
Proceedings of the International Association for Shell and Spatial Structures (IASS) 
Symposium 2015, Amsterdam 

Future Visions 
17 - 20 August 2015, Amsterdam, The Netherlands 

 Optimizing the Steffen flexible polyhedron 
Iila  Lijingjiao a*, Tomohiro Tachi b, Simon D. Guest a 

 
a University of Cambridge 

Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK 
*jl714@eng.cam.ac.uk 
b University of Tokyo 

Department of General Systems Studies, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8902, Japan 
tachi@idea.c.u-tokyo.ac.jp 

 
 

Abstract 
We revisit Steffen’s known flexible polyhedron, originally described in 1978, and investigate whether 
we can increase its range of motion by varying his original dimensions. We also define the regularity 
of a polyhedron. Using a simulated annealing algorithm, we perform multi-objective optimization on 
the Steffen polyhedron to achieve both maximum regularity and range of motion. The results show that 
we are able to both increase the range of motion possible for the polyhedron, while still making the 
polyhedron more regular. 
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1. Introduction 
Most polyhedra are rigid, but this paper considers an exception: the Steffen flexible polyhedron [9]. 
Here we show how its range of motion can be extended. 

We use a concrete definition of polyhedra as closed surfaces consisting of a set of rigid polygons that 
are connected along their edges by hinges.  Thus we consider a simply connected hollow object with an 
envelope of rigid faces.  It was long conjectured (by Euler, among others) that all triangulated polyhedra 
are rigid (Connelly [3]).  Such structures automatically satisfy Maxwell’s equation for the rigidity of 
frames (Maxwell [6]), and it was proved by Cauchy [2] that all convex triangulated polyhedra are rigid.  
In 1897, Bricard [1] introduced three types of triangulated octahedra that are flexible; however, these 
are all self-intersecting, and hence are not ‘polyhedra’ by our definition.  Later Gluck [4] showed that 
triangulated polyhedra are generically rigid, i.e., almost all such structures are rigid.  However, 
Connelly showed, in the 1970s, by the simple expedient of a counterexample, that non-convex 
polyhedra can be flexible (Connelly [3]).  Soon after, Steffen [9] described a much simpler flexible 
polyhedron consisting of 14 faces, 9 nodes and 21 edges, shown in Figure 1. 
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This paper revisits the construction of Steffen flexible polyhedron.  It will consider how to optimize the 
range of motion for this polyhedron, while also considering its ‘regularity’.  

 

2. Composition of Steffen polyhedron 
Figure 2 shows the composition of the Steffen flexible polyhedron.  The feature of the polyhedron that 
allows flexibility is the use of ‘crinkles’, which were introduced by Connelly [3].  Figure 2(c,d) shows 
one such crinkle.  The crinkle consists of 6 triangular faces joining 6 vertices.  The crinkle has 11 edges, 
plus one virtual edge, whose length remains constant as the crinkle is flexed.  The crinkle is formed by 
the elimination of two adjacent faces from a Bricard type I octahedron, which has a C2 axis of symmetry.  
Since the crinkle is based on a Bricard octahedron, the crinkle can change configuration, or ‘flex’, 
without any changes in edge length – including the length of the virtual edge EF. The Steffen polyhedron 
has two crinkles that both share the same virtual edge, so the whole polyhedron can flex, as is shown in 
Figure 2(a).  However, after some displacement, ‘clashes’ occur: constituent elements of the flexible 
polyhedron come into contact with one another. For instance, an edge within one crinkle might touch 
an edge in the other crinkle, or two faces of one crinkle might touch each other. 
Figure 2(b) shows the net of the Steffen polyhedron, which can be used to make a model.  The net shows 
five length parameters defined by Steffen.  He suggested giving them the relative values 𝑎𝑎 = 6, 𝑏𝑏 =
5, 𝑐𝑐 = 2.5, 𝑑𝑑 = 5.5, 𝑒𝑒 = 8.5.  In Section 3, we will vary these values, but will use Steffen’s suggestion 
to provide us with a valid starting configuration. 
   

 

 
Figure 1: Two extreme positions during the flexing movement of the Steffen polyhedron. The 

faces are shown semi-opaque, so that hidden edges and vertices can be seen. 
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Figure 2: Construction of the Steffen flexible polyhedron. (a) A view of the Steffen polyhedron, 
showing the flexibility.  Point A is able to rotate around the virtual hinge EF.  (b) A net 
from which the Steffen polyhedron can be folded – ‘mountain’ (dashed) and ‘valley’ (dash-
dot) lines are distinguished from each other.  The net shows five length parameters a–e.  (c, 
d)  Two views of part of the Steffen polyhedron showing one ‘crinkle’ (Connelly [3]) which 
forms a Bricard Type I octahedron. The view point in (c) is the same as the view point in 
(a); the view in (d) is along the marked C2 axis of the octahedron, which is to be compared 
with the Bricard octahedron Type I in (e).  The virtual hinge EF is dotted.  (e) Bricard’s 
original figure of a Type I octahedron (taken from Bricard [1]), to which we have added 
the position of the C2 axis which is perpendicular to the plane of the drawing. The 
octahedron in (d) is a Bricard octahedron (e), but with different dimensions. 
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3. Optimization 

3.1. Optimization overview 
We wish to adjust the values of the parameters a–e to give a polyhedron with as large a flex as possible.  
Specifically, we wish to find the Steffen polyhedron which allows the largest possible rotation of point 
A around the virtual hinge EF, which we define as the ‘range of motion’ Θ.  Because we are not 
interested in the overall scale of the polyhedron, we fix the value of e, and thus have four parameters 
whose values we allow to vary.  However, when we first considered this, we quickly discovered that an 
optimization process to increase the range of motion drove the crinkles to become smaller and flatter.  
To avoid generating polyhedra that are very distorted, we have defined an additional measure for the 
‘regularity’ R of the polyhedron, which we define as being the ratio of the radius of the smallest 
inscribed circle (the inradius) for any face to the radius of the largest circumscribed circle (the 
circumradius) for any face – see Section 3.5. We then carry out a multi-objective optimization of both 
the range of motion and the regularity. 
In the rest of this section, we provide essential technical details that enabled us to carry out the 
optimization. 

3.2 Optimization method 
We use the Simulated Annealing (SA) method (Kirkpatrick [5]) for the optimization.  To do this, we 
defined a function in Matlab to be used within a SA algorithm.  The variables passed to the function are 
a–d (with e fixed at 8.5) and a chosen maximum rotation of point A around the virtual hinge EF.  
Because the whole polyhedron is line symmetric, the range of motion Θ is twice this maximum rotation.  
The function finds the configuration of the polyhedron for the maximum rotation and detects any clash 
within the configuration.  We define a penalty function to penalize any clash, and the function returns 
the range of motion penalized by any clash detected.   
To carry out the simulated annealing, we used the ‘General simulated annealing algorithm’ available 
from the online resource Matlab Central (Vandekerckhove [11]).  Each SA run returned a set of 
parameters that locally maximised Θ, and for which R could then be found.   

3.3 Finding configurations 
The function we use for optimization first finds a configuration of the polyhedron, where a configuration 
is defined by the position of all nine vertices.  The parameters a–e define the positions of vertices D, D’, 
E and F, shown in Figure 2(a).  Together with the maximum rotation parameter, the position of vertex 
A is also fixed.  What is required to complete the configuration is the positions of four other vertices, B 
and C in one crinkle, and the corresponding nodes B’ and C’ in the other crinkle. 
Initially the four vertices B, C, B’, C’ are given a position that roughly approximates their likely position, 
and this position is then corrected to the actual configuration.  To do this, the 21 edge lengths in the 
current iteration i are calculated and used to define a vector Li.  The required correct lengths define a 
vector Lc, each of whose entries are one of the values of the parameters a–e.  The current extension is 
then given by ei = Li – Lc.  We then correct for this extension by using a linearized compatibility matrix 
(Pellegrino [7]) as follows.   
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At the current position, we consider the Steffen polyhedron to be a truss structure, in which nodes A, D, 
E, F and D’ are fixed to a foundation,  while four nodes B, C, B’, C’ are able to be displaced.  Thus we 
have a truss structure with has 𝑗𝑗 = 4 non-foundation nodes and 𝑏𝑏 = 21 bars, for which we can write a 
compatibility matrix Ci for the current iteration to correct for the extensions (i.e. we try to find d to 
impose a change of length –e).  
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In fact, seven of the truss members are guaranteed to have the correct length, because they span fixed 
nodes,  
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Equation (1) is overconstrained.  We find a minimum length least squares solution using the pseudo-
inverse C+ (Strang [10]) to give nodal corrections for iteration i, di.  The nodes are displaced by the 
calculated amount, and then iteration i is complete.  If the extensions are then small enough then the 
nodal positions are taken to give the target configuration. In practice, it typically takes four iterations to 
give a configuration with resultant extensions of the order of 10–4

. 
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3.4 Clash detection 
Once we know the configuration, we need to ensure that no ‘clashes’ have occurred, where, for instance, 
an edge within one crinkle has passed through an edge in the other crinkle, or two faces of one crinkle 
have passed through each other. In the Steffen polyhedron, six possible clashes can occur.  Each of them 
can be detected by considering the relative orientation of the relevant line and face. 
Consider, as an example, the potential clash between line FB and face DD’F, shown in Figure 3.  We 
calculate a unit normal n to the face DD’F, and find the dot product with the vector 𝐹𝐹𝐹𝐹�����⃑ . If this is negative, 
a clash has occurred. The magnitude of the clash is defined as the angle β shown in Figure 3(a). We 
define the penalty p associated with a clash as 

𝑝𝑝(𝛽𝛽) = �𝑇𝑇 �𝑒𝑒
−𝛽𝛽𝑇𝑇 +

𝛽𝛽
𝑇𝑇
− 1� ,  𝛽𝛽 < 0

0,                                        𝛽𝛽 ≥ 0
 

where T is a parameter that can be varied.  In fact, we used the ‘temperature’ parameter in the simulated 
annealing algorithm as the parameter T to ensure that the penalty became stricter as the simulated 
annealing converged on a final optimum.  The penalty used in the optimization is the largest penalty 
associated with any of the potential clashes. 

3.5 Definition of regularity 
As well as optimizing the range of motion Θ, we also consider the regularity R, which we define as 
follows.  For any polyhedron, R is the ratio of the radius of the smallest inscribed circle (the inradius) 
for any face to the radius of the largest circumscribed circle (the circumradius) for any face.  Thus, if 
we number the faces 1 to n, and define the inradius and circumradius for face j to be 𝑅𝑅𝑖𝑖(𝑗𝑗) and 𝑅𝑅𝑐𝑐(𝑗𝑗) 
respectively, we have 

𝑅𝑅 =
min
𝑗𝑗=1⋯𝑛𝑛

𝑅𝑅𝑖𝑖(𝑗𝑗)

max
𝑗𝑗=1⋯𝑛𝑛

𝑅𝑅𝑐𝑐(𝑗𝑗)
 

Note that the maximum possible value of R for any triangulated polyhedron is 0.5, when all faces are 
equilateral triangles, for instance, for a regular tetrahedron. 
As an example, Figure 4 shows the parameters 𝑅𝑅𝑖𝑖, min = min

𝑗𝑗=1⋯14
𝑅𝑅𝑖𝑖(𝑗𝑗) and 𝑅𝑅𝑐𝑐, max = max

𝑗𝑗=1⋯14
𝑅𝑅𝑐𝑐(𝑗𝑗) for the net 

of the Steffen polyhedron. 
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Figure 3: Clash detection between a line FB and face DD’F. (a) Schematic representation of the line, 

the face, and a normal to the face.  (b) Two views of the Steffen polyhedron, showing the 
actual disposition of the line FB and face DD’F. The polyhedron is in neutral position, so 
there is no clash. But if the polyhedron is flexed in one direction, the angle between the line 
and the face decreases.  If the angle becomes negative, a clash is said to have occurred. 
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4. Multi-objective optimization result 
Formally, we define our optimization process as follows.  For four geometric parameters, 

𝐱𝐱 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑]𝑇𝑇 
we wish to maximize 
                  𝑓𝑓(𝐱𝐱) = 𝑤𝑤1𝛩𝛩(𝐱𝐱) + 𝑤𝑤2𝑅𝑅(𝐱𝐱) (2) 
subject to the following constraints on the weights 𝑤𝑤1 and 𝑤𝑤2: 

𝑤𝑤1 ≥ 0; 𝑤𝑤2 ≥ 0; 𝑤𝑤1 + 𝑤𝑤2 = 1 
For our results, we describe the Pareto front that captures all possible maximal values of 𝑓𝑓(𝐱𝐱) for any 
choice of the weights 𝑤𝑤1 and 𝑤𝑤2. 
In practice, we generated results as follows.  Starting from the initial parameters given by Steffen, the 
SA method was run a number of times to generate a sequence of results.  The parameters within the SA 
method (e.g., the ‘cooling’ rate) were varied to give other sequences, and small random perturbations 
of parameters were used to give other starting points.  Sometimes targeted changes in parameters were 
used to ensure an increase in the regularity, and sometimes new configurations were only accepted if 
they did not decrease the regularity.  By this method, we generated a cloud of possible configurations, 
each of which has a range of motion Θ, and for which R is defined. This cloud of points, and the Pareto 
front that it defines, is given in Figure 5. 
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Figure 4: The regularity of the Steffen polyhedron constructed with Steffen’s recommended 

parameter values is given by R=Ri,min/Rc,max=0.214 
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Figure 5: Multi-objective optimization of the Steffen polyhedron, simultaneously maximizing range 

of motion Θ and regularity R. Each cross gives one simulated annealing result. The green 
triangle shows Θ, R for the original Steffen polyhedron. Around the optimization results 
the convex Pareto front is plotted, giving the maximal values of the function f(x) defined 
in equation (2).  Three results that lie on the Pareto curve have been chosen to illustrate 
optimal polyhedra: for each of the results the net and a configuration are shown. 
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Comparing the results with the original Steffen parameters, we can see that it is possible to generate 
highly irregular polyhedron with twice the range of motion, and also a just flexible polyhedron which 
is 50% more regular.  More importantly, we have shown that there are many sets of parameters which 
give an increased range of motion with little or no detriment to the regularity of the polyhedron, and 
indeed that it is possible to increase both the regularity and the range of motion simultaneously by 
around 25%. 

4. Conclusion 
This research has shown that with modern computational tools, we are able to increase the range of 
motion possible for the Steffen polyhedron as well as the regularity. 
Further work will explore how the concept of a crinkle based on Bricard octahedra can be generalized 
to provide additional parameters for Steffen’s polyhedron. We will also look to develop new examples 
of flexible polyhedra and consider engineering applications. 
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