data set taken over the number of training set and x is the input data.  

The second step is to calculate the eigenvalues and eigenvectors of the covariance matrix and 

arrange them from the biggest eigenvalue to the smallest.  The first N biggest eigenvalues are 

chosen.  In this thesis the first N eigenvalues are chosen in such a way that their sum constitutes 

at least 85% of the total sum of all the eigenvalues and by so doing at least 85% of the variance 

of the data are retained.  The data are then projected onto the eigenvectors corresponding to N 

most dominant eigenvalues.  A schematic illustration of how the PCA works is shown in Figure 

3.5. 
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Figure 3.5. A schematic illustration of how a two-dimensional data can be reduced to a one-
dimensional data.  The data set is decomposed into eigenvalues and eigenvectors.  Since this is a 
two-dimensional data set, there are two principal axes corresponding to two eigenvectors.  In the 
illustration above, the data are projected onto the first principal axis corresponding to a larger 
eigenvalue.  The principal axes are 90o to each other. 
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If all the simulated degrees of freedom are used for training the networks with the pseudo 

modal energies, then the size of the input units will be 90 (2×45 for the real and imaginary parts 

of the pseudo modal energies).  For training the modal-property-network, the network will have 

50 (45 mode shapes and 5 natural frequency) input units.  In this thesis both these input data sets 

are reduced from 90 and 50, respectively, for the pseudo modal energies and modal properties, to 

10.  The pseudo modal energies are reduced from 90 to 40 using the statistical overlap factor by 

choosing 40 input data that show the highest statistical overlap factor between data from the 

damaged and undamaged simulated beam.  The remaining 40 pseudo modal energies are reduced 

to 10 using the principal component analysis.  The modal properties are reduced from 50 to 30 

using the statistical overlap factor by choosing 30 modal properties that show the highest 

statistical overlap factors.  The remaining 30 modal properties are reduced to 10 using the 

principal component analysis. 

 

3.5.3 Training, validation and testing 

The procedure followed for training the MLP networks, in this chapter, uses the training, 

validation and testing stages  [Bishop, 1995; Haykin, 1999; Tarassenko, 1998].  Each stage has a 

data set assigned to it and ideally these three data sets should be of equal size and must be 

independent of one another.  The network-weights that map the input to output data identified by 

minimising the network error and using the training data, may over-fit the training data.   The 

neural network that over-fits the training data may not necessarily perform well on the validation 

and test data sets.  Over-fitting the training data set is a situation where a network stops learning 

how to approximate the hidden dynamics of the system and learns the noise in the data.  In order 

to combat this problem more networks than required are trained and the network that gives the 

least mean squared errors, and in this chapter, classification errors on the validation data set is 

chosen.  The chosen network may also over-fit the validation data in addition to the training data, 

and so the test data set is used to evaluate the performance of the trained network. 

By using the finite element model, 800 vibration data are generated by perturbing the cross-

sectional areas of the beam, as it has been described at the beginning of Section 3.5, and used as 

a training set.  This data set contains 8 fault cases and 100 examples for each fault case.  The 
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validation data set with 800 examples is generated and used to select the neural network 

architectures.  The test data set is also generated and contains 800 examples.  The validation and 

testing sets each contain 8 fault cases and 100 examples for each fault case. 

Fifty pseudo-modal-energy networks and fifty modal-property-networks are trained using the 

training data set with zero-noise contamination and with the number of hidden units randomly 

chosen to fall from 8 to 16.  On training these networks the cross-entropy cost function shown in 

equation 3.10 is used as opposed to the sum-of-square-of-errors cost function shown in equation 

3.9 because it has been found to be better suited for classification problems than the sum-of-

squares-of-errors [Bishop, 1995].  On training all these networks, 100 iterations are used and are 

found to be sufficient for convergence of the training errors.  These networks have 10 input data, 

which are chosen using the statistical overlap factor and the principal component analysis, and 3 

output units corresponding to 3 substructures.  The logistic function, described by equation 3.7, is 

chosen as the output activation function, and the hyperbolic tangent function, described by 

equation 3.8, is chosen as the activation function in the hidden layer.  The network is trained 

using the scaled conjugate gradient method [See Appendix E].  On training these networks the 

coefficient of the contribution of the regularisation parameter (α), shown in equation 3.10, to the 

training error is set to 15.  This value is chosen because it is found that it sufficiently smoothes 

out the network weights without compromising the abilities of the networks to generalise the 

data.  Here smooth weight vectors are defined as vectors with components of the same order of 

magnitudes. Of the two sets of 50 trained networks, the two sets of networks that give the least 

classification errors on the validation data set are chosen.  These classification errors are 

calculated by rounding-off the fault identities given by the networks and calculating the 

proportion of fault cases classified correctly.  From these two chosen networks the optimal sizes 

of the hidden units are 11 for the pseudo-modal-energy-network and 10 for the modal-property-

network. 

Using the data contaminated with 1% Gaussian noise, ten pseudo-modal-energy-networks 

and ten modal-property-networks are trained with different network-weights initialisations and 

with the number of hidden units set to 11 and 10, respectively.  The two sets of networks that 
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give the least classification errors on the validation data set are chosen.  The same process is 

repeated for ±2%, ±3% and ±4% Gaussian noise contamination of the data. 

3.6 RESULTS AND DISCUSSIONS 

The results showing the classification errors between the training and validation data sets are 

shown in Table 3.1.  Each row in Table 3.1 shows a given noise contamination of the vibration 

data while the columns show the training and validation classification errors of the pseudo-

modal-energy-network and modal-property-network.   For a given noise level and a given 

network, the training and validation data sets give classification errors of the same order of 

magnitudes implying that the networks have not over-fitted the data.  Table 1 shows that the 

higher the noise contamination of the data the higher the classification error.  It also shows that, 

on average, the pseudo-modal-energy-network gives more accurate classification results than the 

modal-property-network. 
 
Table 3.1 Classification errors when using two individual approaches and various noise levels 
added to the data.  Key: PME-N: pseudo-modal-energy-network; MP-N: modal-property-network 
 

  Training (%)        Validation (%) 

Noise (%) PME-N MP-N PME-N MP-N 

0 1.75 4.70 1.78 4.98 

1 2.95 7.30 3.15 7.65 

2 4.05 9.97 4.21 10.83 

3 8.92 11.84 9.67 11.91 

4 15.22 21.71 16.33 23.10 

 

The graph of error versus number of iterations when training the network using the pseudo 

modal energies is illustrated in Figure 3.6.  Figure 3.6 indicates that convergence is not 

dependent on the noise level in the data.  Figure 3.7 shows the graph of error versus number of 

iterations for various noise levels when the modal data are used for training.  Again, there is no 

consistent relationship between the convergence and noise levels in the data.  It is therefore 
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concluded that the presence of noise in the data does not influence the convergence rate during 

training.  Figure 3.8 shows the graph of the mean squared error versus the weight assigned to the 

pseudo-modal-energy-network and Figure 3.9 is a graph showing the standard-deviation-of-

squares-of-error versus the pseudo-modal-energy-network for various noise levels.   
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Figure 3.6. Convergence histories when training the networks using the pseudo modal energies 
for noise levels of 0%, ±1%, ±2%, ±3% and ±4%. 
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Figure 3.7. Convergence histories when training the network using the modal properties for 
noise levels of 0%, ±1%, ±2%, ±3% and ±4%. 
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Figure 3.8 Mean squared errors versus weighting function given to the pseudo-modal-energy-
network for noise levels of 0%, ±1%, ±2%, ±3% and ±4%.  These results are obtained when the 
networks are assessed on the validation data set. 
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Figure 3.9 Standard-deviation-of-square-of-error versus weighting function given to the pseudo-
modal-energy-network for noise levels of 0%, ±1%, ±2%, ±3% and ±4%.  These results are 
obtained when the networks are assessed on the validation data set. 
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These figures are obtained when the trained networks are evaluated on the validation data set.  

From Figures 3.8 and 3.9, it is found that giving the two sets of networks approximately equal 

committee-weights is an optimal way of constructing a committee of networks trained with data 

contaminated with ±1% to ±4% noise.  Furthermore, assigning 70% committee-weight to the 

pseudo-modal-energy-network is an optimal way of constructing a committee of networks trained 

with no noise contamination.  The optimal committees are calculated using equation 3.41.  Here 

a difference should be noted between committee-weights (sometimes called weighting 

functions), which are the weights given to the pseudo-modal-energy-network and modal-

property-network on calculating the committee and network-weights, which are the weights that 

map the vibration data to the identity of faults.  Figure 3.9 shows that the standard-deviation-of-

squares-of-errors obtained when the data is contaminated with 0% noise shows the optimal 

committee occurring when the pseudo-modal-energy-network is given 80% weighting function.  

The reason for this is because the assumption made in equation 3.39 that V[e1e2]≈0 does not 

strictly hold for this case. 

The average committee factor (CF) over all noise levels shown in Figure 3.8 is 1.40.  The CF 

is defined by equation 3.24 as the ratio of the mean of the expected square of errors of the 

individual methods to the expected squared errors of the optimal committee.  The higher the CF 

the more effective is the committee over the individual methods.  Similarly, the CF of the results 

shown in Figure 3.9 is 1.48.  The CF for Figure 3.9 is calculated by substituting for the mean 

squared errors in equation 3.24 by the standard deviation. 

The trained networks are used to classify faults from the test data set into their respective 

classes.  The fault cases given by networks are rounded off to the nearest whole number, i.e. 0 

and 1.  To assess the predictive capacities of the trained networks, a confusion matrix is used 

[Gopinath, 1999].  Tables 3.1 to 3.4 show the confusion matrices obtained when using the 

networks trained with data contaminated with ±2% Gaussian noise to classify fault cases in the 

test data set.  The confusion matrix consists of the predicted fault cases, which are shown 

vertically and the actual fault cases, which are shown horizontally.  The diagonal entries of the 

confusion matrix represents the fault cases that have been classified correctly, while the off-

diagonal entries of this matrix represent fault cases that have been classified incorrectly.  A 



CHAPTER 3. COMMITTEE-OF-NETWORKS   

 

77 

 

perfect fault identification procedure gives a diagonal matrix with all off-diagonal entries equal 

to zero. 
 
Table 3.2. Confusion matrix from the classification of fault cases using the pseudo-modal-
energy-network extracted from the FRFs calculated from the time domain data with ±2% 
Gaussian noise. These results are obtained when the trained networks are assessed on the test 
data set. 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 95 5 0 0 0 0 0 0 

 [100] 11 89 0 0 0 0 0 0 

 [010] 2 0 98 0 0 0 0 0 

Actual [001] 0 0 0 100 0 0 0 0 

 [110] 0 1 3 0 96 0 0 0 

 [101] 0 0 0 7 0 93 0 0 

 [011] 0 0 0 0 0 0 98 2 

 [111] 0 0 0 0 0 2 2 96 
 

From the confusion matrices in Tables 3.2 to 3.4, the abilities of the networks to detect faults 

is evaluated by comparing the proportion of fault cases that are classified correctly into fault and 

no-fault classes.  Table 3.2 shows that the pseudo-modal-energy-network detects 97.8% fault 

cases correctly; Table 3.3 shows that the modal-property-network detects 95.4% fault cases 

correctly; and Table 3.4 shows that the committee method detects 98.3% fault cases correctly.  

Here detection is defined as classifying fault cases into no-fault and fault classes. 

When the networks are used to classify fault cases in the test data set contaminated with ±2% 

Gaussian noise into 8 fault cases, the pseudo-modal-energy-network, as shown in Table 3.2, 

classifies 95.6% cases correctly; the modal-property-network classifies 88.5% cases correctly; 

and the committee method classifies 97.4% of cases correctly. 

When the networks are used to classify faults in the test data set into faults and no-fault 

classes with various noise levels added to the vibration data, the results in Table 3.5 are obtained.  

This table shows that the committee method gives the best results followed by the pseudo-modal-
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energy-network and then the modal property network.  Table 3.5 shows that in general the higher 

the levels of noise contamination of the vibration data, the lower the accuracy of the trained 

networks. 
 
Table 3.3. Confusion matrix from the classification of fault cases using the modal-property-
network extracted from the FRFs calculated from the time domain data with ±2% Gaussian 
noise. These results are obtained when the trained networks are assessed on the test data set. 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 87 6 0 7 0 0 0 0 

 [100] 6 94 0 0 0 0 0 0 

 [010] 13 0 86 1 0 0 0 0 

Actual [001] 12 0 0 88 0 0 0 0 

 [110] 0 6 3 0 84 0 0 7 

 [101] 0 9 0 3 0 81 0 7 

 [011] 0 0 9 1 0 0 90 0 

 [111] 0 0 0 0 0 0 2 98 
 

 
Table 3.4. Confusion matrix from the classification of fault cases using the committee formed by 
the data extracted from the FRFs calculated from the time domain data with ±2% Gaussian noise.  
These results are obtained when the trained networks are assessed on the test data set. 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 98 2 0 0 0 0 0 0 

 [100] 7 93 0 0 0 0 0 0 

 [010] 4 0 96 0 0 0 0 0 

Actual [001] 1 0 0 99 0 0 0 0 

 [110] 0 1 3 0 96 0 0 0 

 [101] 0 0 0 2 0 98 0 0 

 [011] 0 0 0 1 0 0 99 0 

 [111] 0 0 0 0 0 0 0 100 
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Table 3.5. The accuracy results obtained when the networks are used to classify faults into 2 
classes, i.e. fault and no-fault.  These results are obtained when the trained networks are assessed 
on the test data set.  Key: PME-N: pseudo-modal-energy-network; MP-N: modal-property-
network 

Noise level (%) PME-N MP-N Committee 

±0 98.6 96.3 99.5 

±1 96.5 96.1 97.9 

±2 97.8 95.4 98.3 

±3 95.3 93.8 97.3 

±4 93.4 91.3 96.0 

 

Table 3.6 shows the results obtained when the networks are used to classify faults in the test 

data into 8 fault cases.  This table shows that the committee method gives more accurate 

classification results than the individual networks.  The pseudo-modal-energy-network gives, on 

average, more accurate results than the modal-property-network.  Table 3.6 shows that in general 

the accuracy of the methods decreases with the increase in the levels of noise contamination of 

the vibration data. 
 
Table 3.6. The accuracy results obtained when the networks are used to classify faults into 8 fault 
cases.  These results are obtained when the trained networks are assessed on the test data set.  
Key: PME-N: pseudo-modal-energy-network; MP-N: modal-property-network 

Noise level (%) PME-N MP-N Committee 

±0 98.1 94.9 99.3 

±1 96.5 92.0 97.1 

±2 95.6 88.5 97.4 

±3 89.8 87.1 95.5 

±4 83.1 75.6 92.4 

In this chapter, it is observed that using the committee-weights in equation 3.41 to construct a 

committee gives marginally better results than using committee-weights in equation 3.30 for data 

contaminated with 0% noise level.  For this noise level, the committee constructed using 

equation 3.30 gives 97.8% classification accuracy while that obtained using equation 3.41 gives 

99.3% classification accuracy.  For other noise levels the classification accuracy between the two 
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methods are similar due to the fact that the two equations give approximately equal committee-

weights. 

  In this chapter the following issues were observed: 

1. The neural networks are able to classify fault cases including multiple faults accurately.  Here 

multiple faults are defined as faults occurring in more than one substructure, e.g. [1 1 0] fault 

case. 

2. The committee method gives better detection and classification of faults than the individual 

methods.  

3. The pseudo-modal-energy-network gives, on average, better classification of faults than the 

modal-property-network. 

4. The committee gives lower mean squared errors and variance than the individual methods.  

The advantage of low variance is that it decreases the level of uncertainty on the solution 

offered by the committee. 

The average computer processing unit time taken to train 50 networks is 48 CPU minutes on a 

Dell DIMENSIONXPS600 Desktop Computer with 260MB of random access memory.  When 

training all the neural networks, the maximum number of iterations is set to 100.  The 

disadvantage of the proposed method is that it is computationally more expensive than the 

existing methods because it requires at least two trained networks. 

3.7 CONCLUSION 

In this chapter a committee-of-networks is introduced and applied to structural diagnostics.  

The committee method is constructed by processing the vibration data using two different 

methods; the most widely used modal properties and pseudo modal energies introduced in 

Chapter 2.  It is shown that the committee method gives lower mean squared errors, standard-

deviation-of-squares-of-errors and classification errors than the two existing methods acting 

individually.  The pseudo-modal-energy-network is observed to give, on average, more accurate 

classification of faults than the modal-property-network. 
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Chapter 4 

EXPERIMENTAL MEASUREMENTS ON A 

POPULATION OF CYLINDERS 

4.1 INTRODUCTION 

In the literature, there is little coverage of fault identification using vibration data from a 

population of structures.  This is because it is expensive to damage a population of cylinders and 

measure vibration data.  Srinivasan and Kot (1992) studied the feasibility of using vibration data 

to identify faults in cylinders.  These authors introduced faults by machining a notch on a 

cylinder suspended by relatively soft springs to simulate free boundary conditions.  Vibration 

data before and after the introduction of faults were measured.  From these measurements, the 

modal properties before and after damage were compared and it was found that modal properties 

changed as a result of faults. 

The primary motivation of this chapter is to extend the work of Srinivasan and Kot (1992) by 

studying the feasibility of the use of experimentally measured vibration data from a population of 

cylinders to identify faults.  In addition to using the conventional modal properties to conduct 

this feasibility study, a new parameter called pseudo modal energy, which was introduced for 

fault identification in Chapter 2, is also used.  Cylinders are chosen because cylindrical shapes 

are used in many structures, including the fuselage, engine casing and nacelle of aircraft. 
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Vibration data from a population of 20 seam-welded cylindrical shells made of steel are 

measured by exciting the cylinders at various locations using an impulse hammer and measuring 

vibration responses using an accelerometer located at a fixed position.  Each cylinder is divided 

into three equal substructures and holes of 10-15 mm are introduced at the centers of each 

substructure.  From the measured vibration data, the Frequency Response Functions (FRFs) are 

calculated.  The modal properties, i.e. natural frequencies and the mode shapes, are then 

extracted from the FRFs using the procedure outlined in Appendix B.  Mode shapes are 

transformed into the Coordinate-Modal-Assurance-Criterion (COMAC) [Lieven and Ewins, 

1988] by calculating the correlation of each set of the measured modal properties to the median 

modal properties calculated from a population of undamaged cylinders.  The pseudo modal 

energies introduced in Chapter 2 and applied on a simulated cantilevered beam in Chapter 3 are 

calculated from the FRFs by determining the integrals of the real and imaginary components of 

the FRFs.  Similarly, the pseudo modal energies are transformed into the Coordinate-Pseudo-

Modal-Energy-Assurance-Criterion (COPMEAC), a criterion that is introduced in this chapter. 

By comparing the modal properties, the pseudo modal energies, the COMAC and the 

COPMEAC between undamaged and damaged populations the feasibility of using vibration data 

for fault identification in a population of cylinders is assessed.  The changes of these parameters 

as a result of faults are investigated while taking into account the following issues:  

(1) Changes in modal properties or pseudo modal energies resulting from the presence of faults 

compared with those resulting from variation in measurements and in physical properties of 

the population of cylindrical shells.  

(2) Uncertainty in measurement positions. 

(3) Errors introduced during modal analysis. 

(4) Changes in support conditions and environmental conditions. 
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4.2 FINITE ELEMENT MODEL OF A CYLINDRICAL SHELL  

Before experimental measurements are conducted on a population of cylindrical shells, a 

finite element model is constructed using ABAQUS [Anonymous, 1994] to study the dynamics 

of the cylinders.  The cylinder has a diameter of 100mm, a height of 100mm and a thickness of 

1.75mm.  The finite element model consists of 1001 8-noded-shell-elements and 4100 nodes.  

This size of elements is chosen because it is found that increasing the mesh size does not 

improve the results any further, implying that the finite element model has converged.  The 

diagram showing a finite element model of a cylinder is shown in Figure 4.1. 

This figure shows the mode shape of the first natural frequency occurring at 433Hz.  Further 

natural frequencies calculated from the finite element model are shown later in this chapter.  

From the finite element model and taking into account the limitation of the equipment used to 

measure vibration data, it is decided that the frequency range of 0-5000Hz would be used for 

fault identification.  This is because this frequency bandwidth contains enough modes to be used 

for fault identification.  The specifications of the equipment used are given later in the chapter.  

Adding a mass of 5g at various positions in the finite element model is used to study the 

dynamics of the cylinder and it is observed that adding this mass to a cylinder, which is 

symmetrical, breaks down the symmetry, thereby eliminating the incidence of repeated modes.  

The mass of the cylinder is 0.43kg.  In the next section, details on the experimental 

measurements are described. 

4.3 EXPERIMENTAL MEASUREMENTS 

In this section, the experimental measurements conducted on a population of cylinders are 

described.  Details about the equipment used in the experiments are provided, the experimental 

procedure is outlined and the relevant signal processing tools implemented in this study are 

discussed. 
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Figure 4.1 A finite element model of a cylindrical shell 
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4.3.1 Experimental equipment 

A schematic diagram of the experimental set-up is shown in Figure 4.2, while details of the 

measuring equipment are given in Table 4.1.  Figure 4.2 shows three main components of the 

measurement technique implemented: 

1. The excitation of the structure: a modal hammer is used to excite the cylinders. 

2. The sensing of the response: an accelerometer is used to measure the acceleration response. 

3. The data acquisition and processing: the data is amplified, filtered, converted from analogue 

to digital format (i.e. A/D converter) and finally stored in the computer.  The procedure to 

process the data is explained later in this chapter. 
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Figure 4.2 Schematic representation of the test set-up. 
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Table 4.1. Details of the equipment used to measure the cylinders. 

Item Specification Use 

DJB Accelerometers Sensitivity: 26.6pC/g  

Mass: 19.8g 

Measuring the acceleration 

response of the cylinders 

PCB modal hammer Sensitivity: 4pC/N 

Mass of the head:  6.6g  

Measuring the force applied 

using the impulse hammer 

Impulse charge amplifier Sensitivity: 2.0mV/pC  

Cut-off frequency: 0.44-

10kHz 

Amplifying the impulse force 

exerted on the structure 

Response charge amplifier Sensitivity: 14mV/pC 

Cut-off frequency: 0.44-

10kHz  

Amplifying the acceleration 

response 

National Instruments 

DAQCard 1200 data 

acquisition personal 

computer card 

8-channel 12-bit A/D  

Gain set to 1000 

Sampling transducer time 

signals 

VBF/3 Kemo filter Cut-off frequency: 0.1Hz-

5kHz 

 

Low pass filter 

Daytek Desktop Computer 300MHz Pentium 

microprocessor 64MB RAM 

3.99GB  

Control of DAQCard 1200, 

data storage and analysis 

(a) Accelerometers and impulse hammer 

The cylinders are excited using a hand-held modal hammer.  The modal hammer essentially 

consists of three main components: a handle, a force transducer and a hammer tip.  The impact 

force of the hammer depends on the mass of the hammer and the velocity of the impact.  When a 

modal hammer is used to impact the structure, usually the operator controls the velocity of 

impact rather than the force itself.  The most appropriate way of adjusting the force of the impact 
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is by adjusting the mass of the hammer.  The frequency range, which is excited by the hammer, 

depends on the mass of the hammer tip and its stiffness.  The hammer tip setup has a resonance 

frequency above which it is difficult to deliver energy into the structure and this resonance 

frequency may be calculated as (contact stiffness/mass of the tip)0.5.  In this study the force 

transducer used is a PCB A218 and a plastic hammer tip is chosen because it is found to deliver 

adequate energy to excite frequencies within the bounds of our interest.  The sensitivity of the 

transducer is 4pC/N, with a mass of the head of 6.6g. 

The responses are measured using a DJB piezoelectric accelerometer with a sensitivity of 

2.6pC/ms-2 and a mass of 19.8g.  A small hole of size of 3mm is drilled into the cylinder and the 

accelerometer is attached by screwing it through the hole. 

(b) Amplifiers 

Signals from the impulse hammer and the accelerometer give small charges.  As a result the 

signals need to be amplified by using a charge amplifier.  For this purpose in-house charge 

amplifiers were designed.  The acceleration signal is amplified by using a charge amplifier with a 

sensitivity of 14mV/pC while the impulse signal is amplified by using a charge amplifier with a 

sensitivity of 2.0mV/pC.  These amplifiers have a frequency range of 0.44-10kHz.  

(c) Filter 

One problem associated with modal testing is a problem of aliasing.  When vibration signal 

is measured, it must be converted from analogue into digital form, as it is sampled by an 

analogue to digital (A/D) converter.  This requires that a sampling frequency be chosen.  If the 

signal has significant variation over a short time then the sampling frequency must be high 

enough to provide an accurate approximation of a signal that is being sampled.  Significant 

variation of a signal over a short period of time usually indicates that high frequency components 

are present in the signal.  If the sampling frequency is not high enough, then high frequency 

components are not sampled correctly resulting in the problem called aliasing, which is a 

phenomenon that arises as a result of discretising a signal that was originally continuous.  The 

discretisation process may misinterpret high frequency components of the signal if the sampling 

rate is too slow, and this may result in high frequency components appearing as low frequency 
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components.  During data acquisition, the data are sampled at a rate at least twice the signal 

frequency to prevent the problem of aliasing and this technique is due to the Nyquist-Shannon 

theorem [Maia and Silva, 1997].  In addition, an anti-aliasing filter may be used before the 

analogue signal is converted into digital format to avoid the aliasing problem.  Anti-aliasing filter 

is a low-pass filter and only allows low frequencies to pass through.  This filter essentially cuts 

off frequencies higher than about half of the sampling frequency. 

In this study, the experiment is performed with a sampling frequency of 10kHz and the 

number of samples taken is 8192.  The impulse and the response signals are filtered using a 

VBF/3 Kemo filter with a gain of 1 and a cut-off frequency of 5kHz. 

(d) Data-logging system 

The National Instruments DAQCard 1200 of 12-bit over ±5V analogue-digital conversion is 

used to log the impulse force and the acceleration response.  The sampling rate is set to 10kHz, 

which is sufficient for the frequency bandwidth of interest (i.e. 0-5kHz). 

A Visual Basic program running on a Daytek desktop computer controls the DAQCard.  This 

program is used to start data logging, set sampling frequencies, check sample saturation and save 

the data.  After the raw data are measured and saved, they are then opened using MATLAB and 

checked as to whether they are acceptable or not by calculating the FRFs. 

4.3.2 Experimental procedure 

Having chosen the frequency bandwidth of interest from a finite element model and the 

specification of the equipment, and discussed the experimental setup, a description of the 

experiment is now provided.  The experiment is performed on a population of cylinders that are 

supported by inserting a sponge rested on a bubble-wrap to simulate a ‘free-free’ environment 

[see Figure 4.3 and for more details see Appendix F].  The sponge is inserted inside the cylinders 

to control boundary conditions.  This will be further discussed below.  Conventionally, a ‘free-

free’ environment is achieved by suspending a structure usually with light elastic bands.  A ‘free-

free’ environment is implemented so that rigid body modes, which do not exhibit bending or 

flexing, can be identified.  These modes occur at frequency of 0Hz and they can be used to 

calculate the mass and inertia properties, but are not essential for a successful fault identification 
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procedure.  In this thesis, a ‘free-free’ environment is approximated by using a bubble-wrap.  

Testing the cylinders suspended is approximately the same as testing it while resting on a bubble-

wrap, because the frequency of cylinder-on-wrap is below 100Hz.  The first natural frequency of 

cylinders being analysed is over 400Hz and this value is several order of magnitudes above the 

natural frequency of a cylinder on a bubble-wrap.  Therefore the cylinder on the wrap is 

effectively decoupled from the ground.  It should be noted that the use of a bubble-wrap adds 

some damping to the structure but the damping added does not compromise the identification of 

modes. 

The impulse hammer test is performed on each of the 20 steel seam-welded cylindrical shells 

(1.75 ± 0.02mm thickness, 101.86 ± 0.29mm diameter and of height 101.50 ± 0.20mm).  The 

impulse is applied at 19 different locations as indicated in Figure 4.3: 9 on the upper half of the 

cylinder and 10 on the lower half of the cylinder.  Problems encountered during impulse testing 

include difficulty of exciting the structure at an exact position especially for an ensemble of 

structures and in a repeatable direction.  Each cylinder is divided into three equal substructures 

and holes of 10-15 mm in diameter are introduced at the centers of the substructures to simulate 

faults.  Simulating faults by drilling holes has been implemented before.  One example of 

simulating faults this way was conducted by [Kudva et al., 1991] where the authors introduced 

faults by drilling holes in plates.  Cylinders are idealised into substructures so that the method of 

substructuring introduced in Chapter 3 [see Section 3.3.3] can be experimentally verified. 

For one cylinder the first type of a fault is a zero-fault scenario.  This type of fault is given the 

identity [0 0 0], indicating that there are no faults in any of the three substructures.  The second 

type of fault is a one-fault-scenario, where a hole may be located in any one of the three 

substructures.  Three possible one-fault-scenarios are [1 0 0], [0 1 0], and [0 0 1] indicating one 

hole in substructures 1, 2 or 3 respectively.  The third type of fault is a two-fault scenario, where 

one hole is located in two of the three substructures.  Three possible two-fault-scenarios are [1 1 

0], [1 0 1], and [0 1 1].  The final type of fault is a three-fault-scenario, where a hole is located in 

all three substructures, and the identity of this fault is [1 1 1].  There are 8 different types of fault 

cases considered. 
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The zero-fault and three-fault scenarios are over-represented.  This is because each of the 20 

undamaged cylinders is progressively damaged by drilling first one, then two and finally three 

holes.  As there is one type of zero- and three-fault cases; and three types of one- and two-fault 

cases, all cylinders exhibit zero- and three-fault cases but do not all exhibit all one- and two-fault 

cases. 

Figure 4.3 Illustration of cylindrical shell showing the positions of the impulse, accelerometer, 
substructure, fault position and supporting sponge.  The sponge is inserted inside the cylinder to 
control boundary conditions by rotating it every time a measurement is taken.  The bubble wrap 
simulates the free-free environment.  The top impulse positions are located 25mm from the top 
edge and the bottom impulse positions are located 25mm from the bottom edge of the cylinder.  
The angle between two adjacent impulse positions is 36°.  The holes are located at the centre of 
the substructures with diameter randomly chosen to fall in the interval [10 15] mm. 
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Because the zero-fault scenarios and the three-fault scenarios are over-represented, some fault 

cases are measured after increasing the magnitudes of the holes. This is done before the next fault 

case is introduced to the cylinders.  Only a few fault cases are selected because of the limited 

computational storage space available.  In addition, it is the intention of this thesis to devise a 

fault identification procedure that works well even when there is limited data available because 

this situation is common in industry [Tarassenko, 1998].  For each fault case, acceleration and 

impulse measurements are taken.  The types of faults that are introduced (i.e. drilled holes) do 

not influence damping.  Each cylinder is measured three times under different boundary 

conditions by changing the orientation of a rectangular sponge inserted inside the cylinder.  

Measurements are taken by following these steps: 

1. For all 20 cylinders measure vibration data with each cylinder measured three times and this 

gives 60 (20×3) sets of vibration data. 

2. On the 20 cylinders, introduce [1 0 0] fault case to 7 cylinders, [0 1 0] fault case to 7 

cylinders; and [0 0 1] fault case to 6 cylinders and measure each cylinder 3 times.  This gives 

21 [1 0 0 ] fault case, 21 [0 1 0] fault case and 18 [0 0 1] fault case. 

3. Pick 3 cylinders with [1 0 0] fault case and increase the sizes of holes; 3 cylinders with [0 1 

0] fault case and increase the sizes of holes; and all 6 cylinders with [0 0 1] case and increase 

the size of holes and take the measurements.  Steps 2 and 3 give 24 measurements for each 

one-fault case. 

4. Introduce additional faults to; 7 cylinders with [1 0 0] case making each a [1 0 1] case; to 7 

cylinders with [0 1 0] case making each a [1 1 0] case; and to 6 cylinders of [0 0 1] case 

making each a [0 1 1] case.  Take measurements 3 times and this gives 21 [1 0 1] cases, 21 [1 

1 0] and 18 [0 1 1] cases. 

5. Pick 3 cylinders with [1 0 1] case and increase the sizes of holes; 3 cylinders with [1 1 0] case 

and increase the sizes of holes; and all 6 cylinders with [0 1 1] case and increase the sizes of 

holes and take the vibration measurements.  Steps 4 and 5 give 24 measurements for each 

two-fault case. 

6. Introduce additional holes to all the 20 cylinders making all of them a [1 1 1] case and take 

the vibration measurements three times giving 60 fault cases. 
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The number of sets of measurements taken for undamaged population is 60 (20 cylinders × 3 

for different boundary conditions).  All the possible fault types and their respective number of 

occurrences are listed in Table 4.2.  It Table 4.2 it should be noted that the numbers of one- and 

two-fault cases are each 72.  This is because as mentioned above, increasing the sizes of holes in 

the substructures and taking vibration measurements was used to generate additional one- and 

two-fault cases. 

 

Table 4.2. The number of different types of fault cases generated  

Fault [0 0 0] [1 0 0] [0 1 0] [0 0 1] [1 1 0] [1 0 1] [0 1 1] [1 1 1] 

Number 60 24 24 24 24 24 24 60 

 

Sample results from the measurements are shown in Figures 4.4 and 4.5.  Figure 4.4 shows 

the impulse force as a function of time and Figure 4.5 shows the acceleration response as a 

function of time.  When measuring these data it is ensured that the impulse force history does not 

have multiple impulses (i.e. double hits).  In addition, a check is made that the acceleration 

response has decayed to zero by viewing the data before saving.  

0.262 0.2625 0.263 0.2635 0.264

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

Fo
rc

e 
(N

)

 
Figure 4.4.  The sample impulse force response history. 
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Figure 4.5 The sample acceleration response history. 

4.3.3 Signal processing 

Now that all the measurements have been taken, the next step is to process the data.  Recall 

from Chapters 2 and 3 that the signals identified for fault identification are the pseudo modal 

energies and modal properties.  The aim of performing signal processing in this study is to 

calculate these two parameters.  However, before this can occur, the problem of the DC offset in 

the raw data has to be addressed.  To do so, two points one before another after the impulse are 

selected on the impulse history.  The mean of the signal before the first point and after the second 

point is calculated and subtracted from the impulse data to ensure that the force history has a 

value close to zero before and after the impulse.  On the acceleration response, the mean of the 

signal is calculated and subtracted from the signal.  
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The impulse and response data that are conditioned in the manner described in this section 

are processed using the Fast Fourier Transform (FFT) [Cooley and Tukey, 1965] to convert the 

time domain impulse history and response data into the frequency domain.  The data in the 

frequency domain are used to calculate the FRFs.  The sample FRF results from an ensemble of 

20 undamaged cylinders are shown in Figure 4.6.  This figure indicates that the measurements 

are generally repeatable at low frequencies and are not as repeatable at high frequencies.  

Axisymmetric structures such as cylinders have repeated modes due to their symmetry [Royton et 

al., 2000].  The presence of an accelerometer and the imperfection of cylinders destroy the 

axisymmetry of the structures.  The incidence of repeated natural frequencies is destroyed 

making the process of modal analysis easier to perform [Maia and Silva, 1997]. 

From the FRFs, the modal properties are extracted using modal analysis [see Appendix C] 

and the pseudo modal energies are calculated using the integrals under the peaks for given 

frequency bandwidths using the trapezoidal technique.  When the pseudo modal energies are 

calculated, frequency ranges spanning over 6% of the natural frequencies are chosen.  These 

bandwidths are as follows in Hz: 393-418, 418-443, 536-570, 570-604, 1110-1180, 1183-1254, 

1355-1440, 1450-1538, 2146-2280, 2300-2440, 2450-2601, 2500-2656, 3140-3340, 3450-3665, 

3800-4039, 4200-4458 and 4640-4928. 

The guidelines outlined in Chapter 2 are taken into consideration when choosing these 

frequency ranges.  These guidelines state that the frequency bandwidth must be:  

(1) sufficiently narrow to capture the resonance behavior; 

(2) sufficiently wide to capture the smoothing out of zero-mean noise; 

(3) must not include the regions of the anti-resonance, which are generally noisy. 

 

The sample results from modal analysis are shown in Figure 4.7.  This figure illustrates the 

magnitude and phase of the measured data and the reconstruction from the identified modal 

properties. 
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Figure 4.6 The measured FRFs from a population of undamaged cylinders.  The different curves 
correspond to different measurements. 
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Figure 4.7 A graph showing the amplitude and phase and their respective reconstruction 
obtained from the identified modal properties.  
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4.4 PARAMETERS TO BE STUDIED 

Having gathered the data and performed the pertinent signal processing, the next stage is to 

assess the feasibility of using these data for fault identification.  As explained at the beginning of 

this chapter, the literature does not address this situation [Doebling et al., 1996].  The most 

reliable and sensitive pseudo modal energies and modal properties, as well as the COMAC and 

COPMEAC are used to make the assessment.  The most reliable data are those that do not 

change significantly over a population of undamaged cylinders, while the most sensitive data are 

those that change significantly when a fault is introduced.  In order to select the most reliable and 

sensitive data, the most sensitive data are chosen from the most reliable data.  The details of this 

procedure are explained later in the chapter.  In this section, the method of calculating and 

comparing the data is described. 

4.4.1 Modal properties and pseudo modal energies 

The modal properties and pseudo modal energies are chosen by employing the following five 

steps: 

1. Find the means and the standard deviations of the modal properties and pseudo modal 

energies at each index for data from undamaged and damaged cylinders (e.g. mode 5 

coordinate 3 is assigned its own index number).  Here an index is any whole number. 

2. Calculate the difference between the means of the data from the undamaged and damaged 

cylinders at each index. 

3. Calculate the average of the standard deviations from the undamaged and damaged cylinders 

while keeping track of the indices. 

4. Calculate the Statistical Overlap Factor, defined as the ratio between the average of the 

magnitude of the difference in step 2 to the average-standard-deviations in step 3 at each data 

index.  Statistical overlap factor is analogous to the modal overlap factor which has been 

used successfully in Statistical Energy Analysis [Langley, 1999], and was defined in Chapter 

2.   
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5. From the statistical overlap factors, select 19 indices with the highest ratios and assess their 

corresponding data. 

4.4.2 Coordinate-modal-assurance-criteria and coordinate-pseudo-modal-energy-

assurance-criteria 

In this section the method of calculating the COMAC and COPMEAC is discussed.  In 

Section 4.4.1, the method of choosing the most sensitive and reliable pseudo modal energies and 

modal properties is described.  One weakness of this method is that a great deal of information is 

not used because only those data that are deemed sensitive and reliable are selected.  In this 

chapter it is assessed whether using all the available data by employing the COMAC and the 

COPMEAC is better than choosing the data using the procedure outlined in Section 4.4.1.  The 

COMAC [Lieven and Ewins, 1988] is a measure of the correlation between two sets of data of 

the same dimension.  The COMAC reduces the dimension of the modal properties to be equal to 

the number of mode shape coordinates.  The COMAC for coordinate i, between the measured 

data φm and the median data calculated from a population of undamaged structures φMED may be 

written as follows: 
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Here, * stands for complex conjugate.  In equation 4.1, when φm and φMED are perfectly correlated 

then the COMAC for all degrees of freedom is 1.  Otherwise, when perfectly uncorrelated, the 

COMAC for all degrees of freedom is 0.  In this chapter, the natural frequency vector is taken as 

an additional degree of freedom. 

The COPMEAC is a criterion that measures the correlation between two sets of the pseudo 

modal energies of the same dimension.  The COPMEAC for coordinate i, between the measured 

pseudo modal energies (PMEm) and the median pseudo modal energies (PMEMED) calculated 

from a population of undamaged structures is: 
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Essentially, equation 4.2 is similar to equation 4.1.  The only difference is that equation 4.2 uses 

the pseudo modal energies while equation 4.1 uses the modal properties.  Similarly, when the 

PMEm and the PMEMED are perfectly correlated the COPMEAC for all degrees of freedom is 1. 

Otherwise, when perfectly uncorrelated, the COPMEAC for all degrees of freedom is 0.  It 

should be noted that the pseudo modal energies are complex. 

4.5 RESULTS AND DISCUSSION 

The average and sample standard deviations of the natural frequencies for both the damaged 

and undamaged cylinders are shown in Table 4.2 and compared to the results from the finite 

element model (which includes the mass of the accelerometer).  The data from the damaged 

cylinders are for the one-fault cases only.  The inclusion of the accelerometer breaks the 

symmetry of the structure thereby making the process of modal analysis easier to perform. 

In Table 4.3, it is shown that, for the undamaged cases, the average natural frequency of 

mode 1 is the most repeatable and, in order of repeatability, followed by 3, 4, 2, 5, 7, 6, 11, 9, 16, 

10, 17, 19, 18, 12, 8 and mode 15.  For the damaged cases the average natural frequency for 

mode 1 is the most repeatable, followed by modes 2, 3, 4, 5, 7, 6, 12, 9, 17, 11, 10, 18, 16, 8, 15 

and mode 19.  These trends are observed by comparing the magnitudes of the sample standard 

deviations. 

In Table 4.3, the natural frequencies corresponding to modes 13 and 14 could not be 

identified.  When the average natural frequencies from a population of undamaged cylindrical 

shells are compared to those of damaged cylinders, it is observed that none of the natural 

frequencies decreases by more than 2% except mode 15.  Modes 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 

15, 16 and 17 are used to calculate the COMAC while the first seven peaks are used to calculate 

the COPMEAC. 

The statistical overlap factors between the data from the undamaged and damaged cylinders 

(only a one-fault case) are shown in Figure 4.8. This figure indicates that, on average, faults are 
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mostly observed on the pseudo modal energies, followed by the COPMEAC, then the modal 

properties followed by the COMAC.    

 
Table 4.3 Natural frequencies for both damaged and undamaged cylinders.  The damage cases 
represent the one-fault cases only. 

Mode Number Finite Element 

Results 

(Hz) 

Average (fn) 

Undamaged 

(Hz) 

Standard 

deviation (σ) 

Undamaged 

(Hz) 

Average (fn) 

Damaged 

(Hz) 

Standard 

deviation (σ) 

Damaged (Hz) 

1 433.3 413.7 1.5 412.9 1.9 

2 445.5 425.3 3.2 425.1 1.9 

3 587.5 561.0 2.4 558.7 2.8 

4 599.0 576.6 3.0 576.9 2.8 

5 1218.3 1165.0 5.5 1164.6 6.0 

6 1262.9 1196.8 6.9 1196.8 7.2 

7 1480.0 1408.1 5.7 1404.4 6.3 

8 1510.0 1483.4 73.5 1463.4 52.5 

9 2273.5 2229.3 11.0 2224.7 11.5 

10 2323.6 2346.2 12.6 2360.4 17.5 

11 2422.3 2520.1 9.6 2511.4 13.8 

12 2657.4 2612.1 39.9 2630.1 10.5 

13 2711.3 - - - - 

14 2778.4 - - - - 

15 3713.7 3330.2 96.5 3239.7 113.3 

16 3914.3 3585.8 12.1 3580.7 22.4 

17 4138.5 3990.6 16.6 3983.8 13.5 

18 4222.8 4309.5 21.2 4316.8 21.0 

19 4634.2 4814.2 20.9 4724.7 181.0 
 



CHAPTER 4. EXPERIMENTAL MEASUREMENTS ON CYLINDERS         101 

In the simulation study conducted in Chapter 2, the pseudo modal energies were found to be 

more sensitive to faults than the natural frequencies and as sensitive to faults as the mode shapes.  

In Chapter 2 when identifying the mode shapes it was assumed that the natural frequencies and 

the damping ratios are known.  In this chapter where the experimental data are used, the natural 

frequencies and damping ratios are not known with absolute certainty, thereby compromising the 

identification of mode shapes.  So the reason why modal properties are poorer indicators of faults 

than the pseudo modal energies is partly due to the additional uncertainty introduced when 

identifying the modal properties and that on calculating the pseudo modal energies the zero-mean 

noise is smoothed out.  The use of direct data (the pseudo modal energies and the modal 

properties) is better than the use of the correlation criteria (the COPMEAC and the COMAC) 

because the latter average the changes as a result of faults while the former use exact changes. 

Figure 4.9 shows the statistical overlap factors obtained when comparing the modal 

properties between various fault cases. 
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Figure 4.8 Graph of statistical overlap factors between data from undamaged and damaged 
cylinders (one fault case). 
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Figure 4.9 Graph of statistical overlap factors between modal properties from undamaged and 
damaged cylindrical shells.  The ‘0 and 1’ shown at the bottom of this figure, indicates the 
statistical overlap factors between the distribution of all the zero- and one-fault cases over the 
entire population of cylinders. 
 

 

Figure 4.9 shows that the first 19 most reliable and sensitive modal properties indicate that the 

statistical overlap factors vary from 0.0073 to 2.5577 with an average of 0.63.  A similar figure to 

this, but using the pseudo modal energies, is shown in Figure 4.10.  The statistical overlap factors 

for Figure 4.10 are found to vary from 0.0243 to 2.286 with an average of 0.91.  The fact that the 

average statistical overlap factor for the pseudo modal energies is higher than that of the modal 

properties implies that the distributions of the pseudo modal energies for various fault cases are 

relatively easier to distinguish than that of the modal properties.  
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Figure 4.10 Graph of statistical overlap factors between pseudo modal energies from undamaged 
and damaged cylindrical shells. The ‘0 and 1’ shown at the bottom of this figure indicates the 
statistical overlap factors between the distribution of all the zero- and one-fault cases over the 
entire population of cylinders.   

 

The statistical overlap factors for the COMAC data between various fault cases are shown in 

Figure 4.11.  Figure 4.11 shows that the statistical overlap factors vary from 0.0006 to 1.6668 

with an average of 0.43.  The degree-of-separations of these factors between various fault cases 

are less than those observed in Figures 4.9 and 4.10. 
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Figure 4.11 Graph of statistical overlap factors between COMAC from undamaged and damaged 
cylindrical shells.  The legend of this figure, for example ‘0 and 2’ represents the statistical 
overlap factors between the distributions of all the zero- and two-fault cases. 

 

Statistical overlap factors calculated from the COPMEAC are shown in Figure 4.12.  Figure 4.12 

shows the statistical overlap factors varying from 0.00059 to 1.539 with an average of 0.52.  The 

degree-of-separation between various fault cases when the COPMEAC data are used to calculate 

the statistical overlap factors, is higher than when the COMAC data are used (Figure 4.11).  

Furthermore, the degree-of-separation for this case is observed to be less than that obtained when 

the pseudo modal energies and the modal properties (Figures 4.9 and 4.10) are used directly. 
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Figure 4.12 Graph of statistical overlap factors between COPMEAC from undamaged and 
damaged cylindrical shells.  The legend of this figure, for example ‘0 and 2’ represents the 
statistical overlap factors between the distributions of all the zero-fault and two-fault cases. 

 

The results showing the averages of the statistical overlap factors when the pseudo modal 

energies, the modal properties, the COPMEAC and the COMAC data are used and between 

various fault cases are listed in Table 4.4.  Table 4.4 gives the average results shown in Figures 

4.9 to 4.12.  From this table, it can be seen that the statistical overlap factors between no-fault- 

and one-fault cases indicate that the pseudo modal energies are, on average, most sensitive to 

faults followed by the COPMEAC and the modal properties.  The statistical overlap factors 

between the no-fault- and the two-fault cases indicate that the pseudo modal energies are, on 

average, better indicators of faults followed by the COPMEAC, then the modal properties.  The 

degree-of-separation between no-fault- and three-fault cases is highest when the pseudo modal 

energies are used followed by the modal properties and the COPMEAC.  When one-fault cases 

are compared to two-fault cases, the statistical overlap factors indicate that the pseudo modal 

energies are, on average, the best separators of these faults, followed by the COMAC and then 

the modal properties. 
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Table 4.4 Average statistical overlap factors between various fault cases.  Here the ‘0 and 1’ 
indicate the statistical overlap factors between the distribution of zero-fault and one-fault cases.  

Parameter 0 and 1 0 and 2 0 and 3 1 and 2 1 and 3 2 and 3 

Modal properties 0.44 0.48 0.96 0.36 0.82 0.70 

Pseudo modal energies 1.01 1.54 1.59 0.48 0.62 0.26 

COMAC 0.41 0.44 0.49 0.39 0.47 0.39 

COPMEAC 0.74 0.70 0.80 0.28 0.32 0.25 
 

The statistical overlap factors between one-fault- and three-fault cases show that the modal 

properties are, on average, better separators of these cases than the pseudo modal energies and 

COMAC.  The degree-of-separation between the two-fault- and the three-fault cases are higher 

when the modal properties are used than when the COMAC and pseudo modal energies are used. 

Figures 4.9 to 4.12 and Table 4.4 show that the pseudo modal energies are the best indicators 

of faults, followed by the modal properties, the COPMEAC and the COMAC.  As the use of the 

COMAC and COPMEAC, is found to provide a weaker indication of faults than the use of the 

pseudo modal energies and modal properties directly, the next chapters do not consider them for 

fault identification. 

4.6 CONCLUSION 

In this chapter vibration data from a population of cylinders are measured and modal analysis 

is employed to obtain the natural frequencies and mode shapes.  Modal properties are 

transformed into the coordinate-modal-assurance-criterion.  The pseudo modal energies are 

calculated by integrating the frequency response functions over various frequency bandwidths.  

The pseudo modal energies are then transformed into the coordinate-pseudo-modal-energy-

assurance-criterion.  It is observed that using the pseudo modal energies and modal properties 

directly is better than using the coordinate-modal-assurance-criterion and coordinate-pseudo-

modal-energy-assurance-criterion respectively. 
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Chapter 5 

VALIDATION OF THE COMMITTEE-OF-NETWORKS 

USING EXPERIMENTAL DATA 

5.1  INTRODUCTION 

Most fault identification methods in mechanical systems, which use vibration data, update 

the mathematical models until their predictions match the measured data and use the updated 

parameters to infer the identity of damage.  The main problem with this approach is that it relies 

on the availability of an accurate mathematical model of the structure.  In reality, it is very rare 

that a mathematical model exists which describes the structure accurately enough to be used for 

fault identification.  The use of experimental data and approximation methods, in this thesis 

neural networks, rather than the exact mathematical model is the subject of this chapter.  In the 

literature, there is little work that is experimentally based that identifies faults in a population of 

structures [Doebling et al., 1996].  The reason for this is the relatively high expense of acquiring 

experimental data in which a variety of combinations of faults are introduced to the structure. 

 

This chapter seeks to achieve the following goals: 

1. Implement the pseudo modal energies proposed in Chapter 2 and modal properties (MPs) to 

identify faults using experimentally measured data from a population of cylinders described 

in Chapter 4. 
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2. Experimentally validate the proposition that the committee-of-networks, introduced in 

Chapter 3, gives more accurate results than the individual methods used separately. 

3. Implement a fault identification method based on the work of Srinivasan and Kot (1992), 

who assessed the feasibility of using vibration data to detect faults in cylinders.  In this 

chapter, the method is implemented on the population of cylinders studied in Chapter 4. 

4. Apply the multifold cross-validation method [Stone, 1974], to deal with the problem of 

limited amount of vibration data, for fault identification in a population of cylinders. 

5.2 EXPERIMENTAL DATA 

In this section, the experiments performed on a population of cylinders and discussed in 

Chapter 4, are briefly reviewed.  The data from the experiments are used for fault identification.  

To exploit the advantages of the substructuring technique introduced in Chapter 3, each cylinder 

is divided into three substructures, as discussed in Chapter 4, and holes with diameters varying 

from 10 to 15mm are drilled in each substructure.  Hole sizes are different because this best 

approximates reality, where faults in structures are not necessarily of the same magnitudes. 

As explained in the previous chapter, 8 different fault cases are introduced.  Each fault case is 

given an identity vector, which corresponds to the presence or absence of a fault in a 

substructure.  Since there are three substructures, the identity of a fault is defined as a 3 by 1 

vector with the first, second and third components indicating substructures 1, 2 and 3, 

respectively.  For example, assigning a 1 to the first component of the substructure vector 

indicates the presence of a fault in substructure 1.  The total number of zero-fault cases measured 

is 60, one-fault cases 72, two-fault cases 72 and three-fault cases 60.  These fault cases are 

described in Chapter 4.  It was originally intended that each measurement would be taken three 

times under different boundary conditions.  However, to increase the number of one-fault and 

two-fault cases some of these fault cases were measured more than three times with increased 

sizes of holes.  The reason behind this is explained in Section 4.3.2. 

From the measured data, the frequency response functions (FRFs) are calculated using the 

Fast Fourier Transform [Cooley and Tukey, 1965] as explained in Chapter 4.  From the 

calculated FRFs, the modal properties are identified using the procedure outlined in Appendix C.  
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The FRFs are also transformed into the pseudo modal energies.  The pseudo modal energies are 

used to train the pseudo-modal-energy-network, and modal properties are used to train the 

modal-property-network.  To train a multi-layer perceptron (MLP) neural network, conventional 

training, validation and testing data sets are used [Bishop, 1995] as in Chapter 3.  Due to the fact 

that there is a limited amount of data available for the present chapter, there is no validation data 

set put aside.  The networks are validated using the multifold cross-validation technique [Bishop, 

1995], which is described later in the chapter.  Table 5.1 shows the training and testing data sets 

for all fault cases that are shown in Chapter 4 (see Table 4.2).  For each fault case, e.g. [1 0 1] 

case, 21 measured examples are randomly selected from the total number of examples shown in 

Table 4.2.  For example, the [0 0 0] fault case has 60 examples and from these 21 examples are 

randomly selected. 

 

 

 

 

 

 

5.3 NETWORKS ARCHITECTURE AND OTHER ATTRIBUTES 

In this section the neural network architecture is described.  The following issues are 

followed to train the neural networks: 

1. The type of neural network is chosen.  Here an MLP network is chosen because it has been 

found in the past to be able to solve a fault identification problem using vibration data [Leath 

and Zimmerman, 1993]. 

2. The number of hidden layers is chosen.  The Universal Approximation Theorem [Haykin, 

1999; Lippmann, 1987] states that a two-layered network is sufficient for mapping data of 

arbitrary complexity. 

Fault [0 0 0] [1 0 0] [0 1 0] [0 0 1] [1 1 0] [1 0 1] [0 1 1] [1 1 1] 

Training set 21 21 21 21 21 21 21 21 

Test set 39 3 3 3 3 3 3 39 

Table 5.1. Fault cases used to train, cross-validate and test the networks.  The multifold cross-
validation technique [Bishop, 1995] is used because of the lack of availability of data 
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3. The number of input units is chosen.  Here 10 input units are selected using the statistical 

overlap factor introduced in Chapter 2 and the principal component analysis used in Chapter 

3. 

4. The number of hidden units is chosen.  Twenty pseudo-modal-energy-networks and twenty 

modal-property-networks with the number of hidden units randomly chosen to fall from 7 to 

11 are trained.  The pseudo-modal-energy-network and modal-property-network, which give 

the least mean squared errors during cross-validation, are chosen.  This process of selecting 

the number of hidden units is explained later in Section 5.4. 

5. The types of activation functions are chosen.  In this chapter the output activation function 

chosen is a logistic function, described in equation 3.7, while the activation function in the 

hidden layer is a hyperbolic tangent function.  Logistic output function is chosen over linear 

output function because it has been found to be more suitable for classification problems 

[Bishop, 1995]. 

6. The cost function is chosen.  The cross-entropy cost function shown in equation 3.10 is used.  

The reason why this cost function is chosen over the sum-of-square-of-errors is because it has 

been found to be better suited for classification problems than the sum-of-square-of-errors 

[Bishop, 1995] 

7. The optimisation technique to be used for training is chosen.  In this chapter the scaled 

conjugate gradient method [Møller, 1993] is chosen because it has been found to solve the 

optimisation problem encountered when training an MLP network more efficiently than the 

gradient descent and conjugate gradient methods [Bishop, 1995].  The details on these 

optimisation methods are described in Appendix E. 

8. The coefficient of prior distribution, α, of the weight decay regularisation method is chosen 

(see equation 3.10).  This coefficient determines how much the regularisation parameter 

contributes to the overall error during training.  Here by trial and error, α of 0.001 is found to 

be the most appropriate value for both networks.  



CHAPTER 5. VALIDATION USING MAXIMUM-LIKELIHOOD METHOD      111     

5.4 CHOOSING THE NUMBER OF INPUT AND HIDDEN LAYERS 

5.4.1. Input data 

This section describes the input data that are used to train the neural networks and the type of 

pre-processing techniques that are performed to reduce the input space.  The networks are trained 

using the modal properties and pseudo modal energies.  When training these networks, it is 

advantageous to make them as small as possible without compromising their abilities to 

generalise the data because of the phenomenon called the curse of dimensionality [Bellman, 

1961] described in Chapter 3.  One way of reducing the size of the networks is to reduce the 

input data through eliminating those inputs that do not contribute significantly to the dynamics of 

the data that is being modelled.  In this study, the dimension of the input space is reduced by 

employing the statistical overlap factors coupled with the principal component analysis (PCA), 

and this procedure is described in detail in Chapter 3.  The PCA is applied after the data have 

been normalised using a procedure described in Chapter 3, Section 3.5.1. 

Any input reduction scheme is accompanied by the loss of some information.  The statistical 

overlap factors reduce the data by choosing the data that are repeatable for a population of 

cylinders that are undamaged yet are still sensitive to faults.  The PCA reduces the input data by 

retaining only the data that are independent of one another, yet are sufficiently rich in 

information about the dynamics of the data.  To implement the PCA, first, the covariance matrix 

of the data is calculated using equation 3.45 shown in Chapter 3.  Second, the eigenvalues and 

eigenvectors of the covariance matrix are computed.  Finally, the input data are projected onto 

the eigenvectors that correspond to the dominant eigenvalues, thereby reducing the input data to 

the dimension of the eigenvalues chosen.  The details of the implementation of the PCA have 

been described in Chapter 3, Section 3.5.2. 

The numbers of pseudo-modal-energies and modal properties identified are 646 

(corresponding to 17 natural frequencies×19 measured mode-shape-co-ordinates × 2 for real and 

imaginary parts of the pseudo modal energy) and 340 (17 modes×19 measured mode-shape-co-

ordinates+17 natural frequencies), respectively.  The statistical overlap factor and the PCA are 

used to reduce the dimension of the input data from 646×264 pseudo-modal-energies and 
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340×264 modal properties to 10×264 (264 fault cases are measured) for both these data types.  

The first stage of the input dimension reduction scheme is to use the statistical overlap factor.  In 

this chapter, 50×264 pseudo-modal-energies and 50×264 modal properties are selected from 

646×264 and 340×264 identified, respectively.  The 50×264 pseudo modal energies and modal 

properties that are chosen are sufficiently repeatable for a population of faultless cylinders yet 

sufficiently sensitive to the introduction of faults.  The statistical overlap factor is implemented 

by following the steps outlined below: 

1. Find the means and the standard deviations of the modal properties and pseudo modal 

energies at each index for data from undamaged and damaged cylinders (e.g. mode 5 

coordinate 3 is assigned its own index number).  Here an index is any whole number. 

2. Calculate the difference between the means of the data from the undamaged and damaged 

cylinders at each index. 

3. Calculate the average of the standard deviations from the undamaged and damaged cylinders 

while keeping track of the indices. 

4. Calculate the Statistical Overlap Factor, defined as the ratio between the average of the 

magnitude of the difference in step 2 to the average-standard-deviations in step 3 at each data 

index.  Statistical overlap factor is analogous to the modal overlap factor, which has been 

used successfully in Statistical Energy Analysis [Langley, 1999], and was defined in Chapter 

2 by equation 2.12.   

5. From the statistical overlap factors, select 50 indices with the highest ratios and assess their 

corresponding data. 

 

The main problem with using statistical overlap factors is that the data selected may be 

correlated.  To ensure that the data chosen are uncorrelated, the PCA is employed to reduce 

50×264 pseudo modal energies and 50×264 MPs selected using statistical overlap factors to 

10×264 (here 10 rows are independent).  From the 50×264 pseudo modal energies and 50×264 

MPs the covariance matrix is calculated using equation 3.45.  The eigenvalues and eigenvectors 

of the covariance matrix are then calculated.   Ten eigenvectors, corresponding to the 10 largest 

eigenvalues, are retained.  The variance of the data retained when truncating 50×264 data to 
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10×264 is 90% for the pseudo-modal-energy-network and 85% for the modal-property-network.  

This is calculated by dividing the sum of the first 10 dominant eigenvalues by the sum of 50 

eigenvalues.  The input data (50×264) are then projected onto the corresponding eigenvectors.  

The new input data are of dimension 10×264. 

 

5.4.2. Number of hidden units 

In this section the procedure followed to choose the number of hidden units is described.  The 

output vector to the neural networks is of dimension 3×1.  For example, a fault in substructure n 

has a fault identity vector with the nth component containing a 1.  Given the input data of size 

10×168, and the output vector of size 3×168 for the training set, a network with 157 weights (11 

hidden units) is the largest network that could be constructed.  Here a value 168 corresponds to 

the number of training examples, as indicated in Table 5.1. 

In this chapter, twenty pseudo-modal-energy-networks and twenty modal-property-networks 

are trained by randomly choosing the number of hidden units to fall from 7 and 11.  The 

networks (one pseudo-modal-energy-network and one modal-property-network) that give the 

least mean squared errors, during cross-validation, are selected.  The next section details how the 

networks are trained, cross-validated and tested. 

5.5. TRAINING, CROSS-VALIDATION AND TESTING 

In this chapter, a multi-layer perceptron network is trained by minimizing the cross-entropy-

errors between its prediction and the target data.  This procedure of identifying a set of weights 

by minimising the distance between the predicted and the target data is called the maximum 

likelihood approach.  

One practice that has been adopted for training a muti-layer perceptron using back-

propagation algorithm is to divide the process into three stages: (1) training, (2) validation and 

(3) testing.  Each stage has a data set assigned to it and ideally these three data sets should be of 

equal size and must be independent of one another.  The network-weights that map the input to 

output data identified by minimising the network error and using the training data, may over-fit 

the training data.   The neural network that over-fits the training data may not necessarily perform 
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well on the validation and test data sets.  Over-fitting the training data set is a situation where a 

network stops learning how to approximate the hidden dynamics of the system and learns the 

noise in the data.  In order to combat this problem more networks than required are trained and 

the network that gives the least mean squared errors on the validation data set is chosen.  The 

chosen network may also over-fit the validation data in addition to the training data, and so the 

test data set is used to evaluate the performance of the trained network. 

In this study there is a limited amount of data available, a situation that is encountered in 

industry [Tarassenko, 1998].  In the present work, the limitation of the amount of data available 

is due to the fact that acquiring the data on a population of cylinders is an expensive process.  For 

this reason, the technique of dividing the data into training, validation and testing data sets is not 

pursued in this chapter but the cross-validation method [Bishop, 1995] that uses a training data 

set as a validation set is used to estimate the validation error and to choose the number of hidden 

units in the network.  The cross-validation method has been around for some time but was given 

prominence by Stone (1974) and Geisser (1975).  The cross-validation method has been found to 

give good results for small data sets [Goutte, 1997; Zhu and Rohwer, 1996] and this renders it 

useful for many practical applications where there is a limited amount of data available.  A 

literature review of the cross-validation method can be found in Stone (1974; 1978).  Section 

5.5.1 describes the multifold cross-validation procedure, which is one of the variants of the cross-

validation methods. The multifold cross-validation method has been used successfully in the past 

to deal with the problem of limitation of the amount of data available for neural network 

modelling [Haykin, 1999; Tarassenko, 1998]. 

 
5.5.1 The multifold cross-validation method 

 In this thesis, due to the fact that there is a limited amount of data available, the training data 

set is also used as a validation data set by employing a multifold cross-validation method [Stone, 

1978]. The multifold technique implemented in the present study is illustrated in Figure 5.1.  

Each column in Figure 5.1 shows a partition of the training data set and each row represents a 

training case.  The shaded box for a given training case is the partition that is used for validation 

purposes while the rest of the boxes in the same row are used to train the network. 
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When the multifold cross-validation technique is implemented, the training data set with N 

examples is divided into K partitions.   Here it is assumed that N is divisible by K and that K > 1.  

For each training case (see Figure 5.1), the network is trained with the data from all partitions 

except one and the validation set is the subset that is left out.  In Figure 5.1 the partition that is 

left out for each training case is a shaded one.  For example, in Figure 5.1 for Training case 1 the 

network is trained using Partitions 2 to K and Partition 1 is used as a validation set.  The process 

is repeated for K training cases, by leaving a shaded partition for validation and using the 

remaining partitions for training.  It should be noted that the variant of the multifold cross-

validation method implemented in this chapter initialises the network once in Training case 1 

(see Figure 5.1).  The network-weights obtained after Training case 1 become initial network-

weights for Training case 2 and so on.  The performance of the resulting network is evaluated by 

averaging the mean squared errors or classification error under validation over all the training 

cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training case K 

 Training case 3 

Training case 2 

   Training case 1 

  Partition 1           Partition 3      Partition 2 Partition K 

Figure 5.1.  An illustration of the multifold cross-validation method used in this chapter.  
The network is trained K times each time leaving out the data indicated by the shaded 
area and using the omitted data for validation purposes.  The validation error is obtained 
by averaging the squared error under validation over all the trials of the experiment.   
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If the limitation of the amount of data is severe, then a method called the leave-one-out 

method, which is a special case of a multifold cross-validation method is used, where all 

examples but one are used to train the network and the model is validated on the remaining one.  

The study conducted by Shao and Tu (1995) suggests that the multifold cross-validation method 

performs better than the leave-one-out method, for estimating generalisation errors.  This is 

because the leave-one-out method over-fits the data.    

For each training session there needs to be a stopping criterion and in this thesis training is 

stopped after 50 scaled conjugate gradient iterations have elapsed.  It should be noted that there 

are other stopping criteria such as the early stopping method [Bishop, 1995], which are used to 

prevent over-training of the network.  However, the early stopping method is not used in this 

thesis because, as already mentioned, the weight decay regularisation factor is used to prevent 

over-training. 

 
5.5.2 Implementation of the multifold cross-validation method 

In this chapter the multifold cross-validation method is used to train and validate the pseudo-

modal-energy-network and modal-property-network.  The fault cases used to train and test the 

networks are shown in Table 5.1.  In Table 5.1 the training data set, with 168 fault cases, has 

equal number of fault cases indicating that the probabilities of occurrence of eight fault cases are 

equal.  The remaining 96 fault cases are used to test the networks. 

The training data set with 168 fault cases is partitioned into 21 subsets.  Each partition has 8 

different fault cases.  This ensures that the training set is balanced in terms of the proportion of 

fault cases present.  The first sets of networks, i.e. pseudo-modal-energy-network and modal-

property-network (20 for each method), are trained with 160 fault cases (from Partitions 2 to 21) 

and the networks are validated on the remaining 8 fault cases (from Partition 1).  The network-

weights identified in the previous sentence are used as initial weights for Training case 2.  The 

training for this case is conducted using all partitions except Partition 2, which is used to validate 

the trained networks.  The complete training and validation of the networks is conducted 21 

times until all the validation partitions have been used. 
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As already mentioned, 20 pseudo-modal-energies with the number of hidden units randomly 

chosen to fall from 7 and 11 are trained and validated using the multifold cross-validation 

technique.  The same procedure is used to train 20 modal-property-networks.  From these two 

sets of 20 trained networks, the pseudo-modal-energy-network and modal-property-network that 

give the least mean squared errors over the validation partitions, are chosen.  Each validation 

partition (see Figure 5.1) gives a mean squared error.  The average of the mean squared errors of 

all the partitions is the validation error used to select the networks. 

The features of the pseudo-modal-energy-network and modal-property-network that have the 

least mean squared errors are listed in Table 5.2.  This table also shows that the training, 

validation and testing mean squared errors are of similar order of magnitudes.  This is an 

indication that the networks have not been over-trained.  The classification accuracy rates, 

defined as the proportion of fault cases that are classified correctly into 8 fault cases, when using 

the pseudo-modal-energy-network on the training data set is 84.1%. The classification accuracy 

rate, when using the modal-property-network on the training data set, is 83.5%. 
 
Table 5.2. The properties of the trained networks and the results obtained. Key: PME-N= 
pseudo-modal-energy-network; MP-N=modal-property-network; MSE=mean squared error; α = 
coefficient of the regularisation contribution to the cost function     

Network Number of 
input 

Number of 
hidden 
nodes 

Number of 
weights 

α MSE 
(Training) 

MSE 
(validation) 

MSE   
(test data) 

PME-N 10 8 115 0.001 0.0240 0.0403 0.0490 

MP-N 10 9 129 0.001 0.0307 0.0437 0.0611 

5.6 RESULTS AND DISCUSSIONS 

In the previous section, two networks (pseudo-modal-energy and modal-property-networks) 

were trained using data listed in Table 5.1 and cross-validated using the multifold cross-

validation method and the training data.  As described in the previous section, the multifold 

cross-validation method uses the training data to evaluate the validation errors.  The multifold 

cross-validation error was used to select the number of hidden units that give the least mean 

squared error during cross-validation from the two sets of 20 pseudo-modal-energy-network and 
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modal-property-networks and the resulting networks are listed in Table 5.2.  In this section the 

performances of the two selected networks are evaluated on the test data consisting of 96 fault 

cases. 

From the pseudo-modal-energy-network and modal-property-network, the committee-of-

networks is constructed.   On calculating the committee, it is assumed that the pseudo-modal-

energy-network and the modal-property-network have the same predictive capacity.  As a result, 

the two approaches are given the same weighting functions. 

In Chapter 3, it was demonstrated that if the error of the committee method is plotted against 

the weighting function assigned to one of the networks that form a committee-of-networks, a 

parabola with a minimum point is obtained.  The situation is the same if the standard deviation of 

squared errors is plotted against the weighting function assigned to one of the two methods that 

form a committee-of-networks. 

Figure 5.2 shows the mean squared errors versus the weighting function assigned to the 

pseudo-modal-energy-network.  In this figure, the y-axis represents the mean squared errors on 

the 96 fault cases from the test data.  The x-axis shows the weighting function assigned to the 

pseudo-modal-energy-network to form a committee method.  A position on the x-axis 

corresponding to a weighting function of zero assigned to the pseudo-modal-energy-network 

indicates that corresponding mean squared errors are all due to the modal-property-network.  A 

position on the x-axis corresponding to a weighting function of 1 assigned to the pseudo-modal-

energy-network indicates that the corresponding mean squared errors are all due to the pseudo-

modal-energy-network.  From the performance of the networks on the test data results shown in 

Figure 5.2, the most optimal committee-of-networks is realised when 0.55-weighting function is 

assigned to the pseudo-modal-energy-network.  The assumed weighting function of 0.5 assigned 

to each network is sufficiently close to the observed 0.55 because it gives the mean squared error 

that is close to that given by the optimal committee-of-networks.  Furthermore, the assumed 

committee-weights, i.e. with equal weighting functions assigned to the individual methods, give 

lower mean squared errors than the two individual methods.  It is also observed in this figure that 

the pseudo-modal-energy-network gives lower mean squared errors than the modal-property-

network.  
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The graph showing the standard deviation of squared errors versus the weighting function 

assigned to the pseudo-modal-energy-network is shown in Figure 5.3.  This figure is obtained by 

using the test data set.  In this figure, the y-axis represents the standard deviation of squared 

errors.  To obtain this figure, 96 fault cases from the test data set are used.  The x-axis shows the 

weighting function assigned to the pseudo-modal-energy-network to form a committee method.  

From Figure 5.3, the optimal committee-weight is realised when 0.52-weighting function is 

assigned to the pseudo-modal-energy-network.  The assumed committee-weights, i.e. with equal 

weighting functions assigned to the individual methods, gives a lower standard deviation of 

squared errors than the two individual methods. 
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Figure 5.2. Mean squared errors versus weighting function given to the pseudo-modal-energy-
network obtained from the test data set. 
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Another issue that is investigated is the effectiveness of the committee method over the 

individual methods.  This is achieved by using a committee factor defined in equation 3.24.  This 

factor calculates the ratio of the average of the mean squared errors of the two individual 

methods to the mean squared errors of the optimum committee-of-networks.  The committee 

factor may also be calculated by using the standard deviation of squared errors rather than the 

mean squared errors.  The mean squared errors used to calculate the committee factors are 

obtained by testing the networks on the test data set.  Here it should be noted that the higher the 

committee factors the more effective is the committee method over the individual methods.  

Figure 5.2 shows a committee factor of 1.72 while Figure 5.3 shows a committee factor of 2.14.  

The committee factors, calculated in this chapter, are found to be higher than those calculated in 

Chapter 3, i.e. 1.40 and 1.48 for mean squared errors and standard deviation of squared errors, 

respectively.  This is because the degree-of-separation between the pseudo-modal-energies and 

modal properties is higher for experimental data measured in Chapter 4 than for simulated data 

conducted in Chapter 3.  As a result, the assumption made in equation 3.21 becomes more 

apparent for experimental data than for measured data. 
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Figure 5.3. Standard deviation of squared errors versus weighting function given to the pseudo-
modal-energy-network obtained from the test data set. 
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Figure 5.4 shows a fault case of identity [1 1 1] and how the three networks predicted this 

fault case.  This example seeks to illustrate how a committee-method can do better than the 

individual methods.  In this figure, the pseudo-modal-energy-network identifies this fault case as 

a [0.65 1.00 0.49], which when rounded off becomes  [1 1 0].  Therefore, the pseudo-modal-

energy-network fails to identify the presence of a fault in substructure 1.  It is, however, able to 

detect that the pseudo modal energies measured are from a cylinder with a fault.  On the same 

figure, the modal-property-network identifies this fault case as a [0.39 1.00 1.00], which when 

rounded off becomes [0 1 1].  The modal-property-network, therefore, correctly detects the 

presence of faults in the cylinder but fails to detect its exact fault identity.  The committee 

method predicts a fault identity vector of [0.52 1.00 0.75], which when rounded-off becomes a [1 

1 1] fault case and this is the correct fault identity.  This paragraph has demonstrated how a 

committee method can perform better than the individual methods. 
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Figure 5.4. An illustration of fault identification results obtained using a modal-property-
network, a pseudo-modal-energy-network and a committee method.  These results are plotted 
together with the exact fault case.   Key: PME-pseudo modal energy 
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5.7 CLASSIFICATION OF FAULTS 

In the previous sections the pseudo-modal-energy-network and modal-property-network were 

identified.  The two individual networks were given equal weighting functions when combined to 

form a committee-of-networks.  In this section, the pseudo-modal-energy-network, modal-

property-network and committee method are used to classify faults in the test data set listed in 

Table 5.1.  This is achieved by classifying the presence or the absence of faults and by classifying 

fault cases into 8 classes.  A fault identity vector is a 3 by 1 vector where component n represents 

the presence or absence of a fault in substructure n.  Here the maximum value of n is 3 because 

there are three substructures.  If a fault is present in substructure n, then the nth component of that 

fault identity vector is 1, otherwise if a fault is absent in that particular substructure then the 

corresponding fault identity vector component has a value of 0. 

One question that needs to be answered is: “what then constitutes a fault?”  In this thesis the 

presence of a fault in a substructure is defined as a case where the component of a fault identity 

vector corresponding to a substructure has a value of 0.5 or more.  If a fault identity vector 

component has a value of less than 0.5 then fault is absent in the substructure corresponding to 

that vector component. 

5.7.1 Detection of faults 

In this thesis, detecting faults is defined as classifying faults into two classes i.e. there is no-

fault or there is a fault.  When detecting faults the following definitions are used: 

(1) True positive rate (TP) is the number of positive fault cases that are correctly identified.  

(2) False positive rate (FP) is the number of negative fault cases that are incorrectly classified as 

positive. 

(3) True negative rate (TN) is the number of negative fault cases that are classified correctly.  

(4) False negative rate (FN) is the number of positive fault cases that are incorrectly classified as 

negative. 

(5) The accuracy is the proportion of the total number of predictions that are classified correctly. 
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In this section, factors that are viewed as being vital for a fault detection method are 

discussed.  Here the implication of classifying faults into TN, FP, TP and FN is discussed.  In 

this section, the way fault classification impacts on society, which is the main motivation of a 

fault identification method, is discussed.  For any fault identification procedure, the best possible 

outcome is to have all fault cases classified correctly, or rather, in the semantics that have been 

adopted in this chapter, TN or TP outcomes.  These two cases serve society well.  The next level 

of outcome of a fault identification procedure that is hoped for is to detect wrongly the presence 

of faults in the structure (FP).  The FP case has economic implications and an aircraft example 

can be used to illustrate this point.  Suppose an aircraft component is undamaged but is classified 

wrongly as being damaged.  In this case, the worst that could happen is for that component to be 

discarded and replaced, which would have economic consequences but would not impact on the 

safety of passengers.  The worst possible scenario is FN, where the presence of faults is wrongly 

classified as the absence of faults.  One example of FN is an aircraft with a fault being predicted 

as safe.  This situation puts the passengers of that aircraft at risk and therefore impacts negatively 

on society.  In this paragraph, the impact on society of certain fault classifications is discussed.  

The next paragraph describes how well the trained neural networks perform on identifying faults 

in the test data. 

The results showing the detection of faults are given in Table 5.3.  In this table, three 

networks and their corresponding numbers of TN, FP, TP and FN classifications are shown.  For 

example, the pseudo-modal-energy-network gives 36 TN cases. 

A successful fault identification procedure gives as many true negatives and true positives as 

possible and as fewer false positives and false negatives as possible.  In Table 5.3 the committee 

method gives more true negatives than the two approaches acting individually and also gives 

equally as many true positives as the two individual methods.  From this table it is observed that 

the committee method gives better results than the two individual methods and that the pseudo-

modal-energy-network is marginally better than the modal-property-network. 

From Table 5.3, Table 5.4 is obtained by calculating the proportion of fault cases that were 

classified correctly.  This assesses the accuracy of the three networks in classifying vibration data 

into faults/no faults classes.   Table 5.4 shows that the committee method gives higher accuracy 
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than the pseudo-modal-property-network and modal-property-network.  The pseudo-modal-

energy- and modal-property-networks give similar accuracy levels. 

 

Table 5.3.  Classification of faults on the test data set into fault/no-fault classes 

Network True Negative False Positive True Positive False Negative 

Pseudo modal energy 36 3 57 0 

Modal Property 35 4 57 0 

Committee 39 0 57 0 

 

Table 5.4.  Accuracy of the classification of faults results in Table 5.3  

Network % Accuracy 

Pseudo modal energy 96.9 

Modal Property 95.8 

Committee 100 

5.7.2 Classification of fault cases 

This sub-section deals with the classification of faults from the test-data into eight fault cases.  

As indicated at the beginning of Section 5.7, fault cases given by a network are rounded off to the 

nearest whole number, i.e. 0 and 1.  To assess the predictive capacities of the trained set of 

networks, a confusion matrix is used and it may be viewed in Table 5.5.  In this table the 

predicted fault cases are shown vertically and the actual fault cases are shown horizontally.  A 

row of this matrix represents all fault cases present in the test data for that particular fault case.  

For example, a row with a fault case [0 0 0] in Table 5.5 represents the number of [0 0 0] fault 

cases used in the test data set.  From the confusion matrix certain information may be extracted.  

The diagonal components of this matrix represent fault cases classified correctly, while the off-

diagonal components of this matrix represent fault cases classified incorrectly.  A perfect fault 

identification procedure gives a diagonal matrix with all off-diagonal components equal to zero.  

A completely imperfect confusion matrix gives zero diagonal components and non-zero off-

diagonal components. 
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The results showing the confusion matrices when the pseudo-modal-energy-network, modal-

property-network and committee-of-networks are used, are given in Tables 5.5 to 5.7 

respectively.  In Table 5.5, 92.3% of [0 0 0] cases; all the one- and two-fault cases; and 64.1% of 

[1 1 1] cases are correctly classified.  Of the three [0 0 0] fault cases that are classified incorrectly 

using the pseudo-modal-energy-network, two are classified as [0 1 0] cases and one as a [0 0 1] 

case.  Of the fourteen [1 1 1] cases that are classified incorrectly by the pseudo-modal-energy-

network, four are classified as [1 1 0] cases, three as [1 0 1] cases, six as [0 1 1] cases, and one as 

a [0 1 0] case. 

 
Table 5.5. Confusion matrix from the classification of fault cases in the test data using the 
pseudo-modal-energy-network 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 36 0 2 1 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 0 0 3 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 1 0 4 3 6 25 
 

The confusion matrix obtained when the modal-property-network is used is shown in Table 

5.6.  This table shows that this network classifies 89.7% of [0 0 0] fault cases correctly; all one- 

and two-fault cases with, the exception of three [1 0 1] cases correctly; and 71.8% of [1 1 1] fault 

cases correctly.  Of the four [0 0 0] cases that are classified incorrectly by the modal-property-

network, one is classified as a [0 1 0] case and three as [0 0 1] cases.  Of the eleven [1 1 1] cases 

that are classified incorrectly by the modal-property-network, eight are classified as [1 1 0] cases, 

one as a [1 0 1] case and two as [0 1 1] cases.  The three [1 0 1] cases that are misclassified by 

the modal-property-network are all classified incorrectly as [0 0 1] cases. 
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The results obtained when the committee method is constructed by assigning equal weighting 

functions to the two individual methods, are shown in Table 5.7.  This table shows that all the [0 

0 0] cases; all the one- and two-fault cases; and 89.7% of the [1 1 1] fault cases, are correctly 

classified.  Of the four [1 1 1] cases that are classified incorrectly by the committee method, three 

are classified as [1 1 0] cases and one as a [0 1 1] case. 
 
Table 5.6. Confusion matrix from the classification of fault cases using the modal-property-
network 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 35 0 1 3 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 3 0 0 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 0 0 8 1 2 28 
 

The committee method classifies all the [0 0 0] cases correctly while the pseudo-modal-

energy-network misclassifies three cases and the modal-property-network misclassifies four [0 0 

0] cases.  The committee method and pseudo-modal-energy-network classify all the one- and 

two-fault cases correctly, while the modal-property-network misclassifies all [1 0 1] cases.  The 

committee method misclassifies four [1 1 1] cases while the modal-property-network 

misclassifies eleven [1 1 1] cases and the pseudo-modal-energy-network misclassifies fourteen [1 

1 1] cases. 

A summary of the classification results in Table 5.5 to 5.7 is shown in Table 5.8.   This table 

is obtained by calculating the proportion of fault cases that are classified correctly into 8 fault 

cases.  This table shows that in classifying all fault cases, the committee method gives the best 

results followed by the pseudo-modal-energy-network and then the modal property network.  It 
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should be noted that the pseudo-modal-energy-network is only marginally better than the modal-

property-network.  If, however, account is taken of the fact that the modal-property-network is 

unable to correctly classify an entire fault case, i.e. [1 0 1], whereas this is never the case for the 

pseudo-modal-energy-network, then it could be concluded that the pseudo-modal-energy-

network is better than the modal-property-network. 
 
 
Table 5.7. Confusion matrix from the classification of fault cases in the test data using the 
committee approach 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 39 0 0 0 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 0 0 3 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 0 0 3 0 1 35 

 

Table 5.8. Percentage of fault cases in the test data classified correctly into 8 fault cases. 

Network %Classified correctly 

Pseudo modal energy 82.29 

Modal Property 81.25 

Committee 95.8 

 

The average time taken to train the 20 pseudo-modal-energy-networks and 20 modal-

property-networks, is 5.61 and 5.45 CPU minutes, respectively, on a Dell DIMENSIONXPS600 

Desktop Computer with 260MB RAM.  The procedure used to train the networks is found to be 

computationally affordable for the industry. 
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5.8 CONCLUSIONS 

In this chapter, a committee-of-networks is used to classify faults in a population of 

cylindrical shells and thus, is experimentally validated.  The statistical overlap factors and the 

principal component analysis are used to reduce the dimensions of the input data.   The multifold 

cross validation method is implemented to select the optimal number of hidden units amongst 20 

trained pseudo-modal-energy-networks and 20 trained modal-property-networks.  The results 

obtained show that the committee method gives more accurate classification of faults than two 

networks acting individually.  The pseudo-modal-energy-network and the modal-property-

network are observed to give similar levels of accuracy on classifying faults. 
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Chapter 6 

PROBABILISTIC FAULT IDENTIFICATION USING A 

BAYESIAN METHOD 

6.1 INTRODUCTION 

In this chapter, the committee of networks, which employs pseudo modal energies and modal 

properties simultaneously for fault identification, is extended to a probabilistic framework and 

experimentally validated.  Two Bayesian-formulated neural networks, trained using pseudo 

modal energies and modal properties, are weight-averaged and used to identify faults in the 

population of cylindrical shells described in Chapter 4.  In Chapters 3 and 5, the committee 

method was found to give better results than the two individual methods.  The Bayesian approach 

is used because it allows easier determination of the confidence intervals of the fault identities 

than when using the maximum-likelihood approach implemented in Chapter 5 [Bishop, 1995].  It 

also automatically penalises highly complex models and is therefore able to select an optimal 

model without applying independent methods such as cross-validation (as is the case when using 

the maximum-likelihood approach). 

As explained in earlier chapters, each of the 20 cylinders measured in Chapter 4 is divided 

into three substructures and faults are located within these substructures.  The information from 

the pseudo modal energies and modal properties are transformed into substructure space using 

the weighted average of the two independent neural networks.  The Bayesian approach performs 
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fault identification by using changes in vibration data resulting from the presence of faults.  This 

is done despite the inherent presence of the changes such as those due to uncertainties in 

measured data due to variation in physical properties of a population of cylinders, uncertain 

measurement positions, and changes in support conditions. 

6.2 BAYESIAN APPROACH 

In Chapter 3 [see Figure 3.1], it is shown that the main goal for supervised neural networks is 

to find the functional mapping between the input vector {x} and the output vector {y}.  In this 

chapter, the input vectors are the pseudo modal energies and modal properties and the output 

vector is the indication of the presence or absence of faults in the three substructures.  If more 

than one measurement of the one fault-cases is taken for a population of cylinders under different 

boundary conditions, there exist different input vectors {x} for the same output vector {y}.   If 

enough measurements are available, the input vector {x} for a given fault-case will be random (it 

has a mean and variance).  In other words, the variation in the physical properties of cylinders 

and (the variation in) their boundary conditions for the one fault-case give rise to the randomness 

of vector {x} for a given fault-case.  This randomness of the input vector causes the fault identity 

vector {y} to be probabilistic.  This requires the weight-space to be assigned a probability 

distribution representing the relative degrees of confidence in different values for the weight 

vector.  This implies that the mapping function between the input and output vector has a 

probability distribution.  The weight-space vector is initially assigned some prior distribution.  

Once the data, in this case the pseudo modal energies or modal properties, and fault identities 

have been observed, the weight vector can be transformed into a posterior distribution using 

Bayes’ theorem [Bishop, 1995].  In this chapter the posterior distribution is the distribution of the 

weight vector after the data has been seen.  The posterior distribution can then be used to 

evaluate the predictions of the trained network for data not used during training [Neal, 1992].  

Bayes’ theorem may be written as follows: 

)x|D(P
)x|w(P)x,w|D(P

)x,D|w(P =           (6.1) 



CHAPTER 6. PROBABILISTIC FAULT IDENTIFICATION      127     

where P(w|x) is the probability distribution function of the weight-space in the absence of any 

data (also known as the prior distribution) and D≡ (y1,…,yN) is a matrix containing the identity 

of damage data.  The quantity P(w|D,x) is the posterior probability distribution after the data 

have been seen and P(D|w,x) is the likelihood function.  The multi-layer perceptron (MLP) 

network trained by supervised learning does not model the distribution of the input data.  This x 

is a conditioning variable that always appears on the right-hand side of the probabilities [Neal, 

1993].  For the remaining part of this study, x will be omitted to simplify the notation. 

The posterior probability, in equation 6.1, of the network weights given the data may be 

obtained using various techniques such as Monte Carlo based methods or by assuming that the 

network weights have a Gaussian distribution.  MacKay [1991, 1992] approximated the posterior 

probabilities of the network weights by a multivariate Gaussian distribution around one of its 

many modes identified by an optimisation procedure during neural network training.  Monte 

Carlo methods do not make the assumption made by MacKay and therefore are more general 

than the Mackay approach.  Some of Monte Carlo methods used to solve this problem include 

Metropolis algorithm [Metropolis, et al., 1953].  However, this approach is very slow and does 

not make use of the gradient information given by the backpropagation algorithm.  An algorithm 

that has proven to be successful, the hybrid Monte Carlo method [Duane, et al., 1987], is 

implemented in this chapter.  This approach makes use of the gradient information within the 

general framework of Metropolis algorithm. 

6.2.1 Likelihood function  

The likelihood function may be written as: 

)Eexp(
)(Z

)w|D(P D
D

β−
β

= 1
          (6.2) 

Here β is the coefficient of the data contribution to the error.  The probability in equation 6.2 is 

called canonical distribution [Haykin, 1999].  The function ED is the cost-function (in this 

chapter the cross-entropy cost function described in equation 3.10 is used) and the function ZD(β) 

is a normalisation factor given by: 
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If the identity of the damage data is a smooth function with zero-mean Gaussian noise, the 

probability of observing the identity of the damage data D for a given input vector may be written 

by using the cross-entropy cost function as follows: 
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where n is the index of the training pattern and k is index of the number of output units.  The 

integral in equation 6.3 is the normalisation factor that can be calculated to give [Bishop, 1995]: 
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6.2.2 Prior probability function of weights 

The prior probability function for weights may be written in canonical form as: 

)Eexp(
)(Z

)x|w(P W
W

α−
α

= 1
          (6.6) 

Here α is the coefficient of the prior distribution.  In neural networks, it is known that the best 

weights that map the input vector to the output vector should be as small in magnitude as 

possible.  To achieve this, the function EW in equation 6.6 ensures the magnitude of the weight-

vector is small.  This is done using the regularisation parameter [Vapnik, 1995].  The function 

ZW(α) is the normalisation factor given by: 

� α−=α dw)Eexp()(Z WW            (6.7) 

If EW is substituted by the regularisation parameter following Vapnik (1995), the probability 

of vector w may be written as: 
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The integral in equation 6.7 gives the same form of expression as equation 6.5 and is as 

follows: 

22
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6.2.3 Posterior distribution of weight vector 

The distribution of the weights P(w|D,x) after the data have been seen is calculated by 

substituting equations 6.8 and 6.4 into equation 6.1 to give: 
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where 

( ) dwEEexp),(Z WDS � α−β−=βα          (6.11)  

ED and EW are shown in equations 6.4 and 6.8.  The optimal weight vector corresponds to the 

maximum of the posterior distribution.  The distribution in equation 6.10 is a canonical 

distribution.  Equation 6.10 shows that the probability of the existence of states with low errors is 

higher than the probability of states with higher errors.  This is analogous to a physical system 

where states of low energies are more stable and therefore more prevalent than states with high 

energies.  For the physical system the temperature will come into equation 6.10 by being the 

denominator of the term in the exponent. 

6.3 SAMPLING THE DISTRIBUTION 

In this chapter we sample through a distribution described in equation 6.10.  Distributions of 

this nature have been studied extensively in Statistical Mechanics.  In Statistical Mechanics 

macroscopic thermodynamic properties are derived from the state space, i.e. position and 

momentum, of microscopic objects such as molecules.  The number of degrees of freedom that 

these microscopic objects have is enormous, so the only way to solve this problem is to 

formulate it in a probabilistic framework. 
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In the present chapter we borrow some of the techniques that have been used in Statistical 

Mechanics to sample through a canonical distribution and use them to sample through the weight 

space in order to identify the distribution given in equation 6.10.  Some of the methods that have 

been implemented in the past to simulate the canonical distributions are Gibbs sampling [Geman 

and Geman, 1984; Gelfand and Smith, 1990] and Metropolis algorithm [Metropolis, et al., 

1953].  In this study we choose to use the hybrid Monte Carlo method to identify the posterior 

probability of the weight because it makes use of the gradient information which is available via 

back-propagation.  This use of the gradient ensures that we sample through the regions of higher 

probabilities. 

In the present chapter we use the terminology of Statistical Mechanics such as sometimes 

referring the network weights w as a ‘position’ vector and the network error as ‘potential energy’.  

In order to give the simulation a more physical realism we also include the ‘momentum’ vector, 

p, of a system and this is described in detail later in the chapter.  In Statistical Mechanics the 

thermodynamic properties a system with many degrees of freedom are described by specifying 

the position (potential energy) and the momentum (kinetic energy) of every molecule in the 

system.  The sum of the potential energy and the kinetic energy is called the Hamiltonian of the 

system.  The ‘position’ and ‘momentum’ vector at a given time is called a state space.  There are 

many states that molecules in a system may exhibit.  Some of these states are stable and some are 

unstable.  The main motivation of our work is to sample through the state space and accepting all 

the states that are stable and accepting with low probabilities those states that are unstable.  This 

is achieved by considering states that are linked together by some transition probability to form a 

distribution that we seek to sample.  A Markov process can be used to simulate this chain of 

linked states [Ash, 1950; Feller, 1968; Fill, 1991].  In the next section we formally define 

Markov chains and the properties that we desire in order to sample through the distribution in 

equation 6.10. 

6.3.1. Markov chains 

Here we consider a system whose evolution is described by a stochastic process 

}X,...,X,X{ n21  consisting of random variables.  A random variable nX  occupies a state nx  at 
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discrete time n.   The list of all possible states that all random variables can possibly occupy is 

called state space.  If the probability that the system is in state 1+nx  at time n+1 depends 

completely on the fact that it was in state nx  at time n, then the random variables 

}X,...,X,X{ n21  form a Markov chain.  Markov chain that we intend to simulate are ergodic 

[Kemeny and Snell, 1960]  meaning that the probabilities, Pn(x), at time n, converges to a 

single stationary distribution as n goes to infinity regardless of the initial probabilities.  Here this 

stationary is described by equation 6.11.  If a Markov chain is not ergodic, then sampling at 

different times results with convergence to different distributions, and in the context of neural 

networks  different distributions of network-weights. 

In the present chapter, we sample through state space using the hybrid Monte Carlo method 

[Duane et. al., 1987].  This technique is viewed as a form of a Markov chain with transition 

between states achieved by alternating the ‘stochastic’ and ‘dynamic moves’.  In this chapter 

‘stochastic’ moves are achieved by unconditionally replacing the momentum vector, p, by one 

drawn from a Gaussian distribution [Duane et. al., 1987].  The ‘stochastic’ moves allow the 

algorithm to explore states with different total energy.  The ‘dynamics’ moves are achieved by 

using a Hamiltonian dynamics and allow the algorithm to explore states with the total energy 

approximately constant.  Sections 6.3.2 describe in more detail the stochastic dynamics model.  

6.3.2. Stochastic dynamics model 

As mentioned before, in Statistical Mechanics the positions and the momentum of all 

molecules at a given time in a physical system define the state space of the system at that time.  

The positions of the molecules define the potential energy of a system and the momentum 

defines the kinetic energy of the system.  In this chapter, what is referred to in Statistical 

Mechanics as the canonical distribution of the ‘potential energy’ is the posterior distribution in 

equation 6.11. The canonical distribution of the system’s kinetic energy is:  
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In molecular dynamics pi is the momentum of the pth molecule.  Here p is not to be mistaken 

with, P, which indicate probability.  In neural network, it is a fictitious parameter that is used to 

give the procedure a molecular dynamics framework.  It should be noted that the weight vector w 

and momentum vector p, are of the same size.  The combined kinetic and potential energy is 

called the Hamiltonian of the system and can be written as follows: 
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In equation 6.14 the first two terms are the potential energy of the system, which is the exponent 

of the posterior distribution of equation 6.14, and the last term is the kinetic energy.  The 

canonical distribution over the phase space, i.e. position and momentum, can simply be written 

as follows: 

)p(P)D|w(P))p,w(Hexp(
Z

)p,w(P =−= 1
         (6.15) 

If we can find a way of sampling through the distribution in equation 6.15, the posterior 

distribution of weight vector w is obtained by simply ignoring the distribution of the momentum 

vector p. 

The dynamics in the phase space may be specified in terms of Hamiltonian dynamics by 

expressing the derivative of the ‘position’ and ‘momentum’ in terms of fictitious time τ.  The 

word ‘position’ used here is synonymous to network weights.  The dynamics of the system may 

thus be written by using Hamiltonian dynamics as follows: 
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The dynamics specified in equations 6.16 and 6.17 cannot be followed exactly and as a result 

these equations may be discretised using a ‘leapfrog’ method.  The leapfrog discretisation of 

equations 6.16 to 6.17 may be written as follows:  
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Using equation 6.18, the leapfrog takes a little half step for the momentum, p, and using equation 

6.19 takes a full step for the ‘position’ or rather the network weights w and using equation 6.20 

takes a half step for the momentum, p.  The combination of these three steps form a single 

leapfrog iteration and calculates the ‘position’ and ‘momentum’ of a system at time τ+ε from the 

network weight vector and ‘momentum’ at time τ.  The above discretisation is reversible in time, 

it almost conserve the Hamiltonian (representing the total energy) and preserves the volume in 

the phase space, as required by Liouville’s theorem [Neal, 1993].  The volume preservation is 

achieved because the moves the leapfrog steps take are shear transformations 

One issue that should be noted is that following Hamiltonian dynamics does not sample 

through the canonical distribution ergodically because the total energy remains constant, but 

rather at most samples through the microcanonical distribution for a given energy.  One way used 

to ensure that the simulation is ergodic, is by changing the Hamiltonian, H, during the 

simulation.  To achieve ergodicity, the ‘momentum’ p is replaced after before the following 

leapfrog iteration.  In this chapter a normally distributed vector with a zero-mean replaces the 

‘momentum’ vector.  

The dynamic steps introduced in this section make use of the gradient of the error with 

respect to the ‘position’ (network weights).  In this chapter this gradient is evaluated by using the 

back-propagation algorithm outlined in Appendix D. 

6.3.3. Metropolis algorithm 

An algorithm due to Metropolis, et al. (1953) has been used extensively to solve problems of 

Statistical Mechanics.  In Metropolis algorithm if we wish to sample for a stochastic process 

}X,...,X,X{ n21 consisting of random variables, we randomly consider changes to X accepting or 

rejecting the new state according to the following criterion: 
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In this chapter we view this procedure as a way of generating a Markov chain with the 

transition from one state to another conducted using the criterion in equation 6.21.  By 

investigating carefully equation 6.21, it may be observed that states with high probability will 

form the majority of the Markov chain, and those with low probability will form the minority of 

the Markov chain.  However, simulating a distribution by perturbing a single vector X and in the 

context of neural networks, a weight vector w is infeasible due to high dimensional nature of the 

space and the variation of the posterior probability of weight vector w.  A method that exploits 

the gradient of the Hamiltonian with respect to the weight vector, w, is used to improve the 

Metropolis algorithm described in this section and is the subject of the next section. 

6.3.4. Hybrid Monte Carlo 

Hybrid Monte Carlo method works by taking a series of trajectories from the initial states, i.e. 

‘positions’ and ‘momentum’, and moving in some direction in the state space for a given length 

of time and accepting the final states using Metropolis algorithm.  The system moves from one 

state to another by combining the Hamiltonian dynamics described in Section 6.3.2 and the 

Metropolis algorithm described in Section 6.3.3.  The validity of the hybrid Monte Carlo rests on 

three properties of Hamiltonian dynamics and these are:  

1. Time reversibility: it is invariant under t→-t, p→-p. 

2. Conservation of energy: the H(w,p) is the same at all times. 

3. Conservation of space-state volumes due to Liouville’s theorem [Neal, 1993].  

For a given leapfrog step size, ε0, the number of leapfrog steps, L, the dynamic transition of 

the hybrid Monte Carlo procedure is conducted as follows: 

1. Randomly choose the direction of the trajectory λ to be either –1 for backward trajectory and 

+1 for forward trajectory. 
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2. Starting from the initial state (w,p) perform L leapfrog steps with the actual step size 

)k.( 1010 +ε=ε  resulting in state (w*,p*).  Here ε0 is a chosen fixed step size and k is the 

number chosen from a uniform distribution and lies between 0 and 1.  The reason why this 

step size is used is explained later. 

3. Reject or accept (w*,p*) using Metropolis criterion.  If the state is accepted then the new state 

becomes (w,p) =(w*,p*).  If rejected the old state is retained as a new state. 

 

After implementing step (3) the momentum vector is reinitialised before moving on to 

generate the subsequent state.  In this study, we choose to randomly generate the momentum 

vector from a Gaussian distribution before starting to generate the subsequent state. 

One remark that could be made about the hybrid Monte Carlo method is that it makes use of 

the gradient information in step (2) above via the leapfrog steps described in Section 6.3.2.  The 

advantages of using this gradient information is that the hybrid Monte Carlo trajectories move in 

the direction of high probabilities resulting in the improved probability that the resulting state is 

accepted and that they are not highly correlated. In neural networks, this gradient is calculated 

using back-propagation, which is described in Appendix D.  In step (2) the leapfrog actual step 

size varies from ε0 to 1.1ε0.  The number of leapfrog steps, L, must be significantly higher than 

one to allow a faster exploration of the state space.  If L is too large this could lead to a higher 

rejection rate at step (3) above.  The choice of ε0 and L only affects the speed at which the 

simulation converges to a stationary distribution and the correlation between the samples 

accepted.  The leapfrog discretisation does not introduce systematic errors due to the occasional 

rejection of states, which result, with the increase of the Hamiltonian. 

In step (2) of the implementation of the hybrid Monte Carlo method, the actual step 

size )k.( 1010 +ε=ε  where k is uniformly distributed between 0 and 1, is not fixed.  This in effect 

ensures that the actual step size for each trajectory is varied and so that the accepted states do not 

have a high correlation [Mackenzie, 1989].  The same effect can be achieved by varying the 

trajectory length.  In this chapter we choose to vary the step size. 

One problem with the hybrid Monte Carlo method is that the simulation may spend a great 

deal of time in the region of relatively high Hamiltonian corresponding to local minimum in the 
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regularised error function.  A technique that could be implemented to deal with this problem is 

simulated annealing [Kirkpatrick, et al., 1983].  However, preliminary investigation of the use of 

this technique has found that this method is not essential for a problem we are dealing with in 

this thesis.    

6.3.5 Distribution of network outputs 

The application of the Bayesian approach to neural networks results in weight vectors that 

have a mean and standard deviation and thus have a probability distribution.  As a result, the 

output parameters have a probability distribution.  Following the rules of probability theory, the 

distribution of the output vector y for a given input vector x may be written in the following 

form: 

�= dw)D|w(p)w,x|y(p)D,x|y(p           (6.22) 

In this chapter, the hybrid Monte Carlo method is employed to determine the distribution of 

the weight vectors, and subsequently, of the output parameters.  The integral in Equation 6.22 

may be approximated as follows: 
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Here K is the number of initial states that are discarded in the hope of reaching a stationary 

distribution and L is the number of retained states. 

6.3.5 Committee of neural networks 

The committee procedure, introduced in Chapter 3, is adapted to the Bayesian framework by 

generating I1 and I2 [in equation 6.23] representing the distribution of the fault identities for the 

given set of modal properties and pseudo modal energies.  The overall distribution of the 

committee is then evaluated by calculating the weighted-average of I1 and I2.  In this chapter, on 

calculating the committee method, it is assumed that the pseudo modal energies and the modal 

properties are equally reliable on identifying faults.  As a result, the two individual networks are 

given equal weighting functions when forming a committee.  
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6.4 EXPERIMENTAL IMPLEMENTATION OF BAYESIAN NETWORKS 

In Chapter 5, maximum-likelihood formulated networks are used to identify faults in a 

population of cylindrical shells.  Similarly, in this section, the Bayesian-formulated networks are 

used to identify faults in cylindrical shells.  The networks are trained and tested using the data 

described Table 5.1.  The architectures of the MLP networks (i.e. the number of input and output 

vectors, activation functions, cost function and the number of hidden units) are the same as those 

in Chapter 5 and are shown in Table 6.1. Making the neural network architectures of the present 

chapter and Chapter 5 the same ensures that we are able to consistently compare the maximum-

likelihood formulation of Chapter 5 to the Bayesian formulation of the present chapter.  The 

information on how the number of input units, the number of hidden units and the coefficient of 

prior distribution are chosen is described in Chapter 5. 

On implementing the hybrid Monte Carlo method the parameters used are listed in Table 6.2.  

This table shows the following: 

(1) The number of initial states discarded, K, in the hope of reaching a stationary distribution. 

(2) The number of steps in each hybrid Monte Carlo trajectory; the fixed step size that is used as 

a basis of choosing the actual step size via equation )k.( 1010 +ε=ε . 

(3) The number of samples retained to form a distribution in equation 6.22. 

 

The number of states that are omitted is chosen to be 100 and the number of states retained, L, is 

500.   This is sufficient to give a stationary posterior probability of network weights because the 

acceptance rate of states was over 98%.  The number of inputs and hidden units used are the 

same as those that were identified in Chapter 5.  The number of output units corresponds to the 

number of substructures.  The data contribution to the error function was chosen arbitrarily.  The 

coefficient of prior used is the same as the one used in Chapter 5.  The fixed step size was chosen 

through trial and error by investigating how a chosen step size influence the acceptance rate of 

the states (network-weights and momentum) visited.  This step size should be as close to zero as 

possible.  If the step size is too low, then the dynamics of the hybrid Monte Carlo method 

through the state space takes a long time to converge to a stationary posterior distribution.  If it is 
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too large, then the process can potentially miss the stationary distribution.  Here the number of 

steps in each trajectory is 100. 
 
 
Table 6.1. The architectures of the neural networks trained.  Key: α = coefficient of prior 
distribution; β = data contribution to the error; input = number of input; output = number of 
output; weights = number of weights; hidden = number of hidden units; tanh = hyperbolic 
tangent function. 
Network α β Input Output Weights Hidden Output 

activation 
Input 

activation 

PME 0.01 30 10 3 115 8 logistic tanh 

MP 0.01 30 10 3 129 9 logistic tanh 

 

 
Table 6.2. The list of parameters used for implementing the hybrid Monte Carlo method.  This 
table shows, the number of steps omitted to allow the simulation to converge to a stationary 
distribution; the number of steps in the hybrid Monte Carlo trajectories; the fixed step size that is 
used to calculate the real step size via the formula )k.( 1010 +ε=ε  and the number of samples 
retained to calculate the distribution of the output units.   Key: PME = pseudo-modal-energy-
network; MP-N=modal-property-network 
Network Number of 

steps omitted 
Number of steps in a 

trajectory 
Fixed step size (ε0) Number of samples 

retained (L) 

PME-N 100 100 0.001 500 

MP-N 100 100 0.001 500 

6.4 RESULTS AND DISCUSSIONS 

In this chapter, the pseudo-modal-energy-network and modal-property-network are trained 

and tested using the data in Table 5.1. The mean squared errors and the classification errors of 

these two networks on the training data set are shown in Table 6.3.  From this table it is observed 

that the lower MSE gives lower the classification errors. 

Table 6.3. The mean squared errors (MSE) and classification errors from the training sets. 

Network MSE Classification errors (%) 

PME 0.0216 4.8 

MP  0.0325 5.2 

 



CHAPTER 6. PROBABILISTIC FAULT IDENTIFICATION      139     

Figure 6.1 shows the mean squared errors on the test data set versus the weighting function 

assigned to the pseudo-modal-energy-network.  This figure shows that the pseudo-modal-energy-

network gives lower mean squared errors than the modal-property-network.  It also shows that 

the optimal committee method gives lower mean squared errors than the two individual methods.  

Furthermore, this figure shows that the optimal committee that gives lower mean squared errors 

than the individual methods is realised when 60% weighting function is assigned to the pseudo-

modal-energy-network.  In this chapter since we do not know this optimal weighting function in 

advance, we assumed that the two networks be given equal weighting functions.  The calculated 

optimal weighting function observed on the test data is higher than the assumed one (with two 

equal weighting functions), however the assumed committee-weight of 50% still gives lower 

mean squared errors than the individual methods.  The committee factor (CF) defined in equation 

3.24 is in equation 3.24 is calculated to be 1.83, which is higher than the CF of 1.72 calculated in 

Chapter 5.  Here it should be noted that the higher the CF the more effective is the committee 

over the individual methods. 

The results of the standard deviation of squared errors versus the weighting function given to 

the pseudo-modal-energy-network are shown in Figure 6.2.  In this figure the pseudo-modal-

energy-network is found to give lower standard deviation of squared errors than the modal-

property-network while the optimal committee method gives the least standard deviation of 

squared errors.  The optimal committee is achieved when 55% weighting function is assigned to 

the pseudo-modal-energy-network.  The assumed committee-weight of 50% assigned to each 

method gives lower standard-deviation-of-squared errors than the individual methods.  The 

committee factor for standard deviation of squared errors is 2.52, which is higher than the 2.14 

observed in Chapter 5. 
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Figure 6.1. Mean squared errors versus weighting function given to the pseudo-modal-energy-
network. The mean squared errors are calculated using the following formula: 

��
= =

−=
M

j

N

i
ijij )ty(

NM
MSE

1 1

21
  Here N = 96 representing the total number of fault-cases in the test 

data; M=3 representing the number of substructures; yij and tij are the predicted and correct 
outputs, respectively, for substructure i and fault-case j. 
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Figure 6.2. Standard deviation of squared errors versus weighting function given to the pseudo-
modal-energy-network. The standard deviation was calculated as follows: 

])ty[(VarSTD ijij
2−= .  Here yij and tij are the predicted and correct outputs, respectively, for 

substructure i and fault-case j.  Key: STD = standard deviation; Var = variance. 



CHAPTER 6. PROBABILISTIC FAULT IDENTIFICATION      141     

6.5 DETECTION AND CLASSIFICATION OF FAULTS 

In this section, the ability of the networks to detect the presence of faults and classify fault 

cases from the test data set is studied.  This section presents the results in the same fashion as it 

was done in Section 5.6.  In this section we obtain the committee method by assigning equal 

weighting functions to the two individual methods. 

When the trained networks are used to detect the presence of fault in the test data set in 

Table 5.1, the results in Table 6.5 are obtained.  This table shows that none of the three 

procedures give any false negatives, which as described in Section 5.6 is the worse possible 

outcome of a fault identification procedure.  The summary of the data in Table 6.5 is shown in 

Table 6.6.  This table shows the accuracy of the three methods to detect the presence faults in the 

cylinders.  This accuracy is calculated by using the proportion of the total number of predictions 

of fault-cases that were detected correctly.  Table 6.5 shows that the committee method gives the 

best detection of faults followed by the pseudo-modal-property-network. 

 
Table 6.4. Detection of the presence of faults in the test data set  

Network True Negative False Positive True Positive False Negative 

Pseudo modal energy 38 1 57 0 

Modal Property 37 2 57 0 

Committee 39 0 57 0 

 

                        Table 6.5.  Accuracy of the detection of fault results in Table 6.4  

Network % Accuracy 

Pseudo modal energy 99.0 

Modal Property 97.9 

Committee 100 

 

A step further than just detecting the presence or absence of faults is to classify fault-cases by 

indicating the parts of the cylinders that contain faults.  This however, is not viewed in this thesis 

as a primary goal of a fault identification method but as an important information that could be 
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potentially useful in industry.  In order to analyse the results a confusion matrix is used.  The 

diagonal entries of a confusion matrix represent the number of fault-cases that are classified 

correctly, while the off-diagonal entries represent the fault-cases that are classified incorrectly. 

The confusion matrix obtained when the pseudo-modal-energy-network is used is illustrated 

in Table 6.6.  In this table 94.9% of [0 0 0]; all the one- and two-fault-cases; and 82.1% of [1 1 1] 

cases were correctly classified.  

The confusion matrix obtained when the modal-property-network is used is shown in Table 

6.7.  This table shows that this network classified 97.4% [0 0 0] fault-cases correctly; all the one- 

and two-fault-cases; and 66.7% of [1 1 1] fault-cases were classified correctly. 

The results obtained when the committee method constructed by assigning equal weighting 

functions to the two individual methods are shown in Table 6.8.  This table shows that 100% of 

the [0 0 0]; 100% of the one- and two-fault-cases; and 84.6% of the [1 1 1] fault-cases were 

correctly classified. 

The summary of Tables 6.6-6.8 is shown in Table 6.9 and shows that the committee method 

classified 8 fault-cases the best followed by the pseudo-modal-energy-network. 

 

In this section several issues were observed: 

(1) The committee method classifies faults better than the individual methods. 

(2) The pseudo-modal-energy-network classifies fault-cases more accurately than the modal-

property-network. 

 

The time taken to train the pseudo-modal-energy-network and the modal-property-network is 

5.59 and 5.64 CPU minutes, respectively.  All the computations were performed on a Dell 

DIMENSIONXPS600 Desktop Computer with 261MB RAM.  The Bayesian fault identification 

method trained using the hybrid Monte Carlo method is computationally efficient to be used in 

industry. 
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Table 6.6. Confusion matrix from the classification of fault-cases using the pseudo-modal-
energy-network 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 37 2 0 0 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 0 0 3 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 0 0 5 1 1 32 
 
 
Table 6.7. Confusion matrix from the classification of fault-cases using the modal-property-
network 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 38 0 0 1 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 0 0 3 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 0 0 5 2 6 26 
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Table 6.8. Confusion matrix from the classification of fault cases using the committee approach 

     Predicted     

  [000] [100] [010] [001] [110] [101] [011] [111] 

 [000] 39 0 0 0 0 0 0 0 

 [100] 0 3 0 0 0 0 0 0 

 [010] 0 0 3 0 0 0 0 0 

Actual [001] 0 0 0 3 0 0 0 0 

 [110] 0 0 0 0 3 0 0 0 

 [101] 0 0 0 0 0 3 0 0 

 [011] 0 0 0 0 0 0 3 0 

 [111] 0 0 0 0 5 1 0 33 

Table 6.9. Percentage of fault-cases classified correctly 

Network %Classified correctly 

Pseudo modal energy 90.6 

Modal Property 85.4 

Committee 93.8 

6.6 MAXIMUM-LIKELIHOOD VERSUS BAYESIAN APPROACH 

In this section, a comparison is made between the results obtained from training the 

network using the scaled conjugate gradient method (maximum-likelihood approach) in Chapter 

5, and those obtained using the hybrid Monte Carlo method (Bayesian approach) in this chapter.   

In this chapter the samples retained when the hybrid Monte Carlo simulation is implemented 

is 500.  When the trained neural networks are presented with the input data from the test data set 

[Tables 5.1], for each fault-case 500 fault identities are obtained.  The distributions of the output 

of the networks may be used to assess the integrity of the fault identification results.  Figure 6.3 

shows the distribution of the predicted fault-case that was correctly diagnosed by the pseudo-

modal-energy-network.  The top graph is the identification of substructure 1, the middle graph 

the identification of substructure 2 and the bottom graph is the identification of substructure 3.  
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This figure shows the output distributions for all three substructures that are conclusive, meaning 

that it is possible to infer the identity of this fault-case and construct error bars for this fault-

identity vector.  When these distributions are averaged it is observed that pseudo-modal-energy-

network gives a fault identity vector of [0.82 1.00 0.80] which when rounded-off becomes [1 1 1] 

which is the correct fault identity.  The maximum likelihood method of Chapter 5 predicted the 

correct fault identity of [0.59 0.66 0.94] which when rounded-off becomes a [1 1 1] case.  

The distribution of the prediction of the modal-property-network for a [1 1 1] case is shown 

in Table 6.4.  This figure shows that the network failed to predict this fault-case conclusively 

because the distribution of the output corresponding to substructure 1 spans on both sides of the 

0.5-mark, which is a point of separation between the presence and the absence of faults.  The 

average fault identity vector for these distributions is [0.31 1.00 1.00] which when rounded-off 

becomes [0 1 1] which is a incorrect fault-identity vector.  It should be noted however that it is 

able to correctly identify the presence of faults in the cylinder but only failed to detect the 

presence of faults in substructure 1.  The maximum likelihood method (see Chapter 5) gives the 

correct diagnosis but does not give a user an opportunity to view the distributions of the network 

output.  For all fault-cases that were diagnosed incorrectly in this chapter, it was observed that 

inconclusive distributions were obtained.  Therefore the implementation of the Bayesian 

framework offers a user an opportunity to know in advance the level of confidence the network 

has on the fault identity it gives.  This option is not available when the maximum-likelihood as 

implemented in Chapter 5 is used. 
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Figure 6.3.  The graphs representing the distribution of the network output using the pseudo-
modal-energy-network.  The top graph is for substructure 1, the middle graph for substructure 2 
and the bottom graph for substructure 3.  The true identity of this fault-case is [1 1 1].  The 
average fault-identity vector of the distribution given in this figure is [0.32 1.00 1.00].  The 
maximum-likelihood method in Chapter 5 predicted this case to be [0.59 0.73 0.94] without 
giving any confidence interval. 
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Figure 6.4.  The graphs representing the distributions of the output of the network trained using 
the modal properties.  The top graph is for substructure 1, the middle graph for substructure 2 
and the bottom graph for substructure 3.  The true identity of this case is [1 1 1] and the average 
of these distributions of the output gives [0.9721    0.6067    0.0966].  The maximum likelihood 
approach gives a fault identity of  [0.59 0.58 1.00]   

Table 6.10 compares the mean squared errors for the networks trained using the maximum 

likelihood method and Bayesian method.  This figure shows that the mean squared errors of the 

training and testing sets are the same order of magnitude.  This indicates that the training process 

did not over-fit the training data set.  However, it should be noted that the Bayesian network 

manages to achieve this without the use of validation methods whereas a cross-validation method 

was implemented to ensure that the maximum likelihood training does not over-fit the data.    
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Table 6.10. Mean squared errors of the maximum-likelihood and Bayesian methods using fault-
cases listed in Sections 5.2.1-5.2.3. Key: PME≡Pseudo-modal-energy; MP≡Modal-property 

       Maximum Likelihood       Bayesian  

Network PME MP PME MP 

Training 0.0240 0.0307 0.0216 0.0325 

Testing 0.0490 0.0611 0.0292 0.0401 

 

The results of comparison of the ability of the maximum-likelihood method and Bayesian 

method to detect and classify faults are shown in Table 6.11.  From these table it is observed that, 

on average, the networks trained using the Bayesian methods are found to be better than those 

trained using the maximum likelihood method. 

 

Table 6.11. Classification of the presence or absence of faults in the test-data listed in Sections 
5.2.1-5.2.3 using the maximum-likelihood and Bayesian methods. Key: PME-N≡Pseudo-modal-
energy-network; MP-N≡Modal-property-network; C-N≡Committee method 

 Maximum-likelihood approach Bayesian approach 
 PME-N 

(%) 
MP-N 
(%) 

C-N 
(%) 

PME-N 
(%) 

MP-N 
(%) 

C-N 
(%) 

Detection 95.8 94.8 99.0 99.0 97.9 100 

Classificatio

n 

82.2 81.2 95.8 90.6 85.4 93.8 

6.7 CONCLUSIONS 

A committee of two Bayesian formulated neural networks trained using pseudo modal 

energies and modal properties is successfully used to perform probabilistic fault identification in 

a population of cylindrical shells.  The Bayesian networks are identified using the hybrid Monte 

Carlo method.  The results indicate that the committee method gives lower mean- and standard-

deviation-of-square-of-errors than the methods used individually.  On average, it is found that the 

pseudo modal energies detect and classify faults more reliably than the modal properties.  

Bayesian formulation is observed to offer the advantage of providing the distributions of the 
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network outputs, which may be used to assess the degree of confidence the network has, on the 

solution it gives.  The maximum-likelihood method as implemented in Chapter 5 is unable to 

offer this option.  The Bayesian method is found to give more accurate results than the maximum 

likelihood method. 
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Chapter 7 

CONCLUSIONS AND FURTHER WORK  

This chapter summarises the results that have been presented in this thesis and, based on these 

results, further work is recommended. 

7.1 CONCLUSIONS 

Pseudo modal energies, defined as the integrals of the frequency response functions (FRFs) 

over given frequency ranges, were proposed for fault identification in structures.  The pseudo 

modal energies were compared to the modal properties by using statistical overlap factors.  

Mathematical expressions defining the pseudo modal energies in terms of the modal properties 

were derived.  Subsequently, their sensitivities were derived in terms of the sensitivities of the 

modal properties. 

The pseudo modal energies are found to be more sensitive to faults than the natural 

frequencies and equally as sensitive to faults as the mode shapes.  In addition, the pseudo modal 

energies are more resistant to noise than the mode shapes.  The natural frequencies are found to 

be more resistant to noise than the mode shapes and pseudo modal energies.  Furthermore, the 

pseudo modal energies are found to be faster to compute than the modal properties. 

A committee-of-networks, that uses both the pseudo modal energies and the modal 

properties, was introduced for structural diagnostics.  The optimal weights that give the best 

committee were derived in terms of the expected errors and variances of the individual methods.  

When tested on a simulated cantilevered beam, the committee method formulated using the 
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maximum-likelihood approach and trained using the scaled conjugate gradient method gives 

more accurate classification of faults than the methods acting individually.  It is also observed 

that, on average, the pseudo-modal-energy-network gives more accurate classification of faults 

than the modal-property-network. 

Vibration data from a population of 20 cylinders were measured and the modal properties as 

well as the pseudo modal energies were calculated.  The modal properties and pseudo modal 

energies were transformed into the coordinate-modal-assurance-criterion and the coordinate-

pseudo-modal-energy-assurance-criterion, respectively.  The pseudo modal energies and modal 

properties are found to be better indicators of faults than the coordinate-modal-assurance-

criterion and the coordinate-pseudo-modal-energy-assurance-criterion, respectively. 

A committee-of-networks was used classify faults in a population of cylinders. Firstly, the 

networks were formulated using the maximum-likelihood framework and trained using the 

scaled conjugate gradient method.  The committee method is found to give more accurate 

classification of faults than the individual methods.  The pseudo-modal-energy-network and the 

modal-property-network are observed to give similar levels of accuracy on classifying faults. 

The committee approach was extended to a probabilistic framework using the Bayesian 

approach and the networks were trained using the hybrid Monte Carlo method.  This extension 

offers the possibility of obtaining the confidence intervals of the fault identities given by neural 

networks and was successfully implemented for fault identification in a population of cylinders.  

It is observed that the committee method gives more accurate classification of faults than the 

individual networks.  Furthermore, it is observed that the pseudo-modal-energy-network 

classifies faults more accurately than the modal-property-network. 

When the Bayesian formulation is compared to the maximum likelihood method, it is 

observed that the Bayesian approach, on average, gives more accurate classification of faults than 

the maximum-likelihood method.  Furthermore, the Bayesian approach gives distributions of 

network outputs, which may be used to deduce confidence levels of the fault identification 

results.  The maximum likelihood method does not offer this option.  The Bayesian approach is 

found to give good results without the need of applying validation methods, which are usually 

required when a maximum likelihood method is used. 
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7.2 RECOMMENDATIONS FOR FURTHER WORK 

One of the areas closely related to fault identification is the area of finite element model 

updating.  If an accurate finite element model of a structure is identified then it could be used as a 

basis for fault identification in that structure.  To date, the problem of identifying a set of finite 

element model parameters that best match model predictions to measured data has been solved 

using the maximum likelihood approach.  As shown in the present thesis, the Bayesian approach 

has certain advantages that the maximum likelihood method does not have, such as the ease with 

which confidence intervals can be determined.  When the maximum-likelihood approach is 

implemented there is a need to perform cross-validation while this is not the case when the 

Bayesian approach is used.  As an extension to the present work, the finite element model 

updating problem may be formulated in a Bayesian framework.  The hybrid Monte Carlo 

method, which has proven to be successful in damage identification problems, may be used to 

solve the Bayesian formulated finite-element-model-updating problem. 

In this thesis the vibration data were mapped to the identity of faults using neural networks.  

The identity of a fault was a vector with binary components.  The neural networks implemented 

in this thesis had continuous activation functions.  As an extension to the present work, neural 

networks with binary activation functions could be implemented and their performance compared 

to those obtained when continuous activation functions are used. 

The committee-of-networks implemented here used two types of data as inputs to the neural 

networks.  A choice was made to restrict this study to the types of faults that do not change the 

linearity of structures.  Hence, the data decomposed into the time-frequency domain was not 

examined in this thesis.  To ensure that the committee-of-networks is able to deal with the types 

of faults that change the linearity of a structure, the data decomposed into the time-frequency 

domain should be incorporated into the committee in future. 

Neural networks implemented in this study used a supervised learning technique, namely, the 

networks had to be given the input (the pseudo modal energies and modal properties) and the 

corresponding output (identities of faults) data.  However, in real life situations, the output data 

are not necessarily available.  As an extension to the present work, unsupervised neural networks 
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may be used for fault identification and a comparison made between using the pseudo modal 

energies and modal properties for fault identification. 
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Appendix B 

DERIVING PSEUDO-MODAL-ENERGIES AND 

CALCULATING THEIR UNCERTAINTIES 

 

B.1 Deriving pseudo modal energies and their derivatives 

In this appendix expressions for the pseudo modal energies are derived in terms of the modal 

properties.  Furthermore, the sensitivities of the pseudo modal energies are expressed in terms of 

the sensitivities of modal properties studied by Fox and Kapoor (1968). 

In vibration analysis, mechanical structures can be excited using the modal hammer and 

vibration response measured.  If the discrete Fourier Transform is applied to the displacement 

response X(t) and the excitation F(t), X(ω) and F(ω), respectively, [Ewins, 1995] are obtained. 

The X(ω) and F(ω) are the displacement and force histories in the frequency domain.  The 

receptance frequency response function (FRF) Hkl(ω) caused by the excitation at k and 

measurement at l is defined as the ratio of the transformed displacement response X(ω) to the 

transformed excitation F(ω) by the following equation: 

)(F
)(X

)(H
ik

il
ikl ω

ω=ω    (B.1) 

The receptance FRF in equation B.1 is related to the mass and stiffness matrices [Ewins, 1995] 

through the following equation: 

12 −+ω+ω−=ω ]]K[]C[j]M[[)](H[    (B.2) 
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The inertance FRF is defined as: 
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The receptance FRF in equation B.1 may be written in terms of the modal properties (natural 

frequencies, damping ratios and mode shapes) through the use of the modal summation equation 

[Maia and Silva, 1997] and by assuming that damping is light as follows: 
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where the contribution of each mode is given by the natural frequency ωi, the damping ratio ζi 

and i
kφ  is the kth entry of the ith normalized mode shape vector. 

These frequency response functions (FRFs) are transformed into the pseudo modal energies 

defined as the integrals of the real and imaginary components of the FRFs over various frequency 

ranges.  The receptance pseudo modal energies (RME) are calculated as follows [Gradshteyn et 

al., 1994]: 
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In equations B.5, aq and bq are the lower and upper frequency bounds for the ith pseudo modal 

energy calculated from the FRF caused by the excitation at k and measurement at l. The 

advantage of this equation is that the pseudo modal energies may be calculated directly using any 

numerical integration scheme and without having to go through the process of modal extraction.  

By assuming light damping (ζj<<1) equation B.5 becomes: 
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The sensitivity of the RME in equation B.6 with respect to any parameter change may be written 

in the following form: 
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The results in equation B.7 assume that ∂ζi/∂gp =0 and the term q
p,klB  stands for i

q
kl g/B ∂∂ where: 
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The derivative q
p,klB  is calculated to be: 
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Substituting equations B.8-B.10 into equation B.7, the derivatives of the receptance pseudo 

modal energies (RMEs) with respect to parameter changes may be written as follows:  
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Equation B.11 shows that the sensitivity of the pseudo modal energies is a function of the natural 

frequencies and mode shapes and their respective derivatives.  By substituting the derivatives of 

the mass, damping and stiffness matrices into equation B.11 using expressions given by Fox and 

Kapoor (1968) or Adhikari (2000) gives the sensitivity of the RMEs in terms of the mass and 

stiffness matrices, which are directly related to the physical properties.  This shows that the 

pseudo modal energies may be related directly to the physical properties of the structure. 
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Some of the techniques that are used to measure the vibration data measure acceleration 

instead of displacement.  In such a case it is relatively more efficient to calculate the inertance 

pseudo modal energies (IMEs) than the RMEs.  The IMEs are derived as follows: 
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If it is assumed that damping is negligible, then (bq-aq)/ωI<<1 and equation B.12 reduces to: 
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Assuming that ζi,j = 0 and ζ2
i<<1, the derivative of IME is: 
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B.2. Calculations of uncertainties of the pseudo modal energies 

In this section the uncertainties of pseudo modal energies are estimated from the known 

uncertainties of modal properties using equations B.11 and B.14, modal properties extracted 

from the FRFs contaminated with ±1% noise, and frequency bandwidths defined in Section 2.4.  

The FRFs used here were calculated from the simulated beam in Chapter 2.  The frequency 

bandwidths are 18-14, 155-240, 484-620, 1014-1151 and 1726-1863 Hz.  The uncertainty of 

natural frequency is 0.125% and uncertainty of mode shapes is 10% [Maia and Silva, 1997]. 
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Using these uncertainties of the modal properties, the given frequency bandwidths and the 

identified modal properties, the uncertainties of the pseudo modal energies are calculated and the 

results shown in Tables B.1 and B.2 are obtained.  The pseudo modal energies are calculated 

from the FRF due to excitation in node 10 and acceleration measurement in node 5 (see Figure 

2.1). 

Table B.1 shows the average uncertainties of the real part of the receptance pseudo modal 

energies to be 7.9% and imaginary part to be 9.0%.  Table B.2 shows the average uncertainties 

for the real part of the inertance pseudo modal energies of 5.0% and the imaginary part of 8.4%.  

In general, the average uncertainty of the inertance pseudo modal energies is lower than that of 

the receptance pseudo modal energies.  The average uncertainty of the imaginary part of the 

pseudo modal energies for mode 1 is quite high which is consistent with Figure 2.5 where the 

first mode was observed to be sensitive to noise.  Choosing the frequency bandwidth of 

integration carefully when calculating the pseudo modal energies may reduce the level of 

uncertainties on the pseudo modal energies calculated. 

 
Table B.1.  The uncertainties of receptance pseudo modal energies calculated from the 
uncertainties of the modal properties.  Key: ℜ = Real part; ℑ = Imaginary part 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

ℜ(RME) (%) 1.3 10.0 7.2 7.5 13.7 

ℑ(RME) (%) 16.9 14.8 5.8 0.8 7.0 

 
Table B.2.  The uncertainties of inertance pseudo modal energies calculated from the 
uncertainties of the modal properties.  Key: ℜ = Real part; ℑ = Imaginary part 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

ℜ(IME) (%) 3.6 0.9 8.5 3.0 8.9 

ℑ(IME) (%) 15.1 12.9 5.9 0.8 7.1 
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Appendix C 

MODAL PROPERTIES EXTRACTION 

This section outlines the procedure implemented by Balmès (1997a,b) in the Structural Dynamics 

Toolbox to extract the modal properties from the measured frequency response functions (FRFs).  

The modal properties are extracted by minimising the distance between the measured FRFs and 

those predicted by a theoretical model.  The theoretical model usually contains the FRFs 

expressed in terms of the modal properties.  In this thesis, a quadratic cost function is used and 

may be written as follows: 
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The FRFs of a linear and diagonalisable model can always be written as: 
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where { }iφ  is the ith complex mode shape vector. 

In an experiment, only the modes in the frequency range of interest are measured.  The 

contribution of modes outside of this range can only be approximated.  Balmès (1997b) 

approximated the contribution of these modes by adding a factor [E(iω)] into equation C.2 to 

form a second-order model.  Therefore, equation C.2 can be written in the following form: 
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where N is the number of identified modes, λi is the ith pole and superscript * stands for complex 

conjugate. 

Equation C.3 may be rewritten and the resulting expression is:  

( )[ ] ( )[ ][ ]Rs,s,R,H jj λΦ=λ   (C.4) 

where [ ] { }{ }T
iiR φφ= is called the residue matrix. 

In equation C.4, a set of poles which minimises the cost function in equation C.1 also 

corresponds to the resolution of the linear least square regression in R.  The residue may thus be 

calculated to give: 
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Equation C.5 can be solved explicitly to give: 

( )[ ] ( ) ( )[ ] ( )[ ] [ ]Test
T

jj
T

jj HR λΦλΦλΦ=λ
−1

  (C.6) 

Equation C.6 gives the explicit expression of the quadratic cost in equation C.1 and may be 

written as: 
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The derivative of the quadratic cost J in equation C.7 may be written as follows: 
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The modal properties are identified by estimating the poles λi, and re-computing the residues 

until convergence is obtained. 
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Appendix D 

BACK-PROPAGATION METHOD 

In this study, the output units represent the identity of the faults.  In Figure 3.1 the output of the 

jth hidden unit is obtained by calculating the weighted linear combination of the d input values to 

give: 
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Here )(
jiw 1 indicates weight in the first layer, going from input i to hidden unit j while )(

jw 1
0  

indicates the bias for the hidden unit j.  The activation of the hidden unit j is obtained by 

transforming the output aj in equation D.1 into zj, which is shown in Figure 3.1, as follows: 

)a(fz jinnerj =   (D.2) 

The output of the second layer is obtained by transforming the activation of the second hidden 

layer using the second layer weights.  Given the output of the hidden layer zj in equation D.2, the 

output of unit k may be written as: 
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Similarly equation D.3 may be transformed into the output units by using some activation 

function as follows: 

)a(fy kouterk =   (D.4) 

Combining equations D.1, D.2, D.3 and D.4 the input x to the output y can be related by a two-

layered non-linear mathematical expression, which may be written as follows: 
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Here d is the number of input units, M is the number of hidden units, wij is the weight-vector, the 

function fouter(•) is sigmoid and finner is a hyperbolic tangent function.  These functions are 

defined as: 

ν−+
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e
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and 

)tanh()(finner ν=ν    (D.7) 

The weights (wi) and biases (weights with subscripts 0) in the hidden layers are varied until the 

error between the network prediction and the output from the training data is minimised.  

Given the training set N
kkk }t,x{D 1==  and assuming that the targets tk are sampled 

independently given the inputs xk and the weight parameters wkj the sum of square of error cost 

function E may be written as: 
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Here n is the index for the training pattern and k is the index for the output units.  Alternatively, 

the cross-entropy cost function [Hopfield, 1987; Hinton, 1989] may be written as: 
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The minimisation of E is achieved by calculating the derivative of the errors in equations D.8 or 

D.9 with respect to the weight. The derivative of the error is calculated with respect to the weight 

which connects the hidden to the output layer and may be written using the chain rule as follows: 
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where zj is given in equation D.2.  The derivative of the error with respect to weight which 

connects the hidden to the output layer may be written using the chain rule as follows: 
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The derivative of the sum of square cost function in equation D.8 may be written as:  
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The derivative of the cross-entropy cost function in equation D.9 may be written as: 
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The derivatives of the logistic activation function in equation D.6 is: 
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while that of the hyperbolic tangent function is: 
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This appendix shows the derivatives of the errors with respect to weights.  Equations D.12 and 

D.13 show the two possible derivatives of the cost functions that could be incorporated into 

equations D.10 and D.11.  Equations D.14 and D.15 show the derivatives of the two possible 

activation functions. 
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Appendix E 

SCALED CONJUGATE GRADIENT METHOD 

In this appendix the scaled conjugate optimisation method is described.  Before introducing the 

scaled conjugate gradient method the conjugate gradient method is introduced.  In supervised 

neural network training, the main goal is to identify weights that give the best prediction of the 

output whenever presented with the input.  The scaled conjugate gradient method is used to 

sample through the weight space until the weight vector that minimises the distance between the 

neural network prediction and the target data is obtained. 

E.1. CONJUGATE GRADIENT METHOD 

The weight vector which gives the minimum error is achieved by taking successive steps through 

the weight space as follows: 

 )n(w)n(w)n(w ∆+=+1    (E.1) 

where n is the iteration step and ∆ represents change.  Different algorithms choose this step size 

differently.  In this section, gradient descent method [Robbins and Monro, 1951] will be 

discussed, followed by how it is extended to the conjugate gradient method [Hestenes and 

Stiefel, 1952].  For the gradient descent method, the step size in equation E.1 is defined as:  

))n(w(Ew n ∇η−=∆   (E.2) 

where the parameter η is the learning rate and the gradient of the error is calculated using the 

back-propagation technique described in Appendix D.  If the learning rate is sufficiently small, 

the value of error will decrease at each successive step until a minimum is obtained.  The 
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disadvantage with this approach is that it is computationally expensive compared to other 

techniques. 

For the conjugate gradient method the quadratic function of error is minimised at each 

iteration over a progressively expanding linear vector space that includes the global minimum of 

the error [Luenberger, 1984; Fletcher, 1987; Bertsekas, 1995].  For the conjugate gradient 

procedure, the following steps are followed [Haykin, 1999]: 

1. Choose the initial weight w(0). 

2. Calculate the gradient vector ))(w(E 0∇ . 

3. At each step n use the line search to find η(n) that minimises E(η) representing the cost 

function expressed in terms of η for fixed values of w and ))(w(E 0∇− . 

4. Check that the Euclidean norm of the vector ))n(w(E∇− is sufficiently less than that of 

))(w(E 0∇− . 

5. Update the weight vector ))n(w(E)n()n(w)n(w ∇η−=+1 . 

6. For w(n+1) compute the updated gradient ))n(w(E 1+∇ .   

7. Use Polak-Ribiére method to calculate β(n+1)                                  
( )

))n(w(E))n(w(E
)))n(w(E))n(w(E))n(w(E

)n(
T

T

∇∇
∇−+∇+∇=+β 11

1  

8. Update the direction vector ))n(w(E)n())n(w(E))n(w(E ∇+β−+∇=+∇ 111 . 

9. Set n=n+1 and go back to step 3. 

10. Stop when the following condition is satisfied 

))(w(E))n(w(E 0∇ε=∇  

where ε is a small number. 

E.2. SCALED CONJUGATE GRADIENT METHOD 

The scaled conjugate gradient method differs from conjugate gradient method in that it does not 

involve the line search described in step 3 in the previous section.   
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The step-size (see step 3) is calculated by using the following formula (Møller): 

�
�

�

�

�
�

�

�

∇

∇η+∇∇
−η=η

2

2

2
)n(E

)n(E)n(E)n(H)n(E
)n()n(

T

  (E.3) 

where H is the Hessian matrix of the gradient. 
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APPENDIX F 
A DETAILED FIGURE OF A CYLINDER 
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Figure E.1. The diagram of a cylindrical shell showing dimensions in millimetres.   

Accelerometer 

Sponge 


	Abstract.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	Chapter5.pdf
	Chapter6.pdf
	Chapter7.pdf
	Reference.pdf
	AppendixA.pdf
	AppendixB.pdf
	AppendixC.pdf
	AppendixD.pdf
	AppendixE.pdf
	AppendixF.pdf

