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Abstract

Ground-borne vibrations are a growing concern in urban areas. These vibrations
create noise and discomfort in buildings. In this dissertation a model is presented to
calculate vibration levels in buildings due to an underground railway. The model
is computationally efficient and makes it possible to assess design options for both
underground railways and buildings.

The Pipe in Pipe (PiP) model is used as a model for the underground railway. The
soil is modelled as a full space with a cylindrical cavity using the elastic continuum
equations and the tunnel wall is modelled as a thin cylindrical shell. The track is
modelled as a floating slab track. Despite the simplifying assumptions, the PiP
model is representative for an underground railway and computationally efficient.

The building is represented as a two-dimensional portal frame. The dynamic
stiffness matrix method is used in combination with periodic structure theory to
model an infinite building. Novak’s model is used to model the pile foundation of the
building. The behaviour of the infinite model agrees with that of the finite model
due to the radiation damping of the pile foundation. An infinite model is a good
representation of a multistory building and needs less computing power than finite
models.

The vibrations generated by the PiP model are used as an input for the building
model. An uncoupled source-receiver method is used to join both models. This means
that the presence of the building is assumed to have no influence on the vibrations
generated by the underground railway. The building model is then integrated in the
graphical user interface of the PiP model creating an efficient computer program to
evaluate different design options for underground railways or buildings.

In general, a reduction of the vibration level at the location of the building can
be observed. This is the result of the extra mass and damping of the building. The
vibrations only propagate through the building at particular frequencies and these
frequencies coincide with certain eigenmodes of the building.

In addition, the PiP model is used to analyse the influence of a composite tunnel
and of a curvature in the tunnel. In both cases, the influence was limited.
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Samenvatting

Trillingen die zich voortplanten door de ondergrond vormen een groeiend probleem
in stedelijke gebieden. Deze trillingen zorgen voor geluidsoverlast en ongemak in
gebouwen. In deze thesis wordt een model voorgesteld om het trillingsniveau te
berekenen in gebouwen veroorzaakt door ondergronds treinverkeer. Het model is
rekentechnisch efficiént en maakt het mogelijk om verschillende ontwerpmogelijkheden
voor metro’s en gebouwen te beoordelen.

Het PiPe in Pipe (PiP) model wordt gebruikt om de metrotunnel te modelleren.
De grond wordt gemodelleerd als een continuiim met een cilindrische holte en de
tunnel zelf wordt gemodelleerd als een dunne cilindrische schaal. De spoorbaan wordt
gemodelleerd als een floating slab track (FST). Ondanks de vereenvoudigingen geeft
het PiP model een representatief beeld van trillingen veroorzaakt door metro’s en is
het tegelijk efficiént.

Het gebouw wordt voorgesteld als een tweedimensionaal portiek. De dynamische
stijfheid methode wordt gebruikt in combinatie met de theorie voor periodieke
structuren om een oneindig gebouw te modelleren. Het Novak model wordt toegepast
voor de paalfundering. Het gedrag van het oneindige model komt goed overeen met
dat van het eindige model door de demping veroorzaakt door de paalfundering. Een
oneindig model is een goede weergave van een gebouw met meerdere verdiepingen en
vergt tegelijk minder computer kracht.

De trillingen gegenereerd door het PiP model worden gebruikt als input voor het
gebouw model. Hiervoor is gebruik gemaakt van een ontkoppelde bron-ontvanger me-
thode. Er wordt dus verondersteld dat de aanwezigheid van het gebouw geen invloed
heeft op de trillingen geproduceerd door de metro. Het gebouw model is vervolgens
geintegreerd in de grafische gebruikersinterface van het PiP model. Zodoende wordt
een efficiént computerprogramma verkregen om verschillende ontwerpopties voor een
metrotunnel of een gebouw te beoordelen.

Over het algemeen wordt een reductie van het trillingsniveau waargenomen op de
plaats waar het gebouw zich bevindt. Dit is het gevolg van de extra massa en demping
die het gebouw veroorzaakt. De trillingen planten zich enkel bij bepaalde frequenties
voort doorheen het gebouw. Deze komen overeen met bepaalde eigenmodes van het
gebouw.

Daarnaast werd het PiP model gebruikt om de invloed van een composiet tunnel
en een kromme tunnel te analyzeren. In beide gevallen was de invloed beperkt.
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Chapter 1

Introduction

1.1 Ground-borne vibration

Ground-borne vibrations are becoming a growing concern, especially in urban areas.
As cities become more densely populated, sites with high vibration levels will now
be used as building grounds and people will be living and working more closely to
sources of vibration.

Ground-borne vibration can be induced by busy roadways or railways. Except
for old masonry structures they don’t form a danger for the structural integrity.
However they cause discomfort in buildings and can damage sensitive equipment.
People experience vibration transmitted into buildings as vibratory motion and
re-radiated noise caused by vibrating surfaces. People are perceptible for vibrations
in a frequency range of 1 Hz to 80 Hz, while the problem of re-radiated noise goes
up to 250 Hz [0].

In this dissertation the vibrations in multistory buildings due to underground
railways will be investigated. A model is developed to simulate the underground
railway and the multistory building.

1.2 Pipe in Pipe model

Nowadays, finite element methods and boundary element methods are the most
frequently used to model underground railways and buildings. These models, however,
are computationally demanding. At the University of Cambridge a model is developed
to simulate vibrations due to underground railways that is both accurate and
computationally efficient. It is called the Pipe in Pipe (PiP) model and it provides an
efficient tool to assess different options in the early design stages of an underground
railway [0, 11].

The PiP model is developed by Forrest [6]. It is based on a model used to
investigate the dynamic behaviour of underground pipelines. The tunnel is modelled
as an infinitely long cylindrical tube surrounded by soil of infinite radial extent. The
cylindrical shell theory is used to model the tunnel wall and the wave equations for



1.2. Pipe in Pipe model

an elastic continuum are used to model the surrounding soil. Due to the cylindrical
symmetry, a cylindrical coordinate system is used.

At the invert of the tunnel a track is added. To reduce vibration levels, a floating
slab track (FST) can be applied in underground railways. This configuration is used
in the PiP model.

The PiP model has been further extended and used in many other research
studies. A brief overview is given below.

1.2.1 Evolution of PiP

The basic formulation of the model is presented by Forrest []. He derived the
expressions for the tunnel wall and the soil and added a track at the invert of the
tunnel. He also further extended the model of the FST to incorporate bending and
torsion.

Talbot [21] modelled a piled foundation using Euler-Bernoulli beam theory for
the pile and the boundary element method for the soil. He coupled the foundation to
a multistory building via resilient bearings to investigate the vibration transmission
into buildings. With this model he could also investigate the pile-soil-pile interaction.
The PiP model provided a vibration source for the building model.

In his PhD thesis, Hussein [I 1] investigated the effect of using discontinuous slabs
instead of one continuous slab and the effect of a slab with two or three lines of
support or uniform support instead of one single line of support. He also incorporated
asymmetric loads on the tunnel invert and investigated the influence of out of phase
roughness of the two rails. A graphical user interface of the PiP model is programmed
by Hussein using Matlab.

In the PiP model developed by Forrest, the soil extended infinitely in the radial
direction. Rikse [19] adapted the PiP model to include bedrock, a free surface and
horizontal soil layers. The bedrock was included by using the mirror image method.
In collaboration with Hussein, he used the fictitious force method in combination
with the ElastoDynamic Toolbox (EDT) to model the free surface and the horizontal
soil layers. The EDT is developed at the Structural Mechanics division of KU Leuven
[20].

Coulier [3] extended the pile model developed by Talbot. He modelled the pile
using the Timoshenko beam theory instead of the Euler-Bernoulli theory. The model
was used to investigate the shadow effect between multiple piles.

Beckers [1] investigated whether the simplifications made to model the track
and the tunnel in the PiP model can be justified. He adapted the track model to
correctly model unevenness correlations between the two rails. In the original model,
the rails are modelled as one single beam and thus the unevenness on both rails
is fully positively correlated. He also added a concrete layer directly fixed on the
tunnel invert, modelled a double track railway tunnel and investigated the influence
of a curvature on vibration levels in the soil.

Jones [12] investigated the influence of the simplifying assumptions made in the
PiP model. He investigated the influence of voids at the tunnel-soil interface and
the influence of assuming the soil as a homogeneous continuum. He investigated the
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effect of inclined soil layers, the effect of a subsiding soil layer and the effect of soil
inhomogeneity.

The most recent work is that of Kuo [13]. With the techniques used in the PiP
model she made a twin tunnel model. The underground networks in cities mostly
consist of two tunnels next to each other. She also modelled a piled foundation. A
pile is modelled as a cylinder in an elastic continuum much like the tunnel is modelled
in the PiP model. The original PiP model served as a vibration input for this model.

In Appendix A a table is given containing the different features added to the PiP
over the years in chronological order.

1.3 Building model

Finite element methods are the most widely used to model buildings. Despite their
accuracy, they often require very high computation times. In many multistory
buildings a regular pattern of floors and columns can be recognised. Therefore
a multistory building can be modelled as a portal frame. Cryer [1] modelled a
multistory building with a piled foundation as a two-dimensional portal frame using
the dynamic stiffness method (DSM). The building is divided in substructures, such
as the columns, floors or piles, for which an analytical solution is known. These
solutions are then combined to obtain the response of the entire building.

Cryer also compared the difference between finite and infinite building models.
The infinite buildings are modelled using periodic structure theory. For finite building
models without a piled foundation he observed standing waves in the building due to
the reflection at the ends of the building. These standing waves aren’t present in real
buildings nor in the infinite building model. When a piled foundation is connected
to the building, these standing waves are reduced because part of the vibration is
radiated back into the soil. This is observed both in the finite and infinite models.
Comparing the results of the models with site measurements, Cryer concludes that
an infinite model is a good representation of a multistory building.

1.4 Outline of the dissertation

The purpose of this dissertation is to develop a model that simulates vibrations in
buildings due to underground railways. The model has to be both accurate and
computationally efficient. It should be a tool to assess different options in the early
design stages of buildings and railway tunnels. Therefore the PiP model developed
by Forrest is connected to a building model similar to that of Cryer. Finally the
graphical user interface of the PiP model is updated to include a building.

Chapter 2 explains the basic formulation of the PiP model. First the model
for the tunnel is presented. The tunnel wall is modelled with the cylindrical shell
equations and the soil with the elastic continuum equations. Then the model for a
FST is presented.

The building model is presented in Chapter 3. First the DSM is explained and
the analytical solutions for the different substructures are given. The floors and
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columns are modelled as beams using the Euler-Bernoulli beam theory. The piles
are modelled using Novak’s model. Next the stiffness matrices for a finite and an
infinite building are calculated. For the infinite building, periodic structure theory is
used. In section 3.4 the models are validated and the difference between finite and
infinite models is investigated.

In Chapter 4 the PiP model and the infinite building model are connected. An
uncoupled source-receiver model is used. This means that the presence of the building
has no influence on vibrations generated by the underground railway. Afterwards,
the building model is integrated in the GUI of the PiP model and a case study is
presented.

In Chapter 5 a composite tunnel is modelled. This is done by adding an extra pipe
to the PiP model. Instead of using the cylindrical shell equations for the tunnel wall,
the elastic continuum equations are used to model the two parts of the composite
tunnel wall and the soil.

In Chapter 6 the influence of a curvature of the tunnel on the vibration level in
the soil is investigated. A purely geometrical approach is used.

Overall conclusions and recommendations for future work are presented in Chapter
7.



Chapter 2

Pipe in Pipe model

The Pipe in Pipe model (PiP model) is developed by Forrest [(] to model ground
vibration from underground railways. Hussein [11] further extended this model and
made a graphical user interface (GUI) using Matlab. The PiP model is both accurate
and computationally efficient and therefore it is a useful tool to assess design options
for underground railways. This chapter gives an extensive overview of the PiP model.

Different sections in this chapter are taken from Chapters 3 to 5 of the PhD thesis
of Forrest [6]. The PiP model is not the new element in this dissertation, but a basic
understanding of this model is necessary before one can continue to add different
features to it. For a full description of the PiP model, the reader is referred to the
PhD thesis of Forrest.

In section 2.1 a method is presented to model the tunnel wall and the surrounding
soil. The tunnel is modelled as a cylindrical shell and the soil is modelled as a full
space with a cylindrical cavity. This can be seen as a pipe running through another
pipe. In later versions of the PiP model a free surface and other features are added.

In section 2.2 the track in the tunnel will be modelled. The configuration that is
used here is a floating slab track (FST). The typical arrangement of a floating slab
track is shown in Figure 2.1. Two rails are mounted via rail pads and rail fasteners
onto a massive concrete slab, which in turn rests on slab bearings supported by the
tunnel invert. The purpose of the rail pads, track slab and the slab bearings is to
provide vibration isolation to the tunnel invert from the track.

2.1 Modelling the tunnel

In the PiP model presented by Forrest, the thin shell theory is used to model the
tunnel and the elastic continuum equations are used to model the surrounding soil.
Alternatively, both the tunnel and the soil can be modelled with the elastic continuum
equations. This approach will be used to model a composite tunnel in Chapter 5.
However, in Chapter 4 the PiP model developed by Forrest will be used to simulate
vibrations from underground railways at the foundation of a building. Therefore,
both methods will be presented in this chapter.



2.1. Modelling the tunnel

SIDE

FIGURE 2.1: Underground railway layout showing the components of floating slab
track [0].

2.1.1 Cylindrical Shell Equations

The main assumption of thin shell theory is that displacement and stress do not
vary through the thickness of the shell. Forrest used a simplified version of the linear
equations of motion for a general thin shell made of linear elastic, homogeneous,
isotropic material [6]. For the three principal directions, as shown in Figure 2.2, a
dynamic equilibrium equation is formulated.

(c)

FIGURE 2.2: Coordinate system used for the thin-walled cylindrical-shell theory,

showing (a) the principle directions for a typical element in the shell, (b) the

corresponding displacement components and (c) the corresponding surface stress
components [0].
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Equilibrium in the longitudinal direction x gives [0]
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equilibrium in the tangential direction y gives [0]
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and equilibrium in the radial direction z gives [(]
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E o
where u, v and w are the time dependent displacement components in directions =,
y and z, respectively, a is the mean radius of the shell and h is its thickness. The
shell material has Young’s modulus F, Poisson’s ratio v and density p. The effects
of material damping are accounted for by using complex material parameters in
the frequency domain.The following stress components on the inside surface of the
shell represent the applied loading: two shear tractions g, and ¢,, and one normal
stress ¢,. These are actually the net stresses: they are the differences between the
inside and outside values of the surface stresses 7.;, 7., and 7., respectively. The
displacement and stress components are also shown in Figure 2.2.

It is assumed that the applied loading is harmonic in both space and time. The
stress components have the form

qz(z,t) = Qm cos(nf)elWi+er)
qy(z,t) = Qyusin(nf)e’@i+eo) (2.4)
¢:(x,t) = Q.ncos(nf)e'@ite)

and are separable in time ¢, space z and angular position 6. w is the angular
frequency, & is the angular wavenumber and n is a positive integer. The displacement

7



2.1. Modelling the tunnel

components resulting from these stress components and satisfying the equilibrium
equations (2.1) to (2.3) have the form

u(z,t) = U, cos(nf)e e
v(z,t) = V,sin(nf)e'wttee) (2.5)
w(z,t) = W, cos(nf)ewte)

The tilde on the coefficients Qm, Qyn, an, Un, V,, and W,, indicates that they
are formulated in the wavenumber-frequency domain. The exponential term e%®
accounts for the infinite longitudinal extent of the cylindrical shell. The trigonometric
terms represent ring modes of the cylindrical cross section and are chosen so that
the displacements are symmetric about # = 0 , the downward vertical. Figure 2.3
shows these ring modes and there relation to the three displacement components u,
v and w.

(b)

FIGURE 2.3: (a) In-plane flexural ring modes, varying as cos nf and corresponding

to the radial displacement w; (b) in-plane extensional ring modes, varying as sin nf

and corresponding to the tangential displacement v; and (c) out-of-plane flexural

ring modes, varying as cosnf and corresponding to the displacement u, for different

values of the circumferential mode number n. The 8 = 0 points are marked with

small crosses on the undeformed ring shapes, while the small circles in (b) mark the
additional nodal points on the ring’s circumference [6].

A relationship between the coefficients Qm, Qyn, an and Un, V,, W, can be
found by substituting the stresses (2.4) and displacements (2.5) into equations (2.1)

8



2.1. Modelling the tunnel

to (2.3). The trigonometric and exponential terms are cancelled out and this can be
written in matrix form as

(7n 2 an
- —a(l — 4

A Vo ¢ = a(EhV) Qyn (2.6)
Un an

The coefficients of the matrix A are given in Appendix B. If the stress components
(2.4) are known, the displacements can be found from the stresses in the wavenumber

- - ~ . 3T
frequency domain, by substituting Q = {Qm Quyn an} into equation (2.6) and

- S - 3T
solving for U = {Un Vo Wn} . These can then be transformed into the space

time domain using equation (2.5). If the stresses Q represent a unit loading, then the
displacements U represent the displacement frequency response functions (FRFs) in
the wavenumber domain for a particular circumferential mode n. The actual stresses
and displacements will in general be linear combinations of the modal quantities [6].

2.1.2 Elastic continuum equations

The elastic continuum equations can be used to model both the tunnel wall and the
soil surrounding the tunnel. They are modelled as a three-dimensional, homogeneous,
isotropic elastic solid in the form of a thick walled cylinder. For the soil, the inner
diameter of the cylinder is equal to the outer diameter of the tunnel and the outer
diameter is of infinite extent.

The wave equation describing motion within a three-dimensional, homogeneous,
isotropic, elastic, solid medium is derived by Graff [7] and is

0*u
A+ p)VV - u + puViu + pf =P o (2.7)
where u is the displacement vector, f the vector of body forces, A = (IQf gj) and
uw=G= ﬁ are Lamé’s elastic constants for the medium where G is the shear

modulus, F is Young’s modulus and v is Poisson’s ratio, and p is the medium’s
density. f is set to zero because the desired solution is for vibration about an
equilibrium position [6]. The problem has cylindrical geometry, so the cylindrical
coordinate system will be used. Figure 2.4 gives the coordinate, displacement and
stress directions.

The wave equation (2.7) can be solved using the scalar and vector potentials, or
Lamé’s potentials, which describe the field transformation [0]

u=Vé¢+VxH with V-H=F(r,t) (2.8)

T
where 7 is the position vector {r 0 z} . The displacement equations (2.7) are
satisfied if the potentials satisfy [0]

2 _ 1 9%
Vg = Tf 73511 (2.9)
) - .
V‘H = o7 o



2.1. Modelling the tunnel

(a) (b) u,

(c)

F1GURE 2.4: Coordinate system used for the theory of an elastic continuum with
cylindrical geometry, showing (a) the principle directions with their unit vectors for
a typical element on a cylindrical surface of radius r within the bulk medium, (b) the
corresponding displacement components and (c) the corresponding cylindrical-surface
stress components (stresses acting on the edges of the element are not shown) [6].

where ¢ = /(A + 2u)/p is the speed of pressure waves in the medium and ca = \/u/p
the speed of shear waves. Since there are no surfaces or interfaces in the medium, only
these two types of waves exist. The Laplacians in (2.9) for cylindrical coordinates
are given by [0]

2 2 2
VPH = (V2H, - - 3900 ) e, + (V2Hy — B + 390 ) eg + V2H.e.

(2.10)
where e,, ey and e, are unit vectors in the principal directions of the cylindrical
coordinate system and H,, Hy and H, are the components of H.

The displacement components in equation (2.8) can be written as [0]

_ 0¢ , 10H OHy

Ty T

w o= H -G (2.11)
- Y2 10(ridy)  10H,

Uz = 3 + r  or r 00

The stress components are given by the general stress-strain relation of Hooke’s law:

Tryr = ()\ + 2/~L)€rr + Aegg + Ae,

Tog = MNepr + (A + 20)€gp + ez

Toz = N+ Aegg + (A4 20)€,, (2.12)
Trg = 2#67‘0 = Tor ’
Trz = 2M67’z = Tzr

Tor = 2M€g; = Tzp

10



2.1. Modelling the tunnel

where the standard convention for designating stress direction is used. Hooke’s law
is valid for linear elastic materials. When damping is accounted for, the material
becomes viscoelastic. However for low damping and the small magnitudes of vibration
considered here, the stress-strain relations (2.12) are still valid [6]. The effects of
material damping can be included by using complex material parameters in the
frequency domain.

The strain components are defined in cylindrical coordinates by [7]

Ouy
Err 675
— 10up | up
€0 = o9 + T
6 _ Oug
o o 2.13)
— 1(10u Jug __ up .
&0 = 3 \» 89r + or r) (
1 ( Our Ouy
€rz 2\ 0z + 67")
_ 1 (0ug 10u,
€: = 3\ T7 ae)

With the information from equations (2.7) to (2.13) the displacement and stress
components can be calculated. If the loading applied to an infinitely long tunnel
comprises stress components which are harmonic in both space and time, the following
solutions for the potentials in the wave equations (2.9) can be assumed to solve the
problem [6]:

¢ = f(r)cos(nh)e@t+Ez)
gr(r) sin(nf)e'wi+e?)
go () cos(nf) e wité?)
H., = g.(r)sin(nf)e«+¢2)

The trigonometric terms represent ring modes of the cylindrical cross section as
discussed in section 2.1.1.

Substituting of solutions (2.14) into equations (2.9), making use of the definitions
(2.10) for the Laplacians and considering each component of the equation in H in
turn, results in four differential equations [0]:

r2f”+rf’—[(&2—:1—22)7“2—1-712}]‘:0

pe
Il

(2.14)

=
I

r2gl +rgh — | (€2 = £3)r? +n? + 1] g + 2ngy = 0 (2.15)
g +rgy— (€~ &) > + 0 + 1] go + 209, = 0 .

gl 4= [(€ - ) 4] g =0

where a prime denotes differentiation with respect to r. The solutions of the differen-
tial equations in (2.15) for the functions f, g,, gg and g, are linear combinations of
modified Bessel functions [0]:

f = AlL,(ar)+ BK,(ar)
gr —g0 = ALy 1 (Br) + By Kp 1 (Br) (2.16)
9. = Az[n(ﬁr) + Ban(Br)

where o = €2 —w?/c? and 82 = €2 —w?/c3, I.(ar), I,(Br), K,(ar) and K, (Br) are
modified Bessel functions of respectively the first and second kind of order n. The
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2.1. Modelling the tunnel

coefficients A, B, A, B,, A, and B, are to be determined from boundary conditions.
These differ for the tunnel and the soil.

The displacements and stresses can be written in terms of the functions given
by (2.16). This is done by substituting the expressions for the potentials (2.14) into
equations (2.11) for the displacement components:

up = [f' + g, +i€g,] cos(nf)el@tE?)
ug = [-2f+ilgy — g.] sin(nd)e'@H+e?) (2.17)
U, = [i{f — (njl)gr + g;} cos(nf)e!(w+€?)

Using the above results for the displacements and the strain definitions (2.13), the
stresses can be determined from (2.12). The surface stresses are given by

1 )\ ! n2 2 . / n / n
Tor = |A+20) "+ 2 = M 5 T € ) f+ 2uilgr + 20 g — 2059
cos(nf)e’@He?)
n n , (n+1) I n?
o0 = | =2u—f" + 2u— f + pikg, — pi¢ gr — Hgy + =9. — 5 9-
r r r T r
sin(nf)e!(“HE?)

) n+1 n+1 n
Ty = [2Mz§f/ — gy — M( " )gqln — ( o €2> gr + ,uszgz]
cos(nf)e’ @) (2.18)

These stresses are involved with the boundary conditions. Similar expressions can
be found for the internal stresses 71yg, 79, and 7,.,.

By substituting the expressions (2.16) in equations (2.17) and (2.18), the dis-
placements and stresses can be written in terms of modified Bessel functions of order
n and (n + 1). The harmonic solutions can then be written in matrix form as [(]

u’f
u = ’LLH = SUCel(WtJF{Z)

o= {7 = lg g] TCei(“!H) (2.19)

Tzz

[cosnb 0 0
with S = 0 sin né 0
0 0 cosnd

12



2.1. Modelling the tunnel

C=3A B A, B, A, B, B is a vector of coefficients. These coefficients are
determined from the boundary conditions. In Appendix B the 3 x 6 matrix U defining
displacements and the 6 x 6 matrix T defining stresses are given in full. The elements
of both matrices are in terms of modified Bessel functions with arguments ar and
Br, and thus are functions of wavenumber &, frequency w and circumferential mode
number n as well as radius r and the material properties.

As for the solution of the cylindrical shell, the elastic continuum’s displacements
and stresses can be written in the wavenumber-frequency domain. The displacement
and surface stress components are [0]

qun
qen =UC and

zZn

™™

zZn

o [lan it

where the 3 x 6 matrix T, is the top half of the 6 x 6 matrix T in (2.19).

2.1.3 Coupling the tunnel and soil

Before the vibrations in the tunnel or the soil can be calculated, the boundary
conditions must be specified. The boundary conditions include applied loads, com-
patibility of displacements and equilibrium of forces at the tunnel-soil interface and
a radiation condition for the infinite soil. In general the external loading applied to
the tunnel will not be harmonic in space, but a linear combination of the spatially
harmonic components given in (2.4) for the shell or in (2.19) for the continuum.
The total displacement response can be obtained by adding the individual harmonic
displacement components which result from each of the harmonic load terms which
make up the total load.

Case 1: tunnel wall modelled as a thin shell

Force equilibrium for the shell when a load is applied at the invert of the shell results
in:

AU, = A Vi 0 = Quup =3 Py o — { Tom (2.21)
a(l v ) WTL ~ZTZ ~Z’Vl ~ZZTZ

outside

- . - . 3T
where P,, = {Pm Py, Pzn} are the stress components at the inside of the shell

induced by the applied load and T, = {sz Tyom sz}T are the stresses at the
tunnel soil interface.

Due to the infinite extent of the soil, the equations (2.20) describing the continuum
can be reduced. The displacements u and stresses T for the continuum are expressed
as linear combinations of modified Bessel functions. Only the Bessel functions of the
second kind K, (ar) and K, (5r) decay for all arguments as r increases. Thus the

13



2.1. Modelling the tunnel

coefficients of the modified Bessel function of the first kind I,,(ar) and I,,(Sr) must
be set to zero for the radiation condition to be satisfied [6]. This means that

A=A, =4, = 0

T 9.29
:Cred:{OBOBTOBZ} (2.22)

In turn, the first, third and fifth elements of each row in the matrices U and T drop
out of the equation. These are the terms containing Bessel functions I,,(ar) and
I,(Br).

The coordinate system for the shell differs from that for the continuum. The
relationships between the displacements and stresses in the two different coordinate
systems can be found by comparing Figure 2.2 and Figure 2.4. They are

U= Uy Tex = —Trz
V= Uy Toy = —Tro (2.23)
w= —u, Toy = Trr

The coordinate system of the shell will be used here. The displacements at the
tunnel-soil interface can be written as

I:]n Uzn ugy U4 U36 B
Vo ¢ =9 U = | ug2  u24 U6 By ¢ =[Ux],_, B (2.24)
W, “Um},_, —u1z —uyy —ue| _ | B:

Equilibrium of forces at the interface results in

zizxn _jjrzn _t32 _t34 _t36 B
Toyn =9 —Tron = |t —tas —t2 B, ¢ =[Tl,—, B
zzn Trrn t12 t14 t16 Bz

outside r=a r=a

2.25
where the wuj;, and t;;, are the remaining elements of U and T, ( )
Substituting the displacements (2.24) and stresses (2.25) into equation (2.21)
results in
AgUs),_yB=P—[T),_, B (2.26)
Solving for B gives

B =[[Toc),_q +Ap Usc],_o] ' P (2.27)

Once the coefficients B are known, the displacements and stresses in the tunnel wall
(r = a) or at some radius R elsewhere in the soil can be calculated with

r=a

U,=[Us),_pB and T, =[Te],_pB (2.28)

Case 2: tunnel wall modelled as a thick shell

The continuum equations are used to model both the tunnel wall and the soil. The
tunnel has an inner radius r; and outer radius 7,. The displacement and stress
components in (2.20) for the tunnel wall can be written as

ﬁt = UtC and Tt = TrtC (229)
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2.2. Modelling the track

As in the previous section, the continuum equations for the soil can be simplified
due to the infinite extent of the soil. This results in the following displacement
components
ui2 w4 ue| | B
US = (U292 U224 U226 BT = USB (230)
uzy ugs ugze| | B

and stress components
tiz tiu tig| [ B

Ts= |tz toa tos| {Br ¢ =TrsB (2.31)
tso t34 tss| | B-:

Now the boundary conditions can be included. Force equilibrium at the invert of
the tunnel results in: . )
Ty = [Trt]r:'ri C=P (232)

Compatibility at the tunnel-soil interface results in

Uio = [U),_,, C=[Uy],_,, B=Us (2.33)

r=ro

and . .
T, = [T,,t]T:TO C = {Trs]r:ro B=T,, (2.34)

The coefficients B can be written in function of the coefficients C

B=[UJ., U], C (2.35)

r=rg

Substituting into equation (2.34) gives

(IToidser, = [Trslr, WUl U,y ) € = O (2.36)

where O is a 3 X 1 zero matrix. Combining expressions (2.32) and (2.36), gives a
solution for C'

[Trt]T:n -1 P
C= [[Trt]r:ro — [Trsloey, Usl, 2y [Ut]r:J {0} (2.37)

Once the coefficients C' are determined, the coefficients B can be calculated with
(2.35). The displacements and stresses at some radius R in the tunnel or soil can be
calculated with

U,=[U],_pC and T, =[Ty],_C (2.38)

if r; <R <71, or with

U,=[Uy,_pB and T,=[T.,_pB (2.39)

if R>r,.
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2.2. Modelling the track

FIGURE 2.5: Full track model supported on the tunnel invert, with masses added to

represent axles of a train. The centre mass is excited by a roughness displacement

input 0. The tunnel’s infinite length means the responses at one point in the soil

to each axle input (paths with dashed lines) are equivalent to the line of separate

responses to the single input shown (paths with solid lines) for an infinite number of
masses at regular spacing [0].

2.2 Modelling the track

The track model used in the PiP model is shown in Figure 2.5. It consist of a
simple slab beam supporting a rail beam that represents the two rails together. The
axle-wheel assemblies of the train are included by adding masses placed at regular
intervals. The slab and rail beams are infinitely long. The output of the PiP model
is the displacement response at a certain point in the soil when there are a series
of input loads along the rails due to a train running on the track. For just one
input load, the load and the observation point can be shifted longitudinally while
maintaining their separation with no difference in response due to the infinite length
of the tunnel. In other words, the response in the soil at x = 0 to a load on the
rail at x = L is identical to the response at x = —L to the same load at x = 0. For
tangential and radial soil response components, which are even functions of z, it is
also identical to the response at x = L to the load at x = 0. In this case, only the
magnitude of the separation matters. Instead of finding the set of FRFs for the soil
response at = 0 to a set of loads at various positions on the rail, the problem can
be solved by finding the FRFs for the soil at those various longitudinal positions to
a single load at = 0. The shifting principle for a tunnel and track model with axle
masses is shown in Figure 2.5. It has to be noted that this is only true for an infinite
number of axle masses at regular spacing. The overall model remains infinite and the
longitudinal symmetry is maintained with any amount of shifting. Nevertheless, a
finite number of axles is sufficient if only an input at the middle axle (z = 0) is used
and the responses of the model do not change with more axles added at the ends [6].

The total soil response due to all the axle loads acting simultaneously can be
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2.2. Modelling the track

calculated by adding up all the FRFs for an input at = 0, after scaling and phasing
each one appropriately. If the train is infinitely long and the inputs random, the
sum represents the response anywhere along the soil line and thus condenses the
three-dimensional problem represented by the individual FRFs to a two-dimensional
problem of the vibration level at a particular point in the cross section of the tunnel
and soil [0].

2.2.1 Coupling the floating slab track and tunnel

The connection between the floating slab track and the tunnel invert will be done in
the frequency-wavenumber domain. First consider a general continuous distribution
of a time harmonic force per unit length Q(z) acting along a line such as the joining
line on the tunnel invert as shown in Figure 2.6. The distributed force can be seen as
a series of point loads represented by pulses of infinitesimal width dyx and magnitude
Q(x). The increment of the time-harmonic displacement response Y (z) to one of
these point loads is dY () = H(xz — x)Q(x)dx, where H(z) is the frequency response
function for Y (z) to a point load acting at = = 0. The total displacement response is
the sum of these increments over the whole length of the infinite joining line, giving
the integral

= /_O; H(z — x)Q(x)dx (2.40)

which is a convolution integral in space [6]. If the Fourier transform of both sides of
this equation is taken using the first integral of the transform pair

Y Y (x)e %%y
(( £) 2{ i ;) ol (2.41)
then (2.40) becomes 3 L
Y(©) = H©QE) (242)

The convolution in space has been reduced to a simple multiplication in the wavenum-
ber domain.

In Figure 2.7 a schematic overview is given of the floating slab track in the tunnel.
Expression (2.42) can be applied to this problem. When a unit point load acts on
the slab at = 0 this yields

Vi = Hu(ZGat1)
}fQ = I:I22<~Ga — Gb) (2.43)
Y3 = HzGy

for the displacements Y; along the rails, Y along the slab and Y3 along the tunnel
invert. The applied point load is equivalent to a force per unit length of F' = d(z),
which gives F' = 1 when transformed [6]. The functions Hy, and Hyy are the FRFs
in the wavenumber domain for the response of a free beam to a point load at x =0
for the two rails and the slab respectively. The function Hss is the FRF for the
response of the uncoupled tunnel invert to a point load at z = 0 in the wavenumber
domain. These FRFs will be derived in section 2.2.2.
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2.2. Modelling the track
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FIGURE 2.6: General force distribution per unit length Q(z) acting along a single
line of joining. The displacement response Y (z) is obtained by the convolution in
space of the force increments Q(x)dx with the frequency response function to a point

load [6].
F(x)
1
Rajl £diis ] = —— 1;
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Tunnel invert J : : 3
\£
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FIGURE 2.7: Schematic overview of floating slab track. The displacements and
interaction forces acting on the rails, slab and tunnel are indicated.

The rails are connected to the slab via rail pads and the slab is connected to the
tunnel invert via resilient slab bearings. The interaction force is determined by the
extension of the bearings and the rail pads and their stiffness. The rail pads and
bearings are modelled as continuous resilient layers of stiffness k, and kj respectively
per unit length [6]. Damping can be included by using a complex stiffness. The
joining condition between the rails and the slab results in

Go = ka(Y1 — Ya) (2.44)
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2.2. Modelling the track

The joining condition between the slab and tunnel invert results in
Gy = ky(Yo — Y3) (2.45)

Combining equations (2.43), (2.44) and (2.45) results in a system with five equations
and five unknowns, namely Y1, Yo, Vs, G, and Gy, By substituting equations (2.44)
and (2.45) into equations (2.43) the displacements can be found. The solutions for
Y1, Ys and Y3 are given in Appendix C. The forces can then be easily derived from
(2.44) and (2.45). Especially the force acting on the tunnel invert will be of interest
and is given by

~ Y-
Gp= =" (2.46)
Hss
The response along a line in the soil parallel to the joining line can be determined
once this interaction force is known. The soil displacement is given by

Yy = Hi3Gy (2.47)

where Hys is the FRF of a particular soil displacement component Y; to a unit
load acting on the uncoupled tunnel invert at x = 0 as described in section 2.1.
The displacement in the space domain can be found by using the second expression
of the transform pair (2.41). For the unit point load assumed here, the physical
displacement in the space domain represents the FRF of the combined system for a
point load acting at = 0 on the rail [0]:

Hy =Yy (F=1) (2.48)

2.2.2 Frequency response functions

The frequency response functions used in previous section still have to be determined.
First the FRFs for the rails and the slab will be determined followed by the FRFs
for the tunnel invert and the soil.

Both the slab and the rails are modelled as free beams of infinite length. In the
calculations the two rails will be modelled as one beam. The equation of motion of a
free beam in bending is given by [17]

2V flat) (2.49)

where m is the mass per unit length, ET is the bending stiffness (F is Young’s
modulus and [ is the second moment of area) and f(x,t) is the applied force per
unit length. The FRF can be determined by substituting a harmonic solution
y = YelWiter) with a force f = Fe'“+€%) into the equation of motion (2.49). This
yields

N mw?}}ei(wt-‘r{x) + EI£4?€i(wt+£x) _ F@i(wt-‘r{x) (2.50)

Rearranging and eliminating the terms e*“*+€%) gives the FRF in the wavenumber
domain:
1

= 2.51
EI&Y — mw? (2:51)

Hfree beam =

ST
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2.2. Modelling the track

Using harmonic solutions in this way is equivalent to taking the Fourier transform of
(2.49) twice, once for time to frequency domain and once for space to wavenumber
domain. The FRF Hiree beam 1S €qual to the displacement Y if the applied force is a
unit spatial point load acting at = 0, thus F = 1 [6].

The FRF Hy; for the rails is found by using the mass per unit length m; and
the bending stiffness E1I; for the two rails together:

I:III = ﬁIfree beam (m17 EII) (252)

Using the mass per unit length ms and the bending stiffness Fl5 results in the FRF
for the slab: ) 3
H22 - Hfree beam (m27 EI?) (253)

The FRFs for the tunnel invert and the soil are determined by applying a spatial
unit point load on the invert and calculating the displacements in the tunnel or at a
particular point in the soil. It is assumed that forces normal to the tunnel invert will
have the most important effect on the dynamic behaviour of the tunnel and the soil
[6]. Therefore, the longitudinal and tangential applied forces are set to zero. The
spatial variation of such a point load is shown in Figure 2.8.

The solutions for the cylindrical shell equation (2.6) and the elastic continuum
equation (2.20) are expressed in the wavenumber-frequency domain for a particular
circumferential mode number n. Thus an expression for the unit point load has to
be determined in the wavenumber-frequency domain.

As in the PIP model, the coordinate system for the cylindrical shell will be used.
The vector P, in equation (2.21) contains stresses, while the normal point load
here is a force. To ensure that the stresses correspond with a unit load, the load is
visualised as a three-dimensional rectangular pulse centered on the position z =0
and 6 = 0 of small base side-lengths Az and aA#, and height 1/aA0Ax [6]. This
pulse can be considered as the product of two separate rectangular pulses in z and
0, as depicted in Figure 2.8. The point load is achieved in the limit as Az and A#
tend to zero. Written out, the applied stress for a unit point load in the space-time
domain is

_ [amme™ for g o< Srand <o <SP
b= = : (2.54)
0 otherwise

N weiwt as Az, A — 0

a

where d(x) and §(f) are Dirac delta functions [0]. Forrest transformed this into the
wavenumber-frequency domain. For a particular circumferential mode number n and
for all £, the stresses are given by [(]

P = 0

2o

P {1/277(1, n=20 (2.55)
o 1/2ra, n>1
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2.2. Modelling the track

(a) (b)

1
aABAx

(c)

FIGURE 2.8: (a) A unit normal point force acting on the invert of an infinitely

long tunnel can be construed as (b) an appropriately scaled uniform normal stress

acting over a small rectangular area centered on x = 0 and 6 = 0. This normal

stress distribution can be decomposed into (c) the product of two rectangular pulse
functions, one in z and one in 6 [(].

.~ . N\T
The harmonic displacements {Un Va Wn} are calculated for each value of
n from equation (2.28) by applying the stresses (2.55). The total displacements

. .~ T

U= {U \%4 W} at a particular radius r and angular position 0 resulting from a
time harmonic unit point load acting on the invert are given by a linear combination
of these spatially harmonic components:

(:] Uo s (z'n cos nb
Vo =20, 4> < Vysinng (2.56)
w . Wo . n=1 | W,, cosnf
The tunnel invert FRF Hss can now be determined from the displacement W for
r =a and # = 0. The soil FRF H,3 can be one of the three displacement components,
whichever is of interest, for any line in the soil defined by constant r = R and 6 = j3.
These can be expressed as
E[gg == W(T
~ ~ ~ 2.
Hys = U, VoW(r=R,0=p) (2.57)
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2.2. Modelling the track

2.2.3 Adding axles masses

To simulate a train running over the track, masses are added at regular intervals
along the track as depicted in Figure 2.5. These masses represent the axles of a train.
Adding the masses to the model constructed so far is done in the space domain.
Since the axles interact with the rail, the FRF Hjj(x) is required in the z-domain.
This can be obtained by the inverse Fourier transform of the FRF in the £-domain
given in (2.52)

Hii(z) = % /0:0 Hyy(§)e™dg (2.58)

The FRF Hyi(z) of the soil in the z-domain is required to find the final response in
the soil. This can be obtained by the inverse Fourier transform of the FRF in the
¢-domain given in equation (2.48)

Hy(z) = % /o:o Hy(§)e’™"d¢ (2.59)

As the first step in the addition of axle masses, the rail responses at the positions
where the masses are to be added must be formed into an FRF matrix H; which
satisfies

Y,=HF, (2.60)

where Y1 is the vector of rail displacements at the locations where masses will be
added and F'; is the vector of forces acting at those positions on the rail [6]. The
elements of the matrix Hy are determined by the rail displacement FRF Hy;(z).

The case of adding only five masses will be considered here as an example of
the general approach. It can easily be extended to more added masses to give the
convergence necessary to model an infinitely long train. Due to the infinite length
and the symmetry of the track and tunnel, the rail FRF is only dependent on the
magnitude of the separation between the position where the displacement is wanted
and the position of the load as described in the introduction of this section. For
a regular spacing L of the positions where the masses will be added, the rail FRF
matrix is

L) Hu(2L) Hy(3L) Hyi(AL)

0) Hy(L) Hii(2L) Hyp(3L)
H1: H11(2L) HH(L) HH(O) Hu(L) H11(2L> (2.61)
Hi(3L) Hy(2L) Hu(L)  Hu(0)  Hi(L)
H11<4L) H11(3L> H11(2L) HH(L> HH(O)

To add the axle masses, the FRF matrix H; is inverted, what results in the
dynamic stiffness matrix (DSM) expression

Fi=[H]| 'Y, =KY, (2.62)

Axles are then added to the model as concentrated masses m, by adding inertia
terms of the form —m,w?Y, where Y is the displacement at the axle’s position, to
the appropriate diagonal elements of Ki, leaving the centre station free [6]. The
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2.2. Modelling the track

axle mass at the centre station is added via a roughness displacement § = Ae™?, as

shown in Figure 2.5. The overall matrix equation then becomes

(k11 — maw? k12 k13 k14 k15 0 1 (Y 0
ka1 koo — maw? ko3 ko4 ka5 0 Y 0

k31 k3o k33 k34 k35 —mqw?| J Y3 _ )0

ka1 ka2 kag kg — maw? ka5 0 Yo )O

k51 k52 k53 k54 kss — mgw? 0 Y5 0

L 0 0 -1 0 0 1 | Y, 1)
(2.63)

where k;; is the element on row ¢ and column j of K;. Equation (2.63) is of order
one greater than the original DSM because of the extra displacement component Y,
introduced by the independent axle mass at the centre.

T
From equation (2.63) the displacements Y; = {Yl Yo V3 Y, Y5} of the
rail at the axle masses are calculated. These displacements are substituted back into
(2.62) to obtain the interaction forces F'; acting on the rail at the positions of the

axle masses. Once these forces are known, the soil displacements Y 4 can be found
from the FRF function Hy4i(x). In matrix form this can be expressed as

Y4 = HyFy (2.64)

where Hy is the FRF matrix for the soil line to input forces acting on the rail with no
axle masses added. For the tangential and radial components of soil displacements,
V and W, Hy has the same form as H; given by (2.61), but with Hy;(z) instead of
Hji(x). This is because these components are even functions of = for a vertical load
applied at = 0. However, the longitudinal component U is an odd function of z for
such a load, so that the sign of the longitudinal separation between a given load and
displacement is important. The soil FRF matrix is then

Hy(0) —Hy(L) —Hy(2L) —Hu(3L) —Hp(AL)

Hu(L) Ha(0) —Hp(L) —Ha(2L) —Hy(3L)

Hi= |Hy(20) Hu(L)  Ha(0) —Hg(L) —Hy(2L) (2.65)
Hy(3L) Hu(2L)  Hp(L)  Hu(0)  Hy(L)
Hu(4L) Hp(3L) Hp(2L)  Hy(L)  Hu(0)

2.2.4 Power spectral density calculations

A last step in the PiP model is the calculation of the power spectral density of the soil
displacements. Since the roughness and other irregularities of the real rail and wheel
surface profiles will be randomly distributed, the roughness displacement inputs at
the wheel of a train travelling on the track will be random processes. Therefore, the
calculation of the resultant soil responses requires the use of the theory of random
vibration [6].

The PiP model is considered as a system with N stationary random inputs z;,
the axle inputs, and one stationary random output y, the displacement response of a
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2.2. Modelling the track

particular point in the soil. The power spectral density (PSD) Sy(w) of the output y
is then given by

N N
Sy(w) = Z Z Hy*(w)Hy(w) Sz, (W) (2.66)
p=1q¢=1
where Hy(w) and Hy(w) are the FRFs of y to the inputs x, and z, respectively and
Szpz,(w) is the cross spectral density between the two inputs [0]. H,"(w) is the
complex conjugate of H,(w).

The train’s wheels are assumed to be perfectly smooth, so that all irregularities
are contained in the rail surface, the axle inputs can be assumed to differ by a time
delay only. Therefore, the statistical properties of the different inputs are the same,
thus have the same spectrum Sp(w). However for two inputs, say z1 and z2, one lags
the other such that xo(t) = z1(¢ — T'). In this case the cross spectra are given by [(]

S$1I2 (w) = 5o (W)G_WT

Sac2$1 (w) = So(w)ei‘“T (267)

The time delay between two adjacent axles is T'= L/v, where L is the axle spacing
and v is the train’s speed. If the axles are not adjacent, this time delay is multiplied
by the integer difference (¢ — p). ¢ and p are the indices of the axles concerned. The
general formula (2.66) for the output spectrum can be rewritten as

N N
Sy(w) =D Y~ Hy" (w) Hy(w)So(w)e 4 PE (2.68)
p=1qg=1

The FRFs Hy(w) and Hy(w) can be obtained from the appropriate elements of
the soil response vector Y in (2.64). The soil response vector is calculated for an
input at the centre axle mass only, thus the shifting principle has to be used. For
example, consider a train with 5 axles as in section 2.2.3. The spectra of the soil
displacement at z = 0 is wanted. The FRF Hj(w) is equal to the displacement in
the soil at = 0 for an input roughness on the track at x = —L. Due to the shifting
principle this is the same as the displacement at x = L for an input on the track at
x =0, thus Ha(w) = Yy. The other FRFs can be found in a similar way and used in
equation (2.68) to obtain the PSD. The real model should include N axle masses
instead of just five, where IV is sufficiently large for convergence of the soil responses
so that the shifting principle is valid.

In version 3 of the PiP model the power spectral density is calculated for uncor-
related inputs using a white input roughness spectrum of Sp = 1 mm?/Hz. Equation
(2.68) can be simplified to

N
Sy(w) =Y [Hp(w)|? (2.69)
p=1

The FRFs Hp(w) are obtained as before.

To calculate the response of the building model described in Chapter 3 the
vertical displacement component is needed as an input to the building’s foundation.
However, the displacements here are expressed as longitudinal, tangential and radial

24



2.3. Conclusion

FIGURE 2.9: Relationship between the shell coordinates and the global coordinates.
The displacement components U, V and W in shell coordinates and displacement
components Ux, Uy and Uz in global coordinates are indicated.

components U, V and W due to the cylindrical geometry of the PiP model. To
obtain horizontal and vertical components, an absolute coordinate system XY Z
needs to be defined. The longitudinal direction X coincides with the longitudinal
z-axis of the tunnel, the horizontal direction Y with the 8§ = 90° radius, and the
vertical direction Z with the 8 = 180° radius as shown in Figure 2.9. The relationship
of the longitudinal, horizontal and vertical displacement components Uy, Uy and
Uz to the original components U, V and W are

Ux 1 0 0 U
Uy ; = |0 cosf —sinf| <V (2.70)
Uy 0 sinf cos6 w

The FRFs can be calculated for the U, V and W components of soil displacement
and then transformed with (2.70) before being used in the PSD equation (2.68) or
(2.69).

2.3 Conclusion

The Pipe in Pipe model is a computationally efficient model to simulate vibrations
due to underground railways. The model can be divided into two parts: modelling
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2.3. Conclusion

the tunnel and modelling the track. The tunnel and track are assumed to be straight
and infinitely long.

The tunnel can be modelled as a thin cylindrical shell or a thick cylindrical shell.
The soil is modelled as an elastic continuum with a cylindrical cavity. Due to the
cylindrical geometry of the problem a cylindrical coordinate system is used.

Floating slab tracks are frequently used for underground railways. Two rails are
mounted via rail pads and rail fasteners onto a massive concrete slab, which in turn
rests on slab bearings supported by the tunnel invert. The purpose of the rail pads,
track slab and the slab bearings is to provide vibration isolation to the tunnel invert
from the track. The rails and the slab are modelled as infinite beams and coupled to
the tunnel in the wavenumber-frequency domain.

A train running through the tunnel can be modelled by adding masses at regular
intervals on the track. The masses represent the axle loads of the train. Because the
irregularities of the rail and wheel will be randomly distributed, theory of random
vibration will be used to calculate the power spectral density of the displacement
response of the soil.
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Chapter 3

Modelling of a multistory
building

In this chapter a two-dimensional building model is presented. The building is
modelled as a portal frame with a number of columns and floors. The dynamic
stiffness matrix method is used to model this portal frame. The building rests on a
pile foundation and the soil-structure interaction is accounted for by using Novak’s
model for pile foundations. In section 3.2 a finite model for a building will be
presented. To further reduce the computation time, an infinite model is assembled
in section 3.3. The two models are compared in section 3.4. Finally the model is
validated by comparing it to a similar building model that is presented by Cryer [1].

3.1 Dynamic stiffness method

The model for the building has to be representative for the structures under in-
vestigation, but the computation time has to be limited so that it can be used in
combination with the PiP model.

Building models can be formulated in either the time or frequency domain.
“Models in the time domain are often used for the seismic analysis of structures where
peak vibration levels due to a transient event are of interest.” When dealing with
ground-borne vibrations due to underground railways, however, the problem may
be treated as linear because the strain amplitudes are low. For linear problems the
frequency domain is the most appropriate and thus the model presented here will be
formulated in the frequency domain [21].

The finite element method (FEM) is the most widely used numerical technique to
model vibration of buildings. It is a powerful tool enabling the analysis of virtually
any structure. However, the FEM requires considerable computing power to achieve
reasonable results.[21].

Analytical models often require less computing power. A base-isolated building,
for example, can be modelled as a standard single degree of freedom oscillator. This
represents the isolated building as a rigid mass supported on a spring and a damping
element to represent the isolation bearing. “Despite its popularity, the value of the
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3.1. Dynamic stiffness method

SDOF model is limited because it fails to describe some of the major features of a
building’s dynamic behaviour, in particular the flexibility and damping properties of
the building and the effects of its foundation” [21].

In his PhD, Cryer [/] takes the analytical models one stage further by using the
dynamic stiffness method to model a two-dimensional portal frame building resting
on a three-dimensional piled foundation. The dynamic stiffness method accounts
for both the longitudinal and transverse behaviour of the columns and floors of
the building and the foundation model, based on a series of Novak piles, accounts
for the interaction between the building and the ground. The computation time is
minimized by treating the building as infinitely long and using periodic structure
theory [4]. This approach will also be used in this dissertation, mainly due to its
computationally efficiency.

The dynamic stiffness method involves dividing the building into a number of
substructures, a wall or a floor for example. The response of each substructure is
calculated using the analytical solutions of the equations of motion for that particular
substructure. These responses are then assembled to evaluate the overall response of
the model to a set of specified inputs.

3.1.1 Beam element

The building model presented here consists of floors and columns modelled as beams.
The response of each beam is determined separately using its equations of motion and
these responses are then combined to calculate the overall response of the building
model. It is assumed that the beam behaves as an elastic bar in compression and an
Euler beam in bending. There is no coupling between the two types of motion and
consequently, the longitudinal and lateral vibration can be analysed independently [1].
Figure 3.1 and Figure 3.2 show the displacements and rotations and corresponding
forces and moments of a beam. A typical element from a two dimensional portal
frame is defined by its length L, cross-sectional area A, second moment of inertia I,
density p and Young’s modulus F.

Ficure 3.1: Displacements and Rotations.

The equation of motion governing undamped, longitudinal motion of an elastic
bar is given by [17]:
0’u  Ed%u

oz pom2 " (3:-1)
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3.1. Dynamic stiffness method

51 S2
d: az

FI1GURE 3.2: Forces and Moments.

A solution will be sought in the frequency domain. First equation (3.1) has to be
transformed into the frequency domain. This can be done be taking the Fourier
transform. A harmonic solution of the form u(z,t) = U(z,w)e™! can be substituted
into equation (3.1). This results in

, Ed’U
— w2U€ZWt — 7W€’Lwt = 0 (32)
p dx
This can be rewritten as
U 2 . 2 2P
W—l—aU—O with « =w'n (3.3)

This is a differential equation in the frequency domain for which the solution is
known:
U(z,w) = 1" + cpe™*** (3.4)

where i2 =

—1 and the constants ¢; and c¢g have to be determined from the bound-
ary conditions. The normal force acting on the cross section at x is obtained by
differentiating equation (3.4):

ou

_ ) . woxr —iax
F = AFE o AFE (zacle iacge ) (3.5)

For an Euler beam, the undamped equation of motion is [17]:

9*v  EI 0w

wi

Substituting a harmonic solution v(z,t) = V (z,w)e™" results in a differential equation

in the frequency domain:

d'v 4 . 4 2 pA
The general solution of this differential equation is
V(z,w) = 3% + 46 + c5e P 4 g7 (3.8)
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3.1. Dynamic stiffness method

where the constants c3 to ¢g have to be determined. Successive differentiation of
equation (3.8) gives the rotation ©, the bending moment @) and the shear force S at
point x:

© = 9V = Bese + iBeset™ — Bese P — ifcge™HT
Q _ Elaa27‘2/ —BJ /82036536 o 620461'&1: 4 626567590 _ IBZCGefiﬁz)
g — EI%ST‘;{ — FEJ 53636/896 o Z~5364ei,8x _ ﬁ3056—,3:c + Z'B?;CGe—iﬁz)

(3.9)

The generalised forces and displacements are related through the following
boundary conditions at the ends of the element:

U:U17
U:U27

V=W,
V:‘/Qa

@:@1)
@:@27

F:_Fh
F = Fy,

S = Sl7
S = _527

Q=-0
Q= Q2

at z =0 (3.10a)

atx =L
(3.10b)

By combining the above equations, the following matrix equations can be assembled:

Ur [ 1 1 0 0 0 0 e
Vi 0 0 1 1 1 1 co
O | O 0 I3 i3 -8 —ip cs
U2 - eiaL e—iaL 0 0 0 0 s
%) 0 0 eBL GiBL e BL o—iBL cs
©9 | 0 0 BePL BBl _Be=BL  _iBe=iBL| | ¢4
or
Ui =Me (3.11)
and
F [ —iAFE« 1AE« 0 0 0 -
S1 0 0 EI13 —iEIB? —EIB? iEIG3
@i_| 0 0 ~BIf*  EIf?  —EIf? EIB?
Fy( ~ |iAEae™t —jAEae L 0 0 0
So 0 0 —E[ﬁ3eﬁL iE[ﬁSGiﬂL EIBBe—ﬁL —iEIﬁSG_iBL
Q2 .0 0 EIR%PL  —EIB2PL EIR2%—PL _EIB%—bL |
or
Fy=Nc (3.12)

1
€2
c3
C4
Cs
Ce

The components of the generalised force vector F'; and displacement vector U; are
defined in the local coordinate system of the element. Their values are the complex
amplitudes at the ends of the element.

Finally, eliminating ¢ from Equations (3.11) and (3.12) gives the local dynamic
stiffness matrix K; of the element:
K =N[M]*

F, = KU, (3.13)
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3.1. Dynamic stiffness method

3.1.2 Novak’s Model

The foundation assumed for the multistory building is a pile foundation. “Numerical
solutions of dynamic pile foundation models, such as those based on the boundary
element method or the finite element method, generally offer robustness” [13]. How-
ever, these methods often have excessive computation times, making them unsuitable
for this application.

As mentioned before, the wavefield produced by an underground railway consists
of low strain levels, for which it has been shown that the assumption of linear soil
behaviour is justified. Hence the foundation model presented here is based upon the
treatment of the soil as a linear, elastic continuum. Novak formulated an approximate
solution for a single pile embedded in an elastic halfspace [18]. Novak’s model assumes
that the soil is made up of an infinite number of infinitesimally thin, independent,
horizontal, elastic layers that extend to infinity. Compatibility between adjacent
layers is only satisfied very far from the pile, and at the pile, where a perfect bond
exists between the pile and the soil. This corresponds to the plane strain case. The
motion of the pile and the soil is limited to either the vertical or the horizontal plane,
depending on the direction of excitation. This approach results in a closed-form
solution for the dynamic soil reaction per unit length of the pile [13].

Kuo [13] concluded that the Novak model is a computationally efficient model, but
the plane strain assumption makes the Novak model ineffective in certain situations.
The most notable of these are the lateral response of a pile to an incident wavefield.
However, the short running time and the good representation of the axial pile response
makes is suitable for this application.

As for the beam in section 3.1.1, the pile is modelled as a bar in axial vibration
or an Euler beam in lateral vibration. The pile is embedded in the soil that is
represented by infinitesimal horizontal soil layers as shown in Figure 3.3. The axial
and lateral directions of motion are decoupled and the problem will be solved in the
frequency domain.

For axial motion, the pile behaviour is governed by the equation [13]:

?u  Ed*u N,

@_;w_;_pj:() (3.14)

where p is the density of the pile, A the cross-sectional area, E Young’s modulus.
N, is the vertical soil reaction force and is given by

N, = GSyu(x) (3.15)

where G is the soil shear modulus, u(x) is the axial displacement of the pile at
position x.

As before, equations (3.14) is transformed into the frequency domain by sub-
stituting the harmonic solution u(z,t) = U(x,w)e™?. This results in a differential
equation in the frequency domain for which the solution is known:

d*U op G5y

_— 2 = 1 2: S
dx2—|—osz 0 with « wE oA

(3.16)
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3.1. Dynamic stiffness method

FIGURE 3.3: Novak’s plane strain representation of a pile [13].

This is the same differential equation as for the beam in section 3.1 except for the
term «;, which now include the soil reaction. S, is given by [13]

Jl(ao)JU(ao) + Yl(ao)}/(](ao) 47
Jg (ao) + Y§ (ao) Jg (ao) + Y§ (ao)

Se = 2may (3.17)

where ag is the dimensionless frequency parameter, given by

[ps
= — 1
a0 = aw\ /'~ (3.18)

Jo(ap) and Ji(ap) are Bessel functions of the first kind of order zero and one
respectively, Yp(ag) and Y7 (ag) are Bessel functions of the second kind of order zero
and one respectively, ps is the soil density, a is the pile radius and w is the angular
frequency of interest.
The general solution for the displacements in the z-direction in the frequency
domain is:
U(x,w) = die'r” 4 dye'r® (3.19)

where the coefficients d; and dy are determined using the boundary conditions at
the ends of the pile.
For lateral motion, the pile behaviour is governed by the equation [13]:

9% EIdw N,
= ) 3.20
02 T Aot T oA (3.20)

N, is the horizontal soil reaction and is given by
Ny = GSyv(x) (3.21)

where v(x) is the lateral displacement of the pile at position x.
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3.1. Dynamic stiffness method

Substituting the harmonic solution v(z,t) = V(z,w)e™! results in a differential

equation in the frequency domain:
%
dz*

Aw? — GS
— B,V =0 with 53::3—9Eﬁ——£ (3.22)

This the same differential equation as for the lateral motion of the beam in section
3.1 except for the term (, which now includes the soil reaction. S, is given by [13]

L1 () H (o) + H (o) H (a0)

Sy = 27m0 (3.23)
HE? (a0) Hy? (20) + Hy” (o) H5 (ao)
where Héz) (ap) and H £2) (ap) are Hankel functions of the second kind,
1—2u4
=~ ° .24
TRt (3.24)
v, is the Poisson ratio of the soil and

o = \/a(lo (3.25)

The general solution for the displacements in the z-direction in the frequency
domain is: ‘ A
V(z,w) = dsePr® 4+ dyePr® 1 dsePr® 4 dge e (3.26)

where the coefficients d3 to dg are determined using the boundary conditions at the
ends of the pile.

Using the boundary conditions given in (3.10) and the general solutions for the
displacements (3.19) and (3.26), following matrix equations can be assembled:

U, =M,d (3.27)

and
F,=N,d (3.28)

where the vectors U, and F), and the matrices M,, and N, have the same form
as in equations (3.11) and (3.12). The components of the generalised force and
displacement vectors are defined in the local coordinates of the element. Their values
are the complex amplitudes at the ends of the pile.

Finally, eliminating d from equations (3.27) and (3.28) gives the local dynamic
stiffness matrix K, of the pile:

-1
Fp=KUp, Kp=N,[M,] (3.29)
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3.2. Finite building model

3.1.3 Damping

Material damping is included in the building and the piles, and the soil model
includes both radiation and material damping. In both cases the material damping
is included using a frequency independent, hysteretic damping ratio. This differs for
the building model used by Cryer [1] who used Rayleigh damping which is frequency
dependent. The radiation damping is accounted for by the use of Bessel and Hankel
functions in equations (3.17) and (3.23)

“Material damping is modelled in the frequency domain by representing the
material as a viscoelastic continuum and accounting for damping by replacing the
standard elastic constants with suitable complex values” [2]. For example, Young’s
modulus E becomes E(1+ing), where ng is the damping loss factor. In general, the
damping loss factor is a function of frequency, but is often found to be approximately
constant in practice [21].

“Laboratory experiments on various concrete columns described by Newland and
Hunt [10] indicate that the variation in damping between columns with differing
reinforcing configurations is small and that the loss factors are not strongly dependent
on frequency, being of the order of 0.01. This supports the use of hysteretic damping
to describe a single reinforced concrete column. However, it is unlikely that these
results are appropriate for an entire building where damping may be an order of
magnitude greater than the material damping. The extra damping is believed to be
due to boundary damping arising at structural joints and radiation into foundations.
Such damping is less easy to model than material damping. In practice, the model
adopted for material damping is usually assumed to extend to boundary damping if
the damping is small” [21].

3.2 Finite building model

Once the dynamic stiffness matrices of all elements of the building have been
calculated, they must be assembled together to reflect the physical connections
between the elements. In Figure 3.4 a building is shown with 9 columns and 5 floors.

Elements in the model are joined at points called nodes each of which has
three degrees of freedom: horizontal displacement, vertical displacement and rotation.
External forces and moments may only be applied at nodes and must be in equilibrium
with the stresses at that node. The resulting set of equilibrium equations may be
written in matrix form as follows. The set of external forces F¥ and FY, and
moments M, applied at the nodes are used to form a single vector Fg where

T
Fo={Ff F/ My F§ F{ M, ... Ff Fy M,} for example. Similarly,
the corresponding displacements U, and V., and rotations ©, are used to form a
T
vector U where Ug = {Ul Vi © ... U, V, 9n} . These two vectors are

related by the dynamic stiffness matrix of the entire model, Kg, as

Fo=KeUg (3.30)
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3.2. Finite building model

FIGURE 3.4: Finite building model with 9 columns and 5 horizontal floors.

Once K¢ is known the response of the model to any set of input forces can be
calculated by matrix inversion.

The global stiffness matrix Kg is assembled from the stiffness matrices of each of
the elements that make up the model. Each entry in Kg is the sum of the stiffnesses
of the elements connected to that node. This process is directly equivalent to the
assembly of static stiffness matrices in finite element analysis. Each element’s stiffness
matrix must be transformed into a coordinate system common to the entire model
before it is added to Kg. In two dimensions this transformation is simply a rotation
from the local axes of the element to the global axes.

Consider an element inclined at some angle ¢ to the global horizontal, that is the
x’-axis as shown in Figure 3.5. The generalised displacements can be transformed to

FIGURE 3.5: Transformation of the coordinate system
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3.3. Infinite building model

the global coordinate system [21]:

U] [cos¢p —sing 0 0 0 0] (U
1% sing cos¢p 0 0 0 of [\
ol | o 0 1 0 0o ol e
usf | 0 0 0 cosgp —sing 0| |Us
Vy 0 0 0 sing cos¢p 0| | Vs
e,)] | o 0 0 0 o 1] le,
or
U, = RU, (3.31)

Similarly the generalized forces can be written in global coordinates:
F,=RF,; (3.32)

Using this relationships, the global dynamic stiffness matrix K, of an element can be
deduced:
F,=K,U,, K,=RK[R ' =RKI[R" (3.33)

Once transformed, each element’s stiffness matrix is added to the entries in Kg
that correspond to the degrees of freedom of the nodes which the element connects

[4]-

3.3 Infinite building model

To analyse a large building using the method described above requires a substantial
amount of time. For the incorporation of a building into the PiP software, a more
computationally efficient model is required.

A cross section through many buildings reveals a regular pattern of columns,
walls and floors. Often a particular substructure is repeated a number of times
throughout the building. Therefore, it is reasonable to investigate the response of
such a substructure to obtain an estimate of the response of the entire building.
Cryer [1] showed that when such a substructure is repeated infinitely in a horizontal
direction, the total response agrees well with that of a real building. Using the
periodic structure theory, a substructure that is repeated infinitely can be modelled.
This analysis considers an infinite model as divided into three parts: two semi-infinite
structures extending to the left and right respectively and a central structure to
which these are connected (Figure 3.6) [1].

3.3.1 Analysis of a semi-infinite structure

Figure 3.7 shows a semi-infinite structure extending to the right. It is build up out
of a unit comprising one column and five floors attached to it. Cryer [1] derived the
stiffness matrix for this semi-infinite structure following the transfer matrix approach
used by Mead [15] and Livesley [141] and this will be discussed in the following
paragraphs.
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3.3. Infinite building model

FIGURE 3.6: Infinite building model with 5 horizontal floors. The infinite model
consists a semi-infinite structure extending to the left and a semi-infinite structure
extending to the right connected to a central structure.

The repeated unit’s stiffness matrix is assembled from the matrices of its con-
stituent elements as described in section (3.2). Four different types of degree of
freedom can be recognised in a unit: constrained degrees of freedom, degrees of
freedom of nodes that are internal to the unit and degrees of freedom of nodes on the
left and right hand sides of the unit which form the connections to adjacent units.

FIGURE 3.7: Diagram of a semi-infinite structure constructed from a repeated unit.
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3.3. Infinite building model

Therefore, the repeated unit’s stiffness matrix can be partitioned as follows:

F; Kii Ki Ki Kic| (Ui
F | Ky Ky Ky K| JU;
Fr N Kri Krl Krr Krc Ur (334)
Fc Kci Kcl Kcr ch Uc

Subscript ¢ indicates internal degrees of freedom, ¢ constrained degrees of freedom, [
and r degrees of freedom on the left and right hand sides of the unit.

The constrained degrees of freedom are not allowed to move, so U, = 0. The
reactions at these points are not required in the analysis, so the stiffness matrix may
be reduced in size and equation (3.34) rewritten as

F; Ki Kai Ki| [Us
Fi ;= Ky Ky Kp| U (3.35)
F, Km’ K’rl KT?" U,

If there are no external forces applied to any of the unit’s internal degrees of freedom
then F'; = 0 and the first row of this product can be rewritten as

U; = — K] KaU; — [Ki] " K, U, (3.36)

The forces and moments and the displacements and rotations of the sides of the unit
can now be directly related by

Fi| _ | Ku—Ky Kil ' Ki Ko — Ky [Ki] 7 K | [ U (3.37)
F, Kot — Kpi [Kii] 7 K K — K [Kig) 7 K | | U '

Forces, moments, displacements and rotations of the ¢ copy of the repeated unit
are denoted by a superscript ¢, thus for the ¢** unit we may rewrite equation (3.37)

Fl| _|Ku Ki| U7
where K = Ky — Ky; [Kii]_l K, etc.
The displacements and forces at the edges of adjacent units must satisfy com-

patibility and equilibrium conditions. Thus, if no external forces are applied to the
joined degrees of freedom, then

Ul=U"", FI+FIT =0 (3.39)

Hence equation (3.38) becomes

FO [k K[ U
{_F?H} = [ICN K| (U (3.40)
These equations can be rearranged as follows
F?+l _ _’C’r’r [’Clr]il ICTT [’Clr]il ICll - ’Crl F? (3 41)
Uit K] ™! — K]~ Ku U/ '
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3.3. Infinite building model

Now the displacements and forces at the left side of unit ¢ are related to the
displacements and forces at the left side of unit ¢ + 1.

By consideration of waves propagating through the assembled structure, it is
assumed that the displacements on the left side of the repeating unit are similar to
those on the right with only a uniform change in amplitude and phase [9]. The same
assumption is made for the forces on both sides of the unit. For a certain wave mode,

this can be written out as "
F! F‘f}
=) ! (3.42)
{U?“} {U?

Consideration of equations (3.41) and (3.42) shows that the propagation of vibration
through the structure can be found by solving a standard eigenvalue problem [1]:

K K] ™ Ko K] K = K| [E; | [ Fy
[ LAy — (K] ™ Ku ] {U} = A {U} (3.43)

1 {2

A vector of displacements U; at the left hand side of one unit will generate a vector
of displacements \;U; at the left hand side of the next unit. Therefore each element
of the vector U, has undergone the same scaling of amplitude and change of phase.

The matrix in equation (3.41) is of order 2p x 2p, where p is the number of degrees
of freedom connected between adjacent units. Thus this matrix has 2p eigenvectors
and eigenvalues. Half of these eigenvectors correspond to wave patterns propagating
to the left and the other half to wave patterns propagating to the right. Those
eigenvectors whose eigenvalues have magnitudes less than 1 correspond to wave
patterns propagating to the right, as the vibration amplitude must be bounded at
infinity. Similarly, eigenvalues with magnitudes greater than one correspond to wave
patterns travelling to the left.

For the semi-infinite structure in Figure 3.7 the wave patterns that are excited
must decay as they propagate to the right as the response tends to zero at infinity.
Thus the vector of the p displacements at the left-hand end of this structure, U ll,
must be a linear combination of the p eigenvectors which correspond to wave patterns
propagating to the right, and so may be written as

ul=lu, U, ... U

bt Qp] C =UucC (3.44)

where C is a vector whose " element determines the amplitude and phase of the 7"
eigenvector in the motion. Similarly, the forces F} acting on this end of the structure
are given by

Fi=[F, F, ... F

.1 F,|C=FC (3.45)

By eliminating C' from these two equations, the stiffness matrix of the end of the
semi-infinite structure extending to the right is obtained:

F} =F|U'U} =K .U} (3.46)
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3.3.2 Construction of an infinite model

To construct an infinite building model, the semi-infinite structure considered in the
previous section has to be joined with a central unit and a semi-infinite structure
extending to the left as shown in Figure 3.6. The central unit is the same as the
repeated unit used in previous section. To find the stiffness matrix of the semi-infinite
structure extending to the left, a similar construction technique to that described
above may be used. However, it can also be constructed by using the wave patterns
travelling to the left which have already been found during the analysis. Combining
the p eigenvectors which correspond to wave patterns propagating to the left in a
matrix U as in equation (3.44) and the corresponding forces in a matrix F as in
equation (3.45), the stiffness matrix of the semi-infinite structure extending to the
left is found as in equation (3.46):

KL =E[U™" (3.47)

Connecting these repeated structures to a central structure involves including
their stiffness matrices in the assembly of the central structure’s stiffness matrix Ke.
This procedure is analogous to adding an extra beam to the structure as described
in section 3.2 although in this case the size of the stiffness matrix to be included may
be somewhat larger. This addition is performed for each of the entries in the central
structure’s stiffness matrix, and for both of the semi-infinite structures.

3.4 Comparison of finite and infinite building models

In this section the difference will be investigated between finite and infinite models.
In section 3.4.2 two buildings without a pile foundation will be compared. In this
case the column bases are constrained. In section 3.4.3 two buildings with a pile
foundation will be compared. This allows us to investigate the difference between
finite and infinite models first and next the influence of adding a pile foundation.

At the same time the model will be validated by reproducing some figures that
Cryer showed in his work [1]. The finite model consist of 9 columns and 5 floors
(9 x 5) and the infinite model consists of 5 floors. The same dimensions and material
parameters are used and are given below.

In Table 3.1 the material parameters and geometry of the building are given. In
Table 3.2 the properties for the pile foundation and soil are given.

3.4.1 Damping

Before continuing, an important difference between the approach used here and that
of Cryer has to be noted. In his derivation of the stiffness matrix of a beam, Cryer used
the equation of motion of an elastic bar and an Euler beam with Rayleigh damping [1].
In this dissertation the undamped equations of motion are used. Material damping
is modelled in the frequency domain by replacing the standard elastic constants with
suitable complex values [2].
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3.4. Comparison of finite and infinite building models

Material parameters Value
Density 2400 kg/m?
Young’s modulus 45 x 10° Pa
Rayleigh damping constant « 2.0s7!
Rayleigh damping constant g 2x107% s
Column geometry Value
Column spacing 4 m
Area 0.08 m?
Second moment of inertia 2.67 x 107* m*
Cross section rectangular
Floor geometry Value
Floor spacing 3m
Area 0.6 m?
Second moment of inertia 0.002 m*
Cross-section rectangular

TABLE 3.1: Building parameters

Pile properties Value
Density 2400 kg/m?
Young’s modulus 45 x 10° Pa

Rayleigh damping constant « 2.0s7!
Rayleigh damping constant 8 | 2 x 107° s

Pile geometry Value
Pile radius 0.2 m
Pile length 20 m
Cross section circular
Soil properties Value
Density 2000 kg/m?
Shear modulus 80 x 106 Pa
Poisson’s ratio 0.4

TABLE 3.2: Foundation parameters

The following relationship can be found between the constants a and 5 used by
Cryer [1] and the damping loss factor :
Q
n(w) = » + fw (3.48)
In the next two sections the minimum of this function will be used:

n=2vaB =2v20x2x 1075 = 0.013 (3.49)
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3.4. Comparison of finite and infinite building models

3.4.2 Comparison between finite and infinite building models
without a pile foundation

The building models without a pile foundation are constructed in a similar way as
the models described in section 3.2 and 3.3. Instead of connecting piles to the bases
of the column, the column bases are constrained from translating or rotating except
from the centre column. The excitation is a vertical unit displacement at the base of
the central column.

Figure 3.8 shows the transmissibility of the vertical displacement of the node of the
upper floor at the centre of the building in function of frequency. The transmissibility
is the response of the position where the displacements are wanted divided by the
response of the position where the load is applied. The results exhibit great similarity
in certain frequency ranges, but at other frequencies the finite model displays a
series of additional resonances and anti-resonances. The resonances are due to waves
reflecting at the free sides of the finite model.

Some of these peaks will be further investigated by plotting the displacement of
the entire building at the particular frequency of a peak. To do this the response of the
elements at points other than their nodes is required. The vibration amplitudes of the
nodes, and thus the ends of the elements, provide sufficient information to calculate
the response at any point of each element. At a particular frequency the parameters
¢ governing the motion of an element may be derived from the displacements of its
ends using equation (3.11). The response in the frequency domain at a point along
the element is then readily obtained from equations (3.4) and (3.8). The response in

20 \
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FIGURE 3.8: Vertical response of the top of the forced column of a finite (blue line)
and infinite (green line) building model without a pile foundation.
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FIGURE 3.9: Real part of the displacement of the finite building without a pile
foundation for w = 2760 rad/s at ¢t = 27/(3w) (solid line), ¢t = 7/(3w) (dashed line),
t = 27 /w (dotted line).

the time domain for a certain frequency can be calculated with

u(z,t) = R(U(z,w)e?)

v(x, t) = RV (z,w)e™") (3.50)

This is done for every element in the structure to give the deformed shape for a
particular frequency and phase of the input.

Consider the peak at 60 Hz visible in Figure 3.8 for the finite building. Figure 3.9
shows the displacement of the finite model and Figure 3.10 shows the displacement
of the infinite model at 60 Hz. It is clearly visible that for the finite model the waves
reflect at the free ends while for the infinite model the wave amplitude becomes small
further away from the centre.

The peaks in Figure 3.8 coincide with eigenfrequenties and eigenmodes of the
building. To find these eigenfrequenties and eigenmodes, a finite element model is
made for the finite building using the Stabil package in Matlab. In Figure 3.11 the
eigenmode at 22.38 Hz is shown. This motion is present in the finite and infinite
building model. In Figure 3.12 the eigenmode at 58.65 Hz is shown. This motion
is only present in the finite model and is consistent with the motion depicted in
Figure 3.9. Due to the infinite extent, certain eigenmodes won’t be present in the
infinite model.
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FiGURE 3.10: Real part of the displacement of the infinite building without a pile
foundation for w = 2760 rad/s at ¢t = 27/(3w) (solid line), ¢t = 7/(3w) (dashed line),
= 27 /w (dotted line).

Maximal displacement: 0.0039163

Ficure 3.11: Eigenmode at 22.38 Hz found with the finite element model.
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Maxirnal displacernent: 0.00527029

FicurE 3.12: Eigenmode at 58.65 Hz found with the finite element method.

3.4.3 Comparison between finite and infinite building models with
a pile foundation

By adding a pile foundation to the building model, the apparent damping in the
structure increases. This has a significant effect on the differences noted between
the response of the finite and infinite building models discussed in section 3.4.2.
These differences were attributed to standing waves due to reflections at the sides
of the finite model. The damping provided by the piled foundations increases the
attenuation of the outgoing and reflected waves as they travel through the building
so now they do not interfere as effectively to produce resonances. Figure 3.13 shows
the displacement response for a finite and an infinite building model with a pile
foundation. Again a vertical unit displacement at the base of the central column is
used as the input to both models and the vertical response at the top of that column
is shown.

Figure 3.14 and Figure 3.15 show the deformed shapes of the building for an input
frequency of 60 Hz for the finite model and infinite model, respectively. These plots
show much greater similarity than was seen in the absence of the pile foundation.
However, in the 40-70 Hz and 140-170 Hz regions there are still peaks in the response
of the finite model that are not present in the infinite model as can be seen in
Figure 3.13. At these frequencies, resonances are still present in the finite building
model. However, the differences in the responses of the two models over the entire
frequency range considered here are much reduced.

The peaks observed in Figure 3.13 still coincide with eigenmodes of the building.
However, due to the addition of the piles, these peaks are lower and slightly shifted
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FIGURE 3.13: Vertical response of the top of the forced column of a finite (blue line)
and infinite (green line) building model with a pile foundation.
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FIGURE 3.14: Real part of the displacement of the finite building with a pile
foundation for w = 2760 rad/s at t = 27/(3w) (solid line), ¢t = 7/(3w) (dashed line),
t = 27 /w (dotted line).

to the left. This is true for both the finite and infinite model.

46



3.5. Conclusion

Height [m]
[*)]
T
[}

I
:
1
!
I
!
I
(v
!
L
#
!
I
1
fn
i
!
L
;
It
!
'3
[
]
I
i
il
1l
Il
i
1
!
|
i
=0
I
!
"
!
I
;

) I 1
0 5 10 15 20 25 30
Horizontal position [m]

FIGURE 3.15: Real part of the displacement of the infinite building with a pile
foundation for w = 2760 rad/s at ¢t = 27/(3w) (solid line), ¢t = 7/(3w) (dashed line),
t = 27 /w (dotted line).

3.5 Conclusion

The building modelled in this chapter is represented by a two-dimensional portal
frame. This portal frame is modelled with the dynamic stiffness method. With this
method the building is divided in substructures for which the analytical solution is
known. The floors, columns and piles are the substructures of the building. The
floors and columns are modelled as beams and Novak’s model is used to model the
piles. The different substructures are then joined in a similar way as the elements of
a finite element model. This results in a model that requires little computation time.

To further reduce the computation time, the building is assumed to be of infinite
extent. The infinite building is modelled using periodic structure theory. It consists
of a central unit and a semi-infinite structure extending to the left and one extending
to the right.

By comparing finite and infinite models it can be concluded that the infinite
model accurately represents the dynamic behaviour of a multistory building on a
piled foundation. This conclusion confirms that of Cryer [1] who both modelled an
infinite building and carried out site measurements for a multistory building, before
and after construction. The results showed a good agreement between the response
of the infinite model and the measurements.
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Chapter 4

Coupling the PiP model to the
building model

In this chapter the displacement response of a building due to underground railway
vibrations will be calculated. The PiP model will generate the displacements that will
serve as inputs for the building model described in Chapter 3. An uncoupled approach
will be used. This means that there is no interaction between the underground railway
and the building and it is assumed that the presence of the building has no influence
on the vibrations generated by the underground railway. A coupled model is more
accurate when the distance between the tunnel and the building is limited, but these
models require more computation power. Therefore an uncoupled model is used.

In section 4.1 the method of joining subsystems is explained. “The composite
system produced using this method represents an uncoupled source-receiver model”
[13]. This method will then be used in section 4.2 to join the PiP model and the
building. The displacement response of the building is first calculated for an input at
one pile. Since the vibration input of the underground railway acts on all the piles of
the building, the calculations described in section 4.2 have to be repeated for all the
piles. The total displacement response of the building can be found by superposition
due the linear nature of the methods used and is presented in section 4.3.

The calculations are performed in the space-frequency domain. Only the vertical
displacement component generated by the PiP model will be used. This is because
the Novak model used to model the piles only gives a good representation of the
axial behaviour, but not of the lateral behaviour due to the plane strain assumptions

[13].

4.1 Method of joining subsystems

Consider two subsystems A and B, characterised by the matrix equations
FA=KAU# and FP =KPUP (4.1)

where U4 and UP are vectors with the displacements of the nodes of system A and
B respectively, F4 and F? are vectors with the forces acting on those nodes and

48



4.1. Method of joining subsystems

KA and KB are the dynamic stiffness matrices of the two systems which relate the
forces to the displacements.

Each subsystem is build up out of nodes which have a certain amount of degrees
of freedom (for the two dimensional building model described in Chapter 3 each node
has three degrees of freedom). There are three possible types of degree of freedom:
those constrained not to move, those that will be attached together when the systems
are joined and those that are internal to each of the systems. The equations in (4.1)
can be rewritten as

FA KA KA KAT (UA FB KB KB KB] (UB

FAy = |KA KA KA|{UAY and {FBY = |KE KB KB U?

J Jr J Jjc J J ] J J¢ J

A R Y A B B B B B

Fc Kci ch ch Uc Fc ct cj ch Uc
(4.2)

where subscript ¢ denotes an internal degree of freedom, subscript j a joined degree
of freedom and c¢ a constrained degree of freedom. The displacements U, of the
constrained degrees of freedom are zero and the forces F'. acting on these nodes can
be calculated once U; and U; are known. Equations (4.2) simplify to

PR 1 0 | R N S o 1 o] R SR O
{F j Kii Kji] \Uj F;j Kii Kiil \Uj

In the derivations that follow, the inverse of the dynamic stiffness matrices will be

used. These are called compliance matrices [1]. Equation (4.3) can be rewritten as
(ond = ] {ei)-[od o] )
Al — A Al — A A
Uj Kii K F; Ry Hi | F) (4.4)

(oo} - [ ) (- o))
A ] I S S L R
U; Kii Kjj F; Hii Hi) |

When the systems are joined the displacements of connected degrees of freedom
must be the same in each system and the sum of the forces acting on these degrees
of freedom must equal any externally applied force, thus

U, = U}=U?
4.5
F; = F;‘+F§§’ (4.5)

Substituting these conditions in equation (4.4) gives the following set of equations

U = HiF + HF
A _ L A A A pA
UB = HEFP + HE (F; - F{)

UP =U; = HEFP +HE (F; - F})
An expression for Ff can be derived from the second and fourth expression in (4.6):
A A yBl M [uBRB L uB A A
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4.2. Joining the PiP model and the building model

The displacement in the two systems can be found by substituting this result back
into the set of equations (4.6). Particularly the displacements in system B will be of
interest in the next section.

4.2 Joining the PiP model and the building model

In this case system A is the tunnel with the surrounding soil and system B is the
infinite building with a pile foundation as shown in Figure 4.1. The calculations will
be done for an input at the centre pile of the building.

T

A

FIGURE 4.1: The two separate subsystems that are joined together to obtain a
building-railway model.

The centre pile is discretised into N equally spaced segments along the pile length,
as shown in Figure 4.2. At the top and bottom faces of each segment is a node where
forces are applied to the pile and the displacements are calculated. This means that
there are NV 4+ 1 nodes. The incident wavefield is calculated at the position of these
nodes. The spacing between the nodes has to be small enough to capture the wave
behaviour of the incident wavefield [13].

The N + 1 nodes of the pile are joined to the PiP model, these are the joined
degrees of freedom. Assume that there are no external forces acting on the joined

50



4.2. Joining the PiP model and the building model
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FIGURE 4.2: Discretisation of the pile into N equally spaced segments (N = 10 in
this case), with N + 1 nodes for application of forces and displacements [13]

nodes or the internal nodes of the building. Equation (4.7) can be simplified:

A A yB] A pa
Substituting this result into the set of equations (4.6) yields an expression for the
displacements of the centre pile nodes and the building:

-1

B_ B A B A A

U5 =Hj; [Hj]- + H]-j} 1 [sz’Fz‘ } (4.9)

B_pyB [p4 Bl A A ’

UP=HE [HA +HE]  [HAF?]

The vector F{* are the forces acting on the track. The elements of the matrix Hﬁ- are

the FRFs of the PiP model which give the displacements in the soil at the position

of the joined nodes to an unit input load on the track. Thus the product Hj‘iFf‘ is

simply the incident wavefield at positions of the joined nodes calculated with the
PiP model. Equation (4.9) can be rewritten as

-1 .
B_ 4B A B incident
UP=HE [H4 +HE] U

1L (4.10)
UzB:Hg [Hﬁ + HJBJ} Ulnmdent
where U9 ig the incident wavefield.

The FRF matrix Hfj relates the displacement of the soil to the forces acting on
the soil. In the Novak model used here, there is no interaction between the soil layers.
Therefore, there are no cross-coupling terms and H]Aj is a diagonal matrix. For axial
vibration the diagonal terms are m and for lateral vibration the diagonal terms
are m where L is the pile length and G the shear modulus of the soil and S,
and S, are given by equation (3.17) and (3.23) [13].

The matrices Hf}- and Hg can be derived from the inverse of the global dynamic
stiffness matrix of the building. Note that the centre pile is divided into N segments.
The stiffness matrix for one segment is obtained by assuming that segment as a pile
of length L/N.

The vectors U; and U; contain the displacements of the central unit of the
infinite building. Also the displacement response elsewhere in the building is wanted.
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4.2. Joining the PiP model and the building model

Central
unit 1 2

FI1GURE 4.3: Central unit and repeating units for an infinite building with 5 floors.

Vcentral unit
r

The displacement at the right hand side of the central unit is equal to
the displacement on the left hand side of the first repeating unit U}. As an example,
the central unit and the repeating units of an infinite building with five floors are
shown in Figure 4.3.

In section 3.3.1 the displacements on the left hand side of the first unit are written
as a linear combination of the eigenvectors of the repeating unit (equation (3.44)):

ul=u, U, ... U, UJC=UC (4.11)

With the displacements and eigenvectors known, the coefficients C' can be determined
from

C=[UtUu} (4.12)

Remembering that a vector of displacements U, at the left hand side of one unit
will generate a vector of displacements \;U, at the left hand side of the next unit,
the displacements of unit ¢ can be determined from

U;lz[xlq*lgl MU, L MU, AU, O (4.13)

The displacements of the internal nodes of the repeating unit follow from equation
(3.36):
Ul = — [Ku] ' KaUY — [Ki] ' K, U (4.14)
where the displacements U? at the right hand side of unit ¢ are equal to the
displacements U?H at the left hand side of the next unit.
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In a similar way the displacements of the semi-infinite structure extending to the
left can be found by using the p eigenvectors and eigenvalues of waves propagating
to the left or by using the symmetry of the problem.

4.3 Response of the entire building

In section 4.1 the displacement of the building for an input at one pile was calculated.
The building, however, has a larger number of piles, so multiple inputs have to be
used. Due to the linear nature of the methods superposition can be used. The
displacement response of the building is calculated for each input separately and
then added to the total response after it is shifted over the correct distance.

Real buildings are of finite extent and the vibration input only acts on the piles
of this finite building. The building, however, is modelled as an infinite building, but
with inputs only acting on the piles of the real building. For example, consider a real
building with 5 floors and 7 columns as depicted in Figure 4.4. For an input at the
first pile (pile at the left hand side) the displacement response is calculated for the
central unit of the infinite model in Figure 4.3 and six repeating units to the right
of that central unit. These displacements can be written in a 5 x 7 matrix where
the rows reflect the rows of the finite building and the columns the columns of the
building. Next the displacement response for an input at the second pile is calculated.
Now the displacements are calculated for one repeating unit to the left of the central
unit, the central unit and five repeating units to the right of the central unit and
gathered in a matrix accordingly. This procedure is repeated for an input at the
other pile locations. The matrices must be added to obtain the total displacement
response of the building.

For a building parallel to the tunnel, the displacements at the pile locations are
all the same due to the infinite extent of the tunnel model. This means that the
building response has to be calculated only once and therefore the calculation time
is limited. For a building at a different angle to the tunnel, the displacements at the
different piles differ and have to be calculated separately. Therefore the computation
time will be longer than for a building parallel to the tunnel.

4.4 Graphical user interface

4.4.1 PiP model

Hussein programmed the GUI of the PiP model. Version 3 will be used here to
include a building. It contains the PiP model in its most simple form. It consists of
a tunnel in a full space and a floating slab track. Bedrock can be accounted for by
using the mirror image method. However, there is no option to include a free surface
or soil layers.

The interface is shown in Figure 4.5. In the upper half the configuration of the
floating slab track and the tunnel is shown. In the bottom half the results for a
particular case are shown. It is possible to plot the power spectral density of the
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4.4. Graphical user interface

FIGURE 4.4: 5 x 7 building with pile foundations

vertical displacement component or the insertion gain of the different cases. In
between different runs, the parameters of the different elements of the model can be
adapted. Also the position where the PSD is calculated can be changed. The default
parameters of the PiP model are given in Table 4.1.

In version 4 a free surface was added to the interface. Hussein and Rikse used
the fictitious force method and the ElastoDynamic Toolbox to do this [19]. However,
this version takes longer to run and therefore version 3 will be used to keep the
computation time limited.

4.4.2 PiP model and building model

The methods described in this chapter will be integrated in the GUI of the PiP
model. To keep the computation time low, only a building parallel to the tunnel will
be included and the infinite building model will be used.

The updated interface is shown in Figure 4.6. The only differences that can be
noted with Figure 4.5 are the tick box Add building on the right hand side of the
interface and the menu option Building in the menu bar. A building is located by
defining the position of the base of the centre column. The response of this point
will be shown in the results section. This enables the user to compare the vibration
level before and after a building is added. The default parameters of the building
are given in Table 4.2.
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Soil parameters Value
Density 2000 kg/m?
Young’s modulus 0.55 x 107 N/m?
Poisson’s ratio 0.44

Shear loss factor 0.06
Dilatational loss factor 0

Tunnel parameters Value
Density 2500 kg/m?
Young’s modulus 50 x 109 N/m?
Poisson’s ratio 0.3

Shear loss factor 0
Dilatational loss factor 0

Tunnel radius 3m
Tunnel thickness 0.25 m
Train parameters Value
Unsprung axle mass 500 kg
Spacing between axles 20 m

Rail and railpad parameters Value
Railpad stiffness per rail 0.20 x 10 N/m/m
Railpad loss factor 0.3
Bending stiffness of one rail 0.005 x 10° N.m?
Bending stiffness loss factor 0.02

Mass of one rail 50 kg/m
Slab and slab bearing parameters Value
Bending stiffness of slab 1.43 x 10° N.m?
Bending stiffness loss factor 0.05

Slab mass 3500 kg/m
Natural frequency of slab 40 Hz
Bearing stiffness 0.221 x 10 N/m/m
Bearings loss factor 0.5

TABLE 4.1: Default parameters PiP model
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4.5. Case study

Frequencies Tunnel-Soil Track-Train Rigid bedrock Measurement point Help

FIGURE 4.5: PiP model version 3.

To illustrate the working principle of the GUI a short case study is presented in
section 4.5.

4.5 Case study

In this case study a building will be constructed in the vicinity of an underground
railway. First the vibration level before the construction will be calculated. In Case
2 a building will be added and in Case 3 a number of floors will be added to the
building of Case 2. In Case 4 the building of Case 2 will be relocated to a different
position.

Case 1: Vibration level before construction

The base of the centre column of the building will be located at x = 0 m and y = 20
m following the convention of the GUI of the PiP model (see Figure 4.5). At this
position the vibration level is calculated before a building is added. The default
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FIGURE 4.6: PiP model version 3 with the option to include a building.

values for the tunnel (Table 4.2) will be used. The frequency range considered is 2
Hz till 200 Hz with intervals of 2 Hz.

The vertical PSD is shown in Figure 4.7. A peak of the vibration level is observed
at 40 Hz and different peaks and troughs can be observed between 60 Hz and 160 Hz.
These peaks are due to an interference of compression and shear waves that propagate
away from the tunnel. The frequency step depends on the distance between the
tunnel and the observation point and the soil parameters [3].

Case 2: 5 X 7 building at z =0 m and y =20 m

Now a building is added parallel to the tunnel at the location mentioned in Case 1.
The default parameters of the building (Table 4.2) are used.

The PSD density is shown in Figure 4.7. A general reduction of the vibration
level can be observed. The peak vibration level still occurs at 40 Hz and is about
equal to that of Case 1. The peaks and troughs between 60 Hz and 160 Hz are no
longer visible. The extra mass added by the building and the damping within this
building reduce the vibration observed.
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Column parameters Value
Density 2400 kg/m?
Young’s Modulus 10 x 109 N/m?
Loss factor 0.1

Area 0.5 m?
Second moment of inertia 0.04 m?
Column height 3 m
Number of columns 7

Floor parameters Value
Density 2400 kg/m?
Young’s Modulus 10 x 10° N/m?
Loss factor 0.1

Area 0.5 m?
Second moment of inertia 0.04 m?
Floor length 5m
Number of floors 5

Pile parameters Value
Density 2667 kg/m?
Young’s Modulus 28 x 109 N/m?
Damping loss factor 0

Pile radius 0.354 m
Pile length 7.5 m

TABLE 4.2: Default building parameters

In Figure 4.8 the vertical PSD at the top of the centre column is shown. Two
peaks are clearly visible one at 40 Hz and one at 140 Hz. These peaks are also visible
at the bottom of the column but are more clearly defined at the top. The building
amplifies the vibrations at these frequencies. This peaks can also be seen when
considering the building alone as in Chapter 3 and coincide with certain eigenmodes
of the building.

Case 3: 10 X 7 building at xt =0 m and y =20 m

In this case five floors are added to the building. The same building parameters as
in Case 2 are used and the building is located at the same position.

The vertical PSD at the base of the centre column is shown in Figure 4.7 and the
vertical PSD at the top of the centre column is shown in Figure 4.8. The difference
with Case 2 at the base is limited. At lower frequencies the PSD is reduced and the
peak is slightly shifted to the left due to the extra mass added to the building. At
the top of the column the reduction is more clearly visible.
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4.6. Conclusion

Case 4: 5 x 7 building at + =40 m and y =20 m

The building is relocated to x = 40 m and y = 20 m, so the building is further away
from the tunnel. It is the same building as in Case 2 and the same parameters are
used.

The vertical PSD at the base of the centre column is shown in Figure 4.7 and the
vertical PSD at the top of the centre column is shown in Figure 4.8. At frequencies
below 60 Hz the vibration level is only slightly lower then in Case 2 and Case 3 but
at frequencies above 60 Hz the difference is larger. Overall the differences remain
small. Since the building is the same as in Case 2, the different vibration is due to
the different location of the building. Also note that as the building lies further away
from the tunnel in the z-direction, the lateral vibrations will become more important.
These, however, are not included in the model.
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FIGURE 4.7: Vertical PSD at the base of the centre column.

4.6 Conclusion

The displacement response of the building model described in Chapter 3 due to
underground railway vibrations generated by the PiP model was calculated in this
chapter. This is done in two steps. First the displacements at the pile locations are
determined and second, the displacement response of the building is calculated.

To join the PiP model and the building model, the method of joining subsystems
is used. The composite system produced using this method represents an uncoupled
source-receiver model. It is assumed that the presence of a building has no influence
on the vibration level generated by the underground railway.
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FIGURE 4.8: Vertical PSD at the top of the centre column.

The displacement response is calculated for an input at each pile separately.
Superposition is used to combine the results for the different inputs. Only the
vertical displacements obtained from the PiP model are used as inputs because the
Novak model used to model the piles only properly represents the axial behaviour of
a pile.

The GUI of the PiP model is adapted and now includes a building model. A
case study performed with this GUI indicates that in general the vibration level at
the base of the building will be reduced compared to the original vibration level in
the soil. At a frequency of 40 Hz and 140 Hz, the vibration level in the building is
at a peak level. At these frequencies the waves propagate more easily through the
building.
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Chapter 5

Composite tunnel

In this chapter a composite tunnel is modelled using the same techniques as described
in Chapter 2. The aim is to add an extra layer of damping to the inside or outside
of the tunnel to reduce the vibrations that propagate into the soil. This can be
compared with the free layer damping and constrained layer damping used frequently
in the aeronautic industry.

In the case of free layer damping (unconstrained damping), a single damping
layer is added to a steel or aluminium plate. The damping layer only works in tension
or compression, so the damping is limited. In the case of constrained layer damping,
the damping layer is constrained between two layers of sheet metal. The damping
layer experiences both tensional/compressive strain and shear strains. More strains
means more scope to dissipate energy. The construction is more complex, but has a
higher performance [10].

The positive effect of this damping method is clear in aeronautic and automotive
applications, but it is not certain that it will have an effect in the case of vibrations
from underground railways. The frequency range of interest for these vibrations
lies below the range were the constrained layer damping technique is effective. A
second reason why this method may not be applicable in practical situations is the
construction method of tunnels for underground railways. The tunnels as modelled
in Chapter 2 are most often excavated with a Tunnel Boring Machine (TBM). This
machine both excavates the soil and delivers precast concrete wall sections to the
front of the tunnel. It isn’t possible with this setup to add an extra damping layer
to the tunnel wall except when the precast sections already include this extra layer.

Nevertheless, it is useful to model this composite tunnel. It is an interesting
exercise and gives a good insight in the way the PiP model works. Furthermore, it
shows how easy it is to extent the PiP model with new features.

In section 5.1 the equations to model the composite tunnel will be derived. The
different elements of the composite tunnel will be joined in section 5.2. In section
5.3 a parametric study will be executed and then a conclusion will be made.
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5.1. Continuum equations for the composite tunnel and surrounding soil

5.1 Continuum equations for the composite tunnel
and surrounding soil

In Figure 5.1 a cross section of the composite tunnel is shown. The tunnel is
divided into two parts, part A and part B, each of which can have different material
parameters and thickness. This means that two different materials can be used and
a composite tunnel is formed. In contrast to the PiP model, both the tunnel and the
soil are modelled with the elastic continuum equations. The coordinate system as
depicted in Figure 2.4 is used.

F1GURE 5.1: Cross section composite tunnel. Parts A and B of the tunnel are
indicated and the interfaces between the different elements are numbered.

The elastic continuum equation’s displacements and stresses are written in the
wavenumber-frequency domain. From (2.20) the displacement and surface stress
components for part A of the tunnel are

fJA:UACA and TA:TACA (5.1)

and for part B ) )
UB = UBCB and TB = TBCB (52)

For the soil the simplified continuum equations from (2.30) and (2.31) are used

U;=UB and T,=T,B (5.3)
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5.2. Coupling the tunnel and the soil

5.2 Coupling the tunnel and the soil
In this section the boundary conditions are included and the different elements of
the tunnel are connected.
The applied load generates following stresses on the tunnel invert

b,
P = -FN)TG (54)

P,
Force equilibrium at the invert of the tunnel results in:

Ta=[Tal,Bs=P (5.5)

Compatibility at the interface between part A and B of the tunnel results in

Q—AZ = [UA]Q CA = [UB]Q CB = {732 (5 6)
Ta, = [Ta];Ca=[T8],Cp="Ts, '
Compatibility at the interface between part B and the soil results in
QBs = [UB]g Cp= [US]3B = qs (5.7)
Tp, = [TB]3Cp=[Ts]3B =T,

Subscript 1 refers to the tunnel invert, 2 to the interface between part A and B, and
3 to the tunnel-soil interface as depicted in Figure 5.1.

From expressions (5.5) to (5.7), the coefficients C 4, C' g and B can be determined.
Using equations (5.7) an expression for Cp is found

B =UJ; ' [UglsCp

(ITsls — [Tl (Vs [Upls) C5 = O (5.8)

where O is a 3 x 1 zero vector. The term between brackets on the left hand side of
the second expression is a 3 X 6 matrix. By combining the two expressions in (5.6)
C'B can be written in function of C' 4 as

(5.9)
With expressions (5.5), (5.8) and (5.9), the coefficients C'4 can be determined as

[TA]l . P
Ca= (ITsls — [ToJ3 Uy~ [Usls) [[UB]Z] HUA]Q] {o} (5.10)
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5.3. Parametric study

The term in between square brackets on the right hand side of equation (5.10) is a
6 x 6 matrix. Once the coefficients C 4 are determined, coefficients C' g and B can
be calculated from (5.9) and (5.8). The displacements and stresses at some radius R
in the tunnel or soil can be calculated with

ﬁn = [UA]’I‘:R C,4 and Tn = [TA]’I‘:R Ca (5,11)
if 1 < R < 7y or with
fjn = [UB]T‘:R Cp and Tn = [TB]T‘:R Cp (5,12)

if r9 < R < r3 or with

U,=[Us,_pB and T, =[T _pB (5.13)

if R > r3.

5.3 Parametric study

A parametric study is performed to investigate the effect of a composite tunnel.
A single tunnel and a composite tunnel of the same thickness ¢ are compared for
different compositions of the composite tunnel. The dimensions of the single and the
composite tunnel are given in Table 5.1. The single tunnel is made out of concrete.
One part of the composite tunnel is made out of concrete while the other part is
made out of steel or a rubber like material (damping layer). The material parameters
of the different materials used here and the soil parameters are given in Table 5.2.
The displacements are calculated at R = 20 m directly above the tunnel (6 = 180°)
for a unit load applied on the tunnel invert at = 0. The frequency range considered
is 1 Hz - 200 Hz, this is the range of importance for vibrations from underground
railways. Note that no track is added to the model, this reduces the computation
time.

‘ tim] ri=ri[m] ralm|] ro=rs[m]
Single tunnel 0.30 2.70 - 3.00
Composite tunnel | 0.30 2.70 2.85 3.00

TABLE 5.1: Dimensions single and composite tunnel

| E[Pa] vI[-] plkg/m’] nel-] nk [-]
Concrete | 50e9 0.3 2500 - -
Steel 200e9 0.3 7850 - -
Rubber 0.1e9 0.4 1500 - -
Soil 0.55¢9  0.44 2000 0.06 0

TABLE 5.2: Material parameters
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5.3. Parametric study

Case 1: Concrete-concrete

By using concrete for part A and B of the tunnel the model for the composite tunnel
can be validated. In Figure 5.2 the displacements of both the single tunnel and the
composite tunnel are shown. The displacements are calculated with equation (5.13)
in the wavenumber-frequency domain and then transformed into the space-frequency
domain by taking the inverse Fourier transform. The results are expressed in dB.
Also the insertion gain is given in Figure 5.2. The insertion gain indicates the increase
in vibration level when a composite tunnel is used and is given by

U ,,(composite tunnel)

Insertion Gain [dB] = 201log;, \/ (5.14)

U, (single tunnel)

The displacement curve coincides for both tunnels and the insertion gain is more
or less zero over the frequency range. This validates the model for the composite
tunnel.

-200

—Single tunnel
-220F —Composite tunnel |

2401

-260F &
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Frequency (Hz)

Insertion gain (dB)
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FI1GURE 5.2: Displacements and insertion gain at x = 0, 8 = 180° and R = 20 m.
The single tunnel is shown in blue and the composite in green. Part A and B of the
composite tunnel are made out of concrete.

Case 2: Concrete-steel

Part A of the composite tunnel is made out of concrete and part B of steel. This means
that the outer layer of the tunnel is stiffer than the inside layer. The displacements
and insertion gain are shown in Figure 5.3. The difference between both tunnels is
limited. The large peak at around 75 Hz in the insertion gain is due to the fact that
the response is calculated at discrete frequencies. The peak at 75 Hz in the plot of
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5.3. Parametric study

the displacements for a composite tunnel will be slightly shifted in comparison to
the peak for the single tunnel due to the different stiffness. Due to the small shift of
the peak, the calculated displacement response differs and this difference is seen in
the plot of the insertion gain. The overall displacement response is marginally lower
due to the higher stiffness of the composite tunnel.
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F1GURE 5.3: Displacements and insertion gain at x = 0, § = 180° and R = 20
m. The single tunnel is shown in blue and the composite in green. Part A of the
composite tunnel is made out of concrete and part B is made out of steel.

Case 3: Steel-concrete

Part A of the composite tunnel is made out of steel and part B of concrete. This means
that the inner layer of the tunnel is stiffer than the outer layer. The displacements
and insertion gain are shown in Figure 5.4. Again the difference between both tunnels
is limited. However large peaks are visible in the plot of the insertion gain. This can
be explained by the shift of the peaks seen in the plot of the displacements. When
dividing the response of the composite tunnel by that of the single tunnel, a shift of
the peaks will results in larger values for the insertion gain. The height of the peaks
in the displacement plot are of the same magnitude. The peaks are shifted to the
right due to higher stiffness of the composite tunnel compared to the single tunnel.
The overall displacement response is also marginally lower.

Case 4: Concrete-rubber

Part A of the composite tunnel is made out of concrete and part B of rubber.
This means that the inner layer of the tunnel is stiffer than the outer layer. The
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FIGURE 5.4: Displacements and insertion gain at x = 0, § = 180° and R = 20
m. The single tunnel is shown in blue and the composite in green. Part A of the
composite tunnel is made out of steel and part B is made out of concrete.

displacements and insertion gain are shown in Figure 5.5. The difference between
both tunnels is more clearly visible. The shift of the peaks in the displacement plot
is larger due to the larger difference between the stiffness of the rubber and concrete
than between the stiffness of the steel and concrete. The shift also explains the large
peaks in the insertion gain. The overall displacement response is higher due to the
lower stiffness of the composite tunnel and the peaks are shifted to the left.

Case 5: Rubber-concrete

Part A of the composite tunnel is made out of rubber and part B of concrete.
This means that the outer layer of the tunnel is stiffer than the inside layer. The
displacements and insertion gain are shown in Figure 5.6. The difference between
both tunnels is more clearly visible then in Case 1 and 2. The shift of the peaks due
to the difference in stiffness can be seen in the the displacements. This results in large
peaks in the insertion gain. At lower frequencies it appears that the rubber layer has
a negative effect. The overall stiffness is reduced and therefore the displacements
are larger. At higher frequency it appears that the rubber has a positive effect.
Nevertheless, the impact remains limited.

5.4 Conclusion

A composite tunnel can be modelled in a similar way as the single tunnel of the PiP
model described in Chapter 2. Both the composite tunnel and the soil are modelled
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FIGURE 5.5: Displacements and insertion gain at x = 0, § = 180° and R = 20
m. The single tunnel is shown in blue and the composite in green. Part A of the
composite tunnel is made out of concrete and part B is made out of rubber.

with the elastic continuum equations. Due to the more extensive matrix operations in
equations (5.8) to (5.10) to obtain the coefficients C 4, C'p and B, the computation
time is higher then in the original model.

A simple parametric study showed that the effect of using a composite tunnel
is limited. The differences observed are more likely due to the difference in overall
stiffness of the tunnel than to an extra damping layer as is the case in constrained layer
damping. This was predicted because the effective frequency range for constrained
layer damping lies well above the frequency range of interest for vibrations of
underground railways.

Aside the limited effect, a composite tunnel isn’t applicable in real live situations.
Current building methods don’t allow for an extra layer to be added. Nevertheless,
the study of this composite tunnel is of interest because it gives a good insight in
the PiP model and it shows that the PiP model is easily expandable.
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Chapter 6

Curved tunnel

Underground railway tunnels in urban areas often show some curvature. Therefore
it is interesting to see what the influence is of the curvature on the vibration level in
the soil. In this chapter a purely geometrical approach is used to model a curved
tunnel. It is assumed that the vibration at a point in the soil only depends on the
position of that point relative to the curved tunnel and not on the different dynamic
behaviour of the tunnel itself. A similar approach is used by Maarten Beckers to
investigated the influence of a curved tunnel on the vibration levels [1].

In section 6.1 a method will be developed to model a tunnel that is curved in the
horizontal plane. This is repeated for a tunnel that is curved in the vertical plane in
section 6.2. Only the vertical displacement response will be considered.

6.1 Curvature in the horizontal plane

Consider a tunnel with curvature R¢,: as depicted in Figure 6.1. The response is
wanted at position P. The tunnel and the track are modelled with the PiP model
described in Chapter 2. This means that the tunnel is actually modelled as a straight
tunnel of infinite extent.

The train is represented by its’ axle masses. The forces acting on the track follow
from equation (2.62). These are the forces acting on the rail at the positions of the
axles when the mass at the centre station is added via a roughness displacement. The
response in the soil can then be calculated with equation (2.64). The FRF matrix
H4 for the curved tunnel differs from that one of the straight tunnel. The elements
of the FRF matrix relate the forces acting on the rail to the displacements in the
soil. They can be found be applying a unit load at one of the axle stations on the
track and calculating the response at position P in the soil.

For example, consider the n** axle to the right of the centre station as shown
in Figure 6.1. The coordinates of P relative to the centre station are xg, yg and zg.
The calculate the response at P due to a unit load at the position of the n* axle,
the coordinates of P relative to this axle position have to be known. Name these
coordinates x,, ¥, and z,. The coordinates are found by assuming a straight tunnel
tangent to the curved tunnel at the axle position as can be seen in Figure 6.1.
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6.1. Curvature in the horizontal plane

FIGURE 6.1: Schematic representation of a curved tunnel in the horizontal plane. O
is the centre of curvature and P is the position where the response is wanted. Axle 0
and n and their coordinates are indicated.

The angle ¢, is defined as
L

RCUI‘

where n is an integer representing the axle, L is the axle spacing and Ry, is the
curvature of the tunnel. After some basic trigonometric calculations, the coordinates
of the n axle are found:

(6.1)

Pn ="n

xn2 = (Rcur + Yo — Reyr cos @n)2 + Rcur2 SiDQ $n — ((Rcur + yO) COS Yp, — Rcur)2
Yn = (Rcur + yO) COS Pn — Reyr
Zn = 20
(6.2)

These coordinates have to be transformed into the cylindrical coordinates used in
the PiP model (Figure 2.2):

T = xp
R = yu?+2,° (6.3)
0 = L=z, —iyn)
Since only the vertical component is of interest, the sign of z doesn’t matter because
the vertical displacement V' is an even function of x. The displacement components
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6.2. Curvature in the vertical plane

U, V and W calculated for the coordinates given in (6.3) follow the convention of
the cylindrical shell (Figure 2.2). The vertical component in the global coordinate
system can be found from equation (2.70). This displacement is the FRF Hy;(n)
relating the force acting on the track at the position of the n'" axle to the vertical
displacement in P.

As an example, consider the case where only 5 masses are added. The FRF
matrix Hy now becomes, noting that due to symmetry Hyj(n) = Hyi1(—n) for the
vertical component:

Hyi(4) Hu(3) Hui(2) Hu(1) Hu(0)
Hy(3) Hu(2) Hu(1) Hyi(0) Hy(1)
Hi= |Ho(2) Hu(l) Hu(0) Hu(1) Hu(2) (6.4)
Hy (1) Hui(0) Han(1) Ha(2) Ha(3)
Hyi(0) Hu(1) Hu(2) Hu(3) Hu(4)

The displacement response at P can now be calculated with
Y, ,=H4F, (6.5)

where the elements of the vector Y4 give the displacement at P due to a roughness-
displacement input at one of the axles.

As in Chapter 2, the roughness-displacement inputs for a real track are randomly
distributed. Therefore, the calculation of the resultant soil response requires the use
of the theory of random vibration. The power spectral density can be obtained with
equation (2.68) as explained in section 2.2.4.

As an example, a curved tunnel with R.,, = 500 m is modelled and compared to a
straigth tunnel. In Figure 6.2 the insertion gain is given for a number of points which
lie on a horizontal line perpendicular to the tunnel. It is clearly visible that for points
at the concave side of the tunnel (negative y-values) the vibration level is generally
increased while for points at the convex side (positive y-values) the vibration level is
reduced. For a smaller radius of curvature the increase at the concave side and the
reduction at the convex side will be larger.

6.2 Curvature in the vertical plane

The approach for a curvature in the vertical plane is analogous to the approach for a
curved tunnel in the horizontal plane. The tunnel is modelled with the PiP model
and the train is represented by it’s axle masses.

The forces acting on the track have to be calculated with equation (2.62) first.
Next the FRF matrix Hy has to be calculated. Consider a tunnel with curvature Ry,
as depicted in Figure 6.3. As before, the elements of the FRF matrix are obtained by
applying a unit load at the positions of the axles and calculating the response at P.

The coordinates of P relative to the n'* axle are given by

:L'n2 = (Rcur + 20 — Reyr cos (Pn)2 + Rcur2 Sinz ®n — ((Rcur + ZO) COS P — Rcur)2
Yn = Yo
Zn = (Rcur + ZO) COS Yp, — Reur
(6.6)
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6.2. Curvature in the vertical plane
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FIGURE 6.2: Insertion gain for a curvature in the horizontal plane

where ¢, is defined in (6.1).

To calculate the displacement in the soil, these coordinates are transformed into
the shell coordinates with (6.3). Again only the vertical component in the global
coordinate system is of interest. However, for a partical axle n the displacement
components due to a force acting on that axle will be given in local coordinates
of a straight tunnel tangent to the curved tunnel as shown in Figure 6.4. The
displacement components in local coordinates follow from (2.70):

U, = U

U, = Vsin0+ Wcos6 (6.7)

where U, V and W are the displacement components in shell coordinates. The
vertical displacement in the global coordinate system can be calculated with:

Uz = U, cosp, + U, sin ¢y, (6.8)

If the force acting on the track is a unit point load, the displacement Uy is the
FRF Hyi(n). The calculations can be repeated for the other axles and the FRF can
be assembled as in section 6.1. Note again that Hyi(n) = Hyi(—n) when only the
vertical component is considered.

The displament response due to a roughness-displacement input at the different
axles can be calculated with equation (6.5). The power spectral density follows from
equation (2.68).

As an example, a curved tunnel with R¢y, = 500 m is modelled and compared to
a straigth tunnel. In Figure 6.5 the insertion gain is given for a number of points
which lie on a vertical line perpendicular to the tunnel. For points at the concave side
of the tunnel (negative z-values) the vibration level is increased while for points at
the convex side (positive z-values) the vibration level is reduced. The difference is not
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6.2. Curvature in the vertical plane

FIGURE 6.3: Schematic representation of a curved tunnel in the vertical plane. O is
the centre of curvature and P is the position where the response is wanted. Axle 0
and n and their coordinates are indicated.

FIGURE 6.4: Global coordinate system for a curved tunnel in the vertical plane. The
displacements U, and U, at P in local coordinates for a force acting on the track at
the position of axle n are indicated.
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6.3. Conclusion
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as clear as for a curvature in the horizontal plane. This is because the longitudinal
component U, also contributes to the vertical displacement in the global coordinate
system.

6.3 Conclusion

A curved tunnel is modelled using a purely geometrical approach. The derivation is
done for a curvature in the horizontal and vertical plane. The tunnel and track are
modelled with the PiP model discussed in Chapter 2. A similar approach is used by
Beckers [1] to model a curved tunnel in the horizontal plane.

The model for a curved tunnel can be coupled to the building model in the
same way as discussed in Chapter 4. The computation time however will augment
drastically. To compute the displacements at one point in the soil, the original PiP
model will have to be runned (N + 1)/2 times, where N is the number of axles used.
For every axle the calculation has to be repeated because the distance r changes for
every axle. Due to symmetry, it is sufficient to repeat the calculations (N +1)/2 times
instead of IV times. Furthermore, since the tunnel is curved, the calculations have to
be repeated as well for every pile of the building which leads to large computation
times.

The results obtained here confirm the conclusion Beckers [I] made. At the
concave side of the curved tunnel the vibration level is higher then for a straight
tunnel and at the convex side the vibration level is reduced as can be expected.
However, the influence of the curvature on the vibration level in the soil remains
limited. A general conclusion can’t be made because only the geometrical aspect of
the curvature is investigated and not the different dynamic behaviour of the tunnel
itself. This behaviour can be accounted for by using a finite element method.
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Chapter 7

Conclusion

The overall conclusions are presented in this chapter. Furthermore, suggestions are
given for future work.

7.1 Conclusion

Vibrations from underground railways generate discomfort and noise in buildings.
In this dissertation a model is presented to calculate vibration levels in buildings
due to an underground railway. The model is computationally efficient and makes it
possible to assess design options for both underground railways and buildings.

The PiP model is used to model the underground railway. The soil is modelled
as a full space with a cylindrical cavity using the elastic continuum equations and
the tunnel wall is modelled as a thin cylindrical shell. The track is modelled as a
floating slab track. The PiP model is known to be representative for an underground
railway and computationally efficient.

The model for the building is based on the work of Cryer. The building is
represented as a two-dimensional portal frame. The dynamic stiffness matrix method
is used in combination with periodic structure theory to model an infinite building.
Novak’s model is used to model the pile foundation of the building. A comparison
between finite and infinite models showed that infinite models are a good repre-
sentation of multistory buildings. Multiple resonances are observed in the finite
model without a pile foundation due to waves reflecting at the sides of the building.
These resonances, however, are not present in a real building due to damping at the
structural joints and radiation damping into the soil and are also not present in the
infinite model. After adding a pile foundation, the finite and infinite models agreed
much better. The infinite models need less computing power than the finite models
and therefore an infinite model is chosen to model the building.

The vibrations generated by the PiP model are used as an input for the building
model. An uncoupled source-receiver method is used to join the two models. The
building model is integrated in the GUI of the PiP model. Together, they result in
an efficient model that can be used to simulate several design options.
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7.2. Recommendations for future work

A building parallel to the tunnel is the most simple case. Due to the infinite
extent of the tunnel, the input at the different piles is the same and therefore the
computation time is limited. For a building at an angle to the tunnel, it will take
longer to calculate the response of the building since the inputs differ from pile to
pile.

The vibration level in the soil will change when a building is added. In general a
reduction of the vibration level can be observed due to the extra mass and damping
that the building provides. Peaks due to wave interference observed in the soil are
smoothed out when a building is added. The vibrations only propagate through the
building at particular frequencies. These coincide with certain eigenmodes of the
building.

7.2 Recommendations for future work

Instead of using version 3 of the PiP model, version 4 could be used. This version
also includes a free surface. Other features, like the two tunnel model developed by
Kuo or the curved tunnel presented in this dissertation, could be integrated in the
graphical user interface. It has to be noted that adding these extra features will
increase the computation time. Therefore, it has to be checked if these features have
a significant impact on the vibration level and are of importance when assessing
design options.

Only the vertical vibration component is used here as an input for the building
model. Instead of using Novak’s model, other methods could be used to model the
pile foundation so that the lateral behaviour of the pile is correctly modelled. This
can be done for example by using the pile model presented by Kuo. It can also be
interesting to use a three-dimensional model and compare it to the two-dimensional
model presented here.

It is assumed here that the presence of a building has no influence on the vibrations
generated by the underground railway. The uncoupled source-receiver model used to
join the PiP model to the building model can be replaced by a coupled method. In
this way the influence of the building on the vibration level can be investigated and
the assumptions made using an uncoupled model evaluated.

Finally, the model presented here should be compared to finite element and
boundary element methods to validate its accuracy.
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Appendix A

Overview of the PiP model

An overview of the different features and applications of the PiP model is given in
Table A.1. The features are ordered chronological in the left column and the people
who worked on it in the right column.
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Feature Source
PiP model Forrest [0]
Track slab with bending and torsion Forrest [0]
Single pile BE model and building model Talbot [21]
Pile-soil-pile interaction Talbot [21]
Continuous versus discontinuous slabs Hussein [11]
Track with two/three lines of support and uniform support | Hussein [11]
Symmetric and asymmetric load on the tunnel invert Hussein [11]
Out of phase roughness Hussein [11]
Graphical user interface PiP Hussein [11]
Fictitious force method and ElastoDynamic Toolbox Rikse [19]
Free surface, bedrock and horizontal soil layers Rikse [19]
Single pile BE model (Timoshenko beam theory) Coulier [3]
Shadow effect with piles Coulier [3]
Inter/Intra rail unevenness Beckers [1]
Horizontal loading on tracks Beckers [1]
Directly fixed concrete layer on tunnel invert Beckers [1]
Double track railway Beckers [1]
Curved tunnels Beckers [1]
Voids at tunnel-soil interface Jones [12]
Inclined soil layers Jones [12]
Inhomogeneous soils Jones [12]
PiP model for piles and multiple pile models Kuo [13]
Two tunnel model Kuo [13]

TABLE A.1: Overview of the different features and applications of the PiP model.
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Appendix B

Coeflicient matrices for
cylindrical shell and elastic
continuum

B.1 Coefficients for the cylindrical shell

The elements of the matrix A to calculate the displacements of the cylindrical shell
are given below. These coefficients are the full ones derived from the Volmir [22] or
Fliigge [5] shell equations.

an = PG —ag? - U2 - U 2

aijp = (1_‘2—71/)2571

a3 = vi€+ %(iﬁ)?’ + 1}2‘22 (lgy)ifnz

a1 = —szn

Qg = Pa(lfVQ)wZ N a(lgy)éﬁ N %TLQ o a(lgl/) %52 (B.l)
asz = én + % (322;/) 5277,

az = vig — 1(i6)* — {n U ign?

aza = én + % (322;/) 5277,

azz = 7pa(1§'ﬂ)w2 - % (a£4 +2¢2p2 a%rf‘) -1y %nz - %
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B.2. Coeflicients for the elastic continuum

B.2 Coefficients for the elastic continuum

The elements of the matrix U

continuum are [0]:
u11
u12
u13
u14
u1s5
U16
u21
u22
u23
U24
U25
U26
u31
u32
u33
u34
u3s
u3e

used to determine the displacement components of the

2L (ar) + alpyr(ar)
2Kn(ar) — aK,1(ar)
i&1n11(Br)

ifKn_H(,BT)

%In(ﬁr)

2Kn(Br)

—2In(ar)

— 2Ky (ar)

ifln-i—l(ﬁr)

i€ Kny1(Br)

—21,(Br) — Blpta1(Br)
— 2 Kn(Br) + BKn+1(Br)
il (ar)

1Ky (ar)

—BIL,(Br)

BKn(Br)

0

0

The elements of the matrix T used to determine the stress components of the
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B.2. Coeflicients for the elastic continuum

continuum are [0]:

11
12
13
14
15
t16
to1
22
t23
t24
tas

tag
t31
32
t33
34
i35
36
t41

t42
t43
la4
ta5

t46
51
t52
53
t54
55
ts6
t61
62
te3
tea
tes
tes

(QM(”%”) “AEZ (A + 2u)a2) In(ar) = 2u$ Iy (ar)
<2M(”27g") = A&+ (At 2)a?) Kn(ar) = 202 Ky (ar)

20i€ AL, (Br) — 2ui€ " 1, 1 (Br)

—2ui€ B (Br) — 2pi€ LI 41 (Br)
203 1 (Br) + 21" BLnia (Br)

20" S K, (Br) — 202 BE 1 (Br)

—2,u(n2§n) L(ar) = 2pTaly 1 (ar)
—QM(T”T%”)K”(M“) +2utaK, 1 (ar)

pil B, (Br) — 2puig "L L, 4 (Br)

— i€ BE (Br) — 2uig "L K, 4 (Br)

(—20 5 — 1) 1n(Br) + 202 141 (Br)
(—2/¢L(”i7§") - u52) Ko (Br) — 208 Kpi1 (Br)
2ui§%[n(ar) + 2uilady, 11 (ar)

2018 Ky (ar) — 2pi§ ok, 1 (ar)

—p 2B (Br) — (&% + %) Inta (Br)

p2BK(Br) — p(€2 + ) K1 (Br)

/”f%ln(BT)

pig™ K, (Br) (B-3)
(205" 4 Mo? =€) Lu(ar) + 2§ L (ar)
(2655 4 Mo —€)) Knfor) — 20 Ky (ar)

2pi€ "tV L, 1 (Br)

20i€ "V K, 41 (Br)

—2p 5 1 (Br) — 20 Bl ()
25 K (Br) + 20 BK i (Br)
_2:‘”.5%171(047“)

—2,ui§%Kn(ar)

p2BIL(Br) — p& I 1 (Br)
_N%BKn(/BT) - N£2Kn+1(ﬁr)
—pi& 2 I (Br) — pi§BIn11(Br)
—pi& T K (Br) + il BKp1(Br)
(A — (X + 2u)€?) In(vr)

(Aa® — (A +2p)€?) Ky (ar)
—2ui& B, (Br)

201 BK, (Br)

0

0

82



Appendix C

Displacements of the floating
slab track due to unit load on

the track

In Figure C.1 a schematic overview is given of the floating slab track in the tunnel as
described in 2.2.1. The FRFs are found by applying a unit point load on the rail and
calculating the displacement responses of the rail, slab and tunnel invert respectively.
The calculations are done in the wavenumber-frequency domain.

F(x)
1
Rajl -J-Z2 \ = — = 1
. / TYA Ga . ¢
Slab __\.___] - ‘ 2
jy?‘ G "Gb
Tunnel invert = ‘ 3
Yy
Soil ----- T ————— 4

FiGure C.1: Schematic overview of floating slab track. The displacements and
interaction forces acting on the rails, slab and tunnel are indicated.
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When a unit point load acts on the slab at x = 0 this yields

1:/1 = Ehl(jéa +~1)
Yo = Hy(Gq— Gh) (C.1)
Ys = Hs3Gy

for the displacements Y; along the rails, Y along the slab and Y3 along the tunnel
invert. The applied point load is equivalent to a force per unit length of F' = d(z),
which gives F =1 when transformed. The functions Hy; and Hay are the FRFs Hyp
and Hso in the wavenumber domain for the response of a free beam to a point load
at = 0 for the two rails and the slab respectively. The function Hss is the FRF
Hj3s for the response of the uncoupled tunnel invert to a point load at z = 0 in the
wavenumber domain.

The joining condition between the rails and the slab and the slab and the tunnel
are

Ga = ka(Y1 — Y2)Gy = k(Yo — Y3) (C.2)

Combining equations (C.1) and (C.2) results in a system with five equations and
five unknowns, namely Vi, Y3, Y3, G, and G}. Substituting equations (C.2) into
equations (C.1) gives

Y1 — 1a) — ky(¥s — ¥3)) (C.3)

Writing Y; and )73 in function of Y3 results in

V. — _kaHyu y H11

Nl 1+ko H11 2+ 1+ko Hia -

Vo= H (k ( kofly vy, H1L —Y)—k (Y _ _hwHz Y)) .
2 22 (o \ T30 71y, 12 + ki 2 o\ Y2 = Tk, Has (C.4)
- o Flae

Yo — b33

3 1+ky H33

The second expression in (C.4) can be solved for Y;

~ ko Hyy Hoo(1 + kyHss)

Yy = = = = = — — —
1+ kyH3z + ko Hi1 + ko Hoo + kyHoo + kokyHi1H3s + kokyHi1 Hoo + kakb{é225[){33

Substituting this result into the first and third expression of (C.4) results in following
equations for Y7 and Y3

Hyy (1 + kaHao + kyHog + ki H3z + kakbﬁ22g33)

1+ kyHsz + koHyy + ko Hag + kyHao + kokyH1y Hsz + kokyHyy Hog + koky Hao Hss

(C.6)
7, keokyH11 Hao Hzs
1+ kyH3z + ko H11 + kqHoo + kyHoo + koky Hi1 H3s + kokyH11Hao + kokpHoo H3s
(C.7)
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